Citratzyklus. Citratzyklus
|
|
|
- Nicole Lehmann
- vor 6 Jahren
- Abrufe
Transkript
1 Der hat in der Zelle verschiedene Aufgaben. Teilschritte werden z.b. bei manchen Gärungen eingesetzt (Methyl-Malonyl-CoA-Weg). Er ist wichtig zur Bereitstellung verschiedener Vorstufen für Biosynthesen, z.b. für Aminosäuren oder Nucleotidbasen. Bei Zellen, die ihre Energie durch Elektronentransport gewinnen, ist die Hauptaufgabe des Citratcyclus die Bereitstellung der Reduktionsäquivalente als Brennstoff. Der beinhaltet auch eine Substratkettenphosphorylierung: die α-ketoglutarat- Dehydrogenase (α-ketoglutarat + CoA + NAD + > Succinyl- CoA + NADH + CO 2 + H + ) ist ein analog zur Pyruvat- Dehydrogenase aufgebauter Multienzymkomplex. Die Energie der Thioester-Bindung wird wiederum zur ATP-Bildung (bei Mitochondrien GTP) genutzt (Succinyl-CoA-Synthetase). In Analogie zu Acetyl-CoA > Acetyl-Phosphat wird auch hier intermediär Succinylphosphat gebildet (Phosphorolyse des Thioesters), dann der Phosphatrest auf das Enzym (Histidinrest) übertragen, schließlich an ADP gehängt. 1
2 Bei Bakterien liegen die Enzyme des Citratcyklus im Cytoplasma, bei Eukaryonten in der mitochondrialen Matrix. Eukaryonten verdanken ihre Fähigkeit zur Zellatmung ihrem Endosymbionten Mitochondrium. (Tricarbonsäure- TCA-Cyklus) 2
3 - alle Schritte, alle Enzyme Reduktionsäquivalente aus Glycolyse und 3
4 Bilanz des Wird ein Acetyl-CoA im Citratcyclus zu 2 CO 2 abgebaut, werden dabei 3 NADH, 1 FADH (membrangebundene Succinat-Dehydrogenase, die Elektronen fließen direkt in die Atmungskette) und ein ATP/GTP gewonnen. In Kombination mit der Glycolyse entstehen aus einer Glucose 10 NADH, 2 FADH, 4 ATP, durch Veratmung der Reduktionsäquivalente daraus (NADH 3 ATP, FADH 2 ATP) etwa 38 ATP. Durch Gärung allein werden nur 2 ATP (Entner-Doudoroff 1 ATP, Homoacetat-Gärung 3 ATP) aus einer Glucose gewonnen. Bei ausreichender Glucoseversorgung lebt E.coli auch im Aeroben von der Glycolyse und nutzt nur Teilschritte des Citratcyclus für Synthesen. Dabei überwiegt die Bildung von Oxalacetat aus PEP, Acetyl-CoA entsteht kaum. 4
5 Auch im Anaeroben sind bei E.coli Teile des Citratcyclus zu Synthesezwecken aktiv. Auch hier überwiegt dier Zuweg über die Phosphoenolpyruvat- Carboxylase. Daneben entsteht Acetyl-CoA über die Pyruvat- Formiat-Lyase. Dabei ist die Phosphoenolpyruvat-Carboxylase eine anaplerotische Reaktion. Es werden dadurch Komponenten des Citratcyclus nachgeliefert, die zur Aminosäuresynthese verbraucht werden. Der Weg über Acetyl-CoA und Citrat dagegen füllt nicht auf, da ja ein Oxalacetat aus dem Citratcyclus verbraucht wird! 5
6 Anaplerotische Reaktionen zum und zur Gluconeogenese 1) PEP-Carboxykinase (PEP-Synthese): HOOC - CH 2 - CO - COOH + ATP CH 2 = COPO 3 H 2 - COOH + CO 2 + ADP 2) Malat-Enzym HOOC - CH 2 - CHOH - COOH + NADP + CH 3 - CO - COOH + CO 2 + NADPH + H + 3) PEP-Synthetase: CH 3 - CO - COOH + ATP CH 2 = CO - PO 3 H 2 COOH + AMP + P i 4) PEP-Carboxylase (PEP-Verbrauch): CH 2 = CO - PO 3 H 2 COOH + CO 2 HOOC - CH 2 - CO - COOH + PO Die Bildung von Fumarat aus Oxalacetat läuft hier nicht über Malat, sondern durch reduktive Transaminierung über Aspartat und Aspartase. Succinat wird mit Fumarat-reduktase/ NADH gebildet, es ist also nicht einfach die Rückreaktion des normalen Wegs (Succ-DH, FADH). 6
7 Beim Wachstum auf einfachen Kohlenstoffquellen dient der Citratcyclus zur Kohlenhydratsynthese. Beim Wachstum auf einfachen Kohlenstoffquellen dient der Citratcyclus zur Kohlenhydratsynthese. Die Malat- Enzyme ( malic enzymes ) bilden aus Malat Pyruvat und NADH bzw. NADPH. Phosphoenolpyruvat- Carboxykinase erzeugt aus Oxalacetat und ATP direkt PEP. So können viele Verbindungen mit 3 und 4 Kohlenstoffatomen zur Zuckersynthese eingesetzt werden. 7
8 und Glyoxylatcyclus Bei Wachstum auf Acetat sind Auffüllreaktionen, anaplerotische Reaktionen nötig, da die eigentlich cyklisierenden Komponenten des Citratcyklus bei Synthesen verbraucht werden. Dabei ist der Glyoxylatcyclus weit verbreitet. Er ergänzt den Citratcyclus durch zwei Reaktionen, die Isocitratlyase, die Isocitrat in Succinat und Glyoxylat spaltet, und die Malat- Synthase, die analog zur Citratsynthase Glyoxylat mit Acetyl- CoA zu Malat kondensiert. So entstehen aus einem Molekül des Citratcyclus (Isocitrat) zwei, so daß eins davon für Synthesen (Gluconeogenese) frei ist. Glyoxylatzyklus 8
9 Die zentralen Reaktionen des Glyoxylatzyklus Regulation des Glyoxylatzyklus Glyoxylatcyclus und Citratcyclus konkurrieren um das Isocitrat. Bei Wachstum auf Acetat wird die Isocitrat- Dehydrogenase abgeschaltet. Dabei wird ein Rest im aktiven Zentrum (Serin 113) phosphoryliert, was die katalytische Aktivität völlig blockiert. Andererseits wird die Isocitratlyase durch PEP gehemmt. Dadurch ist sie bei laufender Glycolyse gehemmt, und bei einem Substratstau in der Gluconeogenese (dann ist es eine feed back Regulation, da das PEP dann Folgeprodukt der Isocitratlyase ist). 9
- der oxidative Abbau von Acetyl-CoA (und die somit gebildeten Reduktionsäquivalente) - Lieferung von Substraten für verschiedene Synthesen
Die Aufgabe des Citratcyklus ist: - der oxidative Abbau von Acetyl-CoA (und die somit gebildeten Reduktionsäquivalente) - Lieferung von Substraten für verschiedene Synthesen Die Aufgabe des Citratcyklus
Was bisher geschah 1
Was bisher geschah 1 Zellatmung (Übersicht) Der Citratcyclus ist die erste Stufe der Zellatmung 2 Citratzyklus Synonyme: Tricarbonsäurezyklus (TCA-Zyklus) Krebszyklus, Zitronensäurezyklus Der Zyklus ist
Regulation der Glykolyse: Phosphofructokinase
Regulation der Glykolyse: Phosphofructokinase Abbauwege des Pyruvats Weitere Oxidation (zu CO 2 ) Alkoholische Gärung Pyruvat- Decarboxylase Alkohol- Dehydrogenase NAD + wird bei der Gärung regneriert,
Der Energiestoffwechsel eukaryotischer Zellen
Der Energiestoffwechsel eukaryotischer Zellen Der Abbau (Katabolismus/Veratmung/Verbrennung) reduzierter Kohlenstoffverbindungen (Glukose, Fettsäuren, Aminosäuren) bzw. deren makromolekularer Speicher
Biologische Oxidation: Atmung (Dissimilation) C 6 H 12 O O 2 6 CO H 2 O G kj
Biologische Oxidation: Atmung (Dissimilation) C 6 H 12 O 6 + 6 O 2 6 CO 2 + 6 H 2 O G 0-2872 kj Hydrolyse der Stärke Ausgangssubstrate: Glucose, Fructose Stärkehydrolyse: Amylasen Endo- ( -Amylase) und
Grundlagen der Physiologie
Grundlagen der Physiologie Abbau eines Zuckermoleküls www.icbm.de/pmbio Lebensweise eines heterotrophen Aerobiers 1 Überblick Stoffwechsel Glykolyse Citratcyklus Chemiosmotische Prinzipien Anabolismus
Atmung Übersicht. Atmung der Mitochondrien
Atmung der Mitochondrien Atmung Übersicht e - Transportkette REAKTION: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + Energie (Glucose) (Sauerstoff) (Kohlendioxid) (Wasser) Nur ca. 40% der Energie wird zu ATP Der
BIOCHEMIE des Stoffwechsels ( )
BIOCHEMIE des Stoffwechsels (772.113) 7. Einheit Citrat- und Glyoxylat-Cyclus Citrat-Cyclus Allgemeines Reaktionsfolge Thermodynamik und Regulation Amphibole Natur des Citrat-Cyclus Anaplerotische Reaktionen
Biochemie II - Tutorium
Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 23.11.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium
Der Citratzyklus (= Trikarbonsäurezyklus, Krebszyklus)
Der Citratzyklus (= Trikarbonsäurezyklus, Krebszyklus) Biochemischer Kreisprozeß Ablauf in der mitochondrialen Matrix Glykolyse β-oxidation Atmungskette AS-Abbau Der Citratzyklus Der Citratzyklus: Übersicht
Citratzyklus. Biochemie Maria Otto,Bo Mi Ok Kwon Park
Citratzyklus Biochemie 13.12.2004 Maria Otto,Bo Mi Ok Kwon Park O CH 3 C Acetyl-CoA + H 2 O HO C COO C NADH O C H Citrat Cis-Aconitat H C Malat Citratzyklus HO C H Isocitrat CH H 2 O Fumarat C = O FADH
10.2 Der Citratzyklus 203
10.2 Der Citratzyklus 203 Ketonkörper-Biosynthese. Bei den Ketonkörpern handelt es sich um die verschiffbare Form von Acetyl-CoA. Staut sich viel Acetyl-CoA in der Leber an im Hungerzustand, dann werden
Reaktionen der Zellatmung (1)
ARBEITSBLATT 1 Reaktionen der Zellatmung (1) 1. Benennen Sie den dargestellten Stoffwechselweg und die beteiligten Substanzen! CoA-S Acetyl-CoA Citrat Oxalacetat Isocitrat Malat Citratzyklus α-ketoglutarat
Die innere Mitochondrienmebran ist durchlässig für: 1. Pyruvat 2. Malat 3. Aspartat 4. Citrat
Der Malat-Shuttle Die innere Mitochondrienmebran ist durchlässig für: 1. Pyruvat 2. Malat 3. Aspartat 4. Citrat Die innere Mitochondrienmembran ist undurchlässig für: 1. Wasserstoffatomen > 2. Acetyl-
I. Zellatmung. =Abbau von Kohlenhydraten unter Sauerstoffverbrauch (aerob) KH + O 2 --> CO 2 + H 2 O + Energie
KATABOLISMUS Abbau komplexer organischer Moleküle (reich an Energie) zu einfacheren (mit weniger Energie). Ein Teil der Energie wird genutzt um Arbeit zu verrichten (Zelle erhalten, Wachstum) I. Zellatmung
Z11 GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: 2) ÜBERSICHT ÜBER DEN ENERGIESTOFFWECHSEL
GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: Fette und Kohlenhydrate aus der Nahrung nutzt der Körper hauptsächlich zur Energiegewinnung. Proteine aus der Nahrung werden
Stoffwechsel. Metabolismus (3)
Vorlesung Zell- und Molekularbiologie Stoffwechsel Metabolismus (3) Überblick Stoffwechsel Glykolyse Citratcyklus Chemiosmotische Prinzipien 1 Glykolyse 1 Glucose und in der Glykolyse daraus gebildete
Z 11 GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: 2) ÜBERSICHT ÜBER DEN ENERGIESTOFFWECHSEL
GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE Zusammenfassung Zusammenfassung Kapitel 11 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: Fette und Kohlenhydrate aus der Nahrung nutzt der Körper hauptsächlich zur Energiegewinnung.
Schrittweise Oxidation und Decarboxylierung von Glucose-6-phosphat zu Ribulose-5- phosphat
1. Der plastidäre oxidative Pentosephosphatweg Abbau von Hexose unter NADPH+H + -Synthese Schlüsselenzym=Glucose-6-phosphat-Dehydrogenase Glucose-6-phosphat-Dehydrogenase wird durch Thioredoxin im reduzierten
KOHLENHYDRATE. Die Glykolyse
Die Glykolyse Hexokinase Glucose Kostet 1ATP Mg 2+ Glucose-6-P Die Glucokinase kann durch Insulin induziert werden in : 1) Den Fettzellen 2) Den ß-Zellen des Pankreas 3) Der Nierenrinde 4) Der Leber Die
Biochemie II - Tutorium
Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 16.11.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium
Präsentation STOFFWECHSEL STOFFWECHSEL. Fettstoffwechsel im Sport. Biologische Oxidation Zitratzyklus und Atmungskette
STOFFWESEL GRUNDLAGEN STÖRUNGEN:Diagnose, Therapie, Prävention 6 Bedeutung der körperlichen Aktivität Präsentation Fettstoffwechsel im Sport Glukose exokinase 1ATP -> 1ADP Glukose-6-Phosphat Phosphohexoisomerase
Kapitel 5: 1. Siderophore assistieren dem Transfer welcher der folgenden Makronährstoffe über Membranen? A. Stickstoff B. Phosphor C. Eisen D.
Kapitel 5: 1 Siderophore assistieren dem Transfer welcher der folgenden Makronährstoffe über Membranen? A. Stickstoff B. Phosphor C. Eisen D. Kalium Kapitel 5: 2 Welcher der folgenden Makronährstoffe ist
Gluconeognese Neusynthese von Glucose aus Pyruvat
Gluconeognese Neusynthese von Glucose aus Pyruvat Warum notwendig? Das Gehirn ist auf eine konstante Versorgung mit Glucose angewiesen. Eine Unterzuckerung (< 3 4 mmol/l) führt unweigerlich zur Bewußtlosigkeit
schnell und portofrei erhältlich bei
Kurzlehrbuch Biochemie Kurzlehrbuch Biochemie Bearbeitet von Melanie Königshoff, Timo Brandenburger 2. überarb. Aufl. 2007. Taschenbuch. 46 S. Paperback ISBN 978 3 13 136412 8 Format (B x L): 24 x 17 cm
KOHLENHYDRATE PYRUVAT-DEHYDROGENASE
PYRUVAT-DEHYDROGENASE PYRUVAT-DEHYDROGENASE: Um ein Optimum Beute garantieren zu können, Wird das entstandene Pyruvat (bei der aeroben) Glykolyse, durch die PDH in Acetyl-CoA umgewandelt, um dann, Teil
Musterlösung. Frage Summe Note Punkte 1, ,5 1,0
Biochemische Teilklausur zum Grundmodul 0 im Bachelor-Studiengang Biowissenschaften (neue Prüfungsordnung Dauer Std.), 2. 2. 203, 8:00-9:00 Uhr, Sporthalle, sowie Biochemische Teilklausur zum Grundmodul
Wachstum von Escherichia coli mit Glucose oder Acetat
Johannes Gutenberg-Universität Mainz Institut für Mikrobiologie und Weinforschung FI-Übung: Identifizierung, Wachstum und Regulation (WS 2004/05) Sebastian Lux Datum: 22.1.2005 Wachstum von Escherichia
1. Biochemie-Klausur Zahnmediziner, WS 03/04
1. Biochemie-Klausur Zahnmediziner, WS 03/04 1. Welche Aussage zur ß-Oxidation von Fettsäuren in Peroxisomen ist falsch? A) Die Aufnahme langkettiger Fettsäuren in die Peroxisomen erfolgt Carnitin-unabhängig!
Grundzüge des Energiestoffwechsels I
Grundzüge des Energiestoffwechsels I 4.5 Grundzüge des Energiestoffwechsels 4.5.2 Glykolyse 4.5.3 Pyruvatdecarboxylierung 4.5.4 Citratzyklus 4.5.5 Glyoxylatzyklus und Gluconeogenese 4.5.6 Atmung, Endoxidation
Pentosephosphat-Weg: alternativer Abbau von Glucose. Wird auch als Hexosemonophosphatweg (HMW) oder Phosphogluconat-Cyclus bezeichnet.
Pentosephosphat-Weg: alternativer Abbau von Glucose Wird auch als Hexosemonophosphatweg (HMW) oder Phosphogluconat-Cyclus bezeichnet. Er liefert NADPH und Ribose-5-phosphat. NADPH ist die 2. Währung der
Grundzüge des Energiestoffwechsels I
Grundzüge des Energiestoffwechsels I 4.5 Grundzüge des Energiestoffwechsels 4.5.2 Glykolyse 4.5.3 Pyruvatdecarboxylierung 4.5.4 Citratzyklus 4.5.5 Glyoxylatzyklus und Gluconeogenese 4.5.6 Atmung, Endoxidation
Biochemie II - Tutorium
Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 04.01.2016 Zellkern Lipidtröpfchen Nucleotidmetabolismus Glykogen- Stoffwechsel Pentosephosephatweg Glucose Glucose
Wiederholung. Fettsäuresynthese: Multienzymkomplex Sekundäre Pflanzenstoffe
Wiederholung Ökologie der C 4 -Pflanzen CAM-Zyklus: primäre CO 2 -Fixierung in der Nacht, Übertragung an Ribulose-1,5-bisphosphat am Tag: zeitliche Kompartimentierung Photorespiration, Lichtatmung Photosynthese
Kraftwerk Körper Energiegewinnung in unseren Zellen
Was passiert eigentlich, wenn wir etwas essen und dann loslaufen müssen? Wie können unsere Zellen die Stoffen aus der Nahrung zur Energiegewinnung nutzen? Die Antwort auf diese Fragen gibt s in diesem
Kataboler und Anaboler Stoffwechsel
Vorlesung Vom Molekül zur Zelle Ao.Univ.Prof. Dr. Georg Weitzer Fortsetzung von Block 3 nach Prof. Müllner, ab 8.1. Kataboler und Anaboler Stoffwechsel Aktuelle Folien unter http://homepage.univie.ac.at/georg.weitzer/lectures.html
Biochemie II - Tutorium
Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 09.01.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium
Einführung in die Biochemie
Stoffwechselvorgänge, bei denen Kohlenhydrate abgebaut werden um dem rganismus Energie zur Verfügung zu stellen, können auf verschieden Wegen ablaufen: 1. Die Atmung ist der aerobe Abbau, bei dem zur Energiegewinnung
Versuch 6. Leitenzyme
Versuch 6 Leitenzyme Protokollant: E-mail: Studiengang: Gruppen-Nr: Semester: Betreuer: Max Mustermann [email protected] X X X Dr. Kojro Einleitung Ziel dieses Versuches ist der Nachweis von bestimmten
Kohlenhydrate C n. O) n (H 2. z.b. C 6 O 6 O) 6 H 12 : C 6. Monosaccharide Di- und Oligosaccharide Polysaccharide (Glykane) Monosaccharide
Kohlenhydrate C n (H 2 O) n z.b. C 6 (H 2 O) 6 : C 6 H 12 O 6 Monosaccharide Di- und Oligosaccharide Polysaccharide (Glykane) Vortragender: Dr. W. Helliger Monosaccharide Reaktionen der Monosaccharide
Ueberblick des Zuckerabbaus: Pyruvat!
Ueberblick des Zuckerabbaus: Pyruvat + 2 ATP Oxidativer Abbau Fermentation (Muskel) Alkohol-Gärung (Hefe) Alkoholische Gärung: In Hefe wird unter aneroben Bedingungen NAD + durch Umwandlung von Pyruvat
52: Welche der Coenzyme sind an der oxidativen Decarboxylierung von Pyruvat beteiligt? 1) Thiaminpyrophosphat
2. Testat Biochemie 93/94 - Teil B (Leider ist dies nur ein Teil der Fragen!) 52: Welche der Coenzyme sind an der oxidativen Decarboxylierung von Pyruvat beteiligt? 1) Thiaminpyrophosphat 3) Biotin 2)
Schritt für Schritt Simulation Die Atmungskette
KENNZEICHEN: KURS - SCHULE - - Schritt für Schritt Simulation Die Atmungskette Inhalt Übersicht über das Mitochondrium und die Mitochondrienmembran S.2 Zeichenerklärung S.3 Stichwortverzeichnis S.4 Leitfaden
Klausur zur Vorlesung Biochemie I im WS 2001/02
(insgesamt 100 Punkte, mindestens 40 erforderlich) Klausur zur Vorlesung Biochemie I im WS 2001/02 am 18.02.2002 von 08.15 09.45 Uhr Gebäude 52, Raum 207 Bitte Namen, Matrikelnummer und Studienfach unbedingt
Der Fettsäurestoffwechsel. Basierend auf Stryer Kapitel 22
Der Fettsäurestoffwechsel Basierend auf Stryer Kapitel 22 1 CoA 2 3 Überblick 4 Ein paar Grundlagen... Carbonsäure Alkohol Carbonsäureester Eine Acyl-Gruppe 5 Eine Acyl-Gruppe H O Formyl H 3 C O Acetyl
➃ ➄ ➅ ➄ ➃ ➆ ➇ ➈ ➉ ➃ ➄. 2.2 Dünndarm. 2.1 Verdauungstrakt
2. Verdauungstrakt. Malen Sie die verschiedenen Verdauungsorgane mit unterschiedlichen Farben an. 2. Schreiben Sie die Bezeichnungen der Verdauungsorgane und der Verdauungssäfte mit Mengenangabe in den
Biochemie II - Tutorium
Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 04.01.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium
Pentosephosphatzyklus. Synonym: Hexosemonophosphatweg
Pentosephosphatzyklus Synonym: Hexosemonophosphatweg Gliederung Funktion & Lokalisation Grundgerüst des Ablaufs Anpassung an Stoffwechselsituation Regelung Beispielreaktion Funktion & Lokalisation Gewinnung
Biochemie Übungsblatt Nr Fettsäuresynthese:
Fettsäuresynthese: 1) Mit Hilfe des mitochondriale ACP? AcetylCoA Carrboxylase (Biothin als prosth. Gruppe) AcetylCoA + Kohlendioxid + ATP MalonylCoA + ADP + P 2)? Reguliert durch Insulin (Insulin hemmt
Klausurbogen im Studiengang B.Sc. Biologie Modul BSc-Bio-7, Teilklausur Biochemie vom
Johann Wolfgang Goethe-Universität Frankfurt am Main Deckblatt Fachbereich Biowissenschaften Klausurbogen im Studiengang B.Sc. Biologie Modul BSc-Bio-7, Teilklausur Biochemie vom 08.12.2008 Name: Vorname:
12. Oxidative Phosphorylierung
12. Oxidative Phosphorylierung 303 Zweck: Gewinnung von ATP Regeneration von NAD + und FAD Gesamtreaktionen: 3 ADP + 3 P i 3 ATP NADH + 0,5 O 2 + H + NAD + + H-O-H 2 ADP + 2 P i 2 ATP FADH 2 + 0,5 O 2
3.4 Citratcyclus Fehlertext
3.4 Citratcyclus Fehlertext. Lesen Sie den nebenstehenden Text 23 Fehler, indem Sie die Fehler unterstreichen, Der Citratcyclus wird als die Drehscheibe des gesamten Stoff - wechsels im Organismus bezeichnet.
BIOCHEMIE. Prof. Manfred SUSSITZ. über(be)arbeitet und zusammengestellt nach Internetvorlagen:
BIOCHEMIE Prof. Manfred SUSSITZ über(be)arbeitet und zusammengestellt nach Internetvorlagen: Medizinische Fakultät, Universität Erlangen http://www2.chemie.uni-erlangen.de/projects/vsc/chemie-mediziner-neu/start.html
Kapitel 20: 1. Nach Abschluss der Arbeiten werden sterile Arbeitsbänke und Laminar-Flow-Bänke durch sterilisiert.
Kapitel 20: 1 Nach Abschluss der Arbeiten werden sterile Arbeitsbänke und Laminar-Flow-Bänke durch sterilisiert. A. Röntgenstrahlen B. UV -Licht C. Gamma-Strahlung D. Ionisierende Strahlung Kapitel 20:
Mechanismen der ATP Synthese in Mitochondrien
Mechanismen der ATP Synthese in Mitochondrien Übersicht Die Bedeutung von ATP Aufbau eines Mitochondriums ATP Synthese: Citratzyklus Atmungskette ATP Synthase Regulation der ATP Synthese Die Bedeutung
Primärstoffwechsel. Prof. Dr. Albert Duschl
Primärstoffwechsel Prof. Dr. Albert Duschl Aufgaben Der Primärstoffwechsel sorgt für Aufbau (Anabolismus) und Abbau (Katabolismus) biologischer Moleküle, wie Aminosäuren, Lipide, Kohlenhydrate und Nukleinsäuren.
9 Herkunft des ATP. 9.2 Der Citratzyklus
200 9.2 Der Citratzyklus Im Rahmen des Citratzyklus wird Acetyl-CoA zu zwei Molekülen CO 2 umgewandelt, wobei zusätzlich noch Energie in Form von ATP und GTP sowie Reduktionsäquivalente in Form von NADH/H
Klausur zur Vorlesung Biochemie I im WS 2004/05
Klausur zur Vorlesung Biochemie I im W 2004/05 am 9.03.2005 von 0.00 -.30 Uhr Gebäude 42, örsaal 5 Lösungen in rot Punkte in grün Aufgabe : Formulieren ie die repetitiven chritte in der -xidation von Fettsäuren
1. Überblick. 4. Regulation des Citronensäure-Cyclus. 2. Stoffwechselquellen für Acetyl-Coenzym A. 5. Amphibole Natur des Citronensäure-Cyclus
Voet Biochemistry 3e 1. Überblick 2. Stoffwechselquellen für Acetyl-Coenzym A 3. Enzyme des Citronensäure- Cyclus 4. Regulation des Citronensäure-Cyclus 5. Amphibole Natur des Citronensäure-Cyclus 1. Überblick
Reduction / Oxidation
H :! H.. C.. H :! H H :! H.. C.. OH :! H H :! H 3 C.. C.. OH :! H O ::! H 3 C.. C.. H O ::! H 3 C.. C.. O -! O=C=O Oxidationszahl Methan -4 Methanol -2 Ethanol -1 Acetaldehyd +1 Acetat +3 Kohlendioxyd
Atmungskette ( Endoxidation) Reaktionen und ATP-Synthase
Atmungskette ( Endoxidation) Reaktionen und ATP-Synthase Einleitung Aufrechterhaltung von Struktur und Funktion aller Lebensformen hängt von einer ständigen Energiezufuhr ab Höchste Energieausbeute liefert
BIOCHEMIE DER ERNÄHRUNG II Oxidation von Lipiden. Gastrointestinaltrakt. Fettsäureoxidation zu Acetyl-CoA
xidation von Lipiden ß-xidation: Fettsäureoxidation zu Acetyl-oA BIEMIE DER ERNÄRUNG II 07.05.2012 wichtigste Fettsäurequelle in Nahrung: Triacylglyceride Import freier Fettsäuren ins ytosol oder Erzeugung
Kohlenstoffdioxid wird in lichtabhängigen Reaktion freigesetzt Sauerstoff wird wie in der Atmung verbraucht. Lichtatmung
1. Kompartimentierung bei der Photorespiration Kohlenstoffdioxid wird in lichtabhängigen Reaktion freigesetzt Sauerstoff wird wie in der Atmung verbraucht. Lichtatmung Kosten: o Energie, da ATP verbraucht
Asmaa Mebrad Caroline Mühlmann Gluconeogenese
Gluconeogenese Asmaa Mebrad Caroline Mühlmann 06.12.2004 Definition: wichtiger Stoffwechselweg, bei dem Glucose aus Nicht-Kohlenhydrat-Vorstufen synthetisiert wird Ablauf bei längeren Hungerperioden dient
Um diesen Prozess zu verstehen, müssen wir die Wege der Glukose genauer betrachten.
Glukose hilft uns, auch bei intensiven Belastungen zu überleben. Wieso? Um diesen Prozess zu verstehen, müssen wir die Wege der Glukose genauer betrachten. In diesem Artikel geht es nicht nur um den Abbau
Anaerobe NADH-Regeneration: Gärung
Anaerobe NADH-egeneration: Gärung Milchsäure-Gärung H 3 Lactat-DH H H H 3 Pyruvat Lactat Anaerobe NADH-egeneration: Gärung Milchsäure-Gärung H 3 Lactat-DH H H H 3 Pyruvat Lactat Alkoholische Gärung H 3
Grundlagen des Stoffwechsels
Vorlesung Allgemeine Mikrobiologie Grundlagen des Stoffwechsels www.icbm.de/pmbio Was ist Stoffwechsel? Stoffwechsel fi Chemische Umsetzungen, (Bio-)Chemie fi Umwandlung von Nahrung in Biomasse fi Umwandlung
5.2. Fragen zu Abbauwegen im Energiestoffwechsel (Katabolismus)
5.2. Fragen zu Abbauwegen im Energiestoffwechsel (Katabolismus) Stoffwechselwege (16) In der folgenden Abbildung sind mehrere Stoffwechselwege dargestellt: 1 1 NAD + + NADH + H 2 3 4 2 a) Um welche Stoffwechselwege
Reduction / Oxidation
Reduction / Oxidation Pyruvat C6H12O 6 Glucose Glycogen Glucose-6-P Glycolyse 2 e - 2 Pyruvat 2 e - 2 Acetyl-CoA 2 CO 2 ATP ADP ATP ADP Citrat-Zyklus oder Tricarbonsäure 4 CO 2 8 e - Zyklus 6 O2 6 H 2
Grundlagen des Stoffwechsels
Vorlesung Allgemeine Mikrobiologie Grundlagen des Stoffwechsels www.icbm.de/pmbio Was ist Stoffwechsel? Stoffwechsel fi Chemische Umsetzungen, (Bio-)Chemie fi Umwandlung von Nahrung in Biomasse fi Umwandlung
Es gibt 3 Ketonkörper:
KETONKÖRPER Es gibt 3 Ketonkörper: O II CH3-C-CH2-COO ACETOACETAT CH3-C-CH2-COO I OH ß-HYDROXYBUTTERSÄURE O II CH3-C-CH3 ACETON (LYENENZYKLUS) Der Sinn der Ketogenese liegt darin, die s aus der ß-Oxidation
Inhaltsverzeichnis - Kapitel
Inhaltsverzeichnis - Kapitel 1. Einleitung: Die Chemie des Lebens 2. Kohlenhydrate 3. Lipide und Membranen 4. Nukleinsäuren 5. Aminosäuren und Proteine 6. Enzyme und Katalyse 7. Vitamine & Kofaktoren 8.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lehrerhandreichungen zu: "Zellatmung" Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lehrerhandreichungen zu: "Zellatmung" Das komplette Material finden Sie hier: School-Scout.de Schlagwörter ADP; Atmungskette; ATP;
Das Sinnloseste: der Zitronensäurezyklus
Vortrag zum Thema Das Sinnloseste: der Zitronensäurezyklus von Daniel Metzsch 1 Inhalte 1. Zuerst ein paar Strukturformeln 2. Einordnung in den Metabolismus 3. Überblick über den Zitronensäurezyklus 4.
9. Abbau der Glukose zum Pyruvat
9. Abbau der Glukose zum Pyruvat 236 9.1. Übersicht: Abbau von Glucose Pentosephosphate Pathway (PPP) NADP + NADPH Glucose Glycolysis Oxidative Phosphorylation PDH Complex Citric Acid Citric Acid Cycle
Einführung in die Biochemie Glykolyse
Glykolyse Der Abbau der Glukose beginnt beim aeroben und beim anaeroben Abbau nach dem gleichen rinzip, der Glykolyse. Dabei wird Brenztraubensäure (2-Ketopropansäure) gebildet. Die Glykolyse ist die erste
Seminar Biochemie. Lipide und Lipidstoffwechsel. Dr. Christian Hübbers
Seminar Biochemie Lipide und Lipidstoffwechsel Dr. Christian Hübbers Lernziele Lipidklassen: Fettsäuren, Triglyceride, Phospholipide, Cholesterin, Sphingolipide, Glykolipide. ß-Oxidation, FS-Biosynthese,
Seminar Biochemie. Lipide und Lipidstoffwechsel. Dr. Christian Hübbers
Seminar Biochemie Lipide und Lipidstoffwechsel Dr. Christian Hübbers Lernziele Lipidklassen: Fettsäuren, TG, Phospholipide, Cholesterin, Sphingolipide, Glykolipide. ß-Oxidation, FS-Biosynthese, MalonylCoA,
Bioenergetik. Technische Universität Ilmenau, FG Nanotechnologie. Zentrum für Mikro- und Nanotechnologien
Bioenergetik Quellen: 1. Physiologie des Menschen (mit Pathophysiologie) R.F. Schmidt, F. Lang, G. Thews, 29. Auflage Springer Medizin Verlag Heidelberg (2005), ISBN 3-540-21882-3. 2. www.cg.bnv bamberg.de/t3/fileadmin/images/fachbereiche/biologie/dateien/kh-abbau.ppt
Fettsäurebiosynthese
Fettsäurebiosynthese Inhalt Fettsäuren Triacylglyceride FS-Biosynthese und einzelne Schritte Fettsäuren Lange CH-Ketten mit einer endständigen Carboxylgruppe 3 Gruppen: -> gesättigte FS -> einfach ungesättigte
Glycerin Produktion am Beispiel von Saccharomyces cerevisiae
Glycerin Produktion am Beispiel von Saccharomyces cerevisiae Inhalt Sinn und Zweck Biosynthese Glycerinphosphatdehydrogenase Überexpression des GPD1-Gens Nebenprodukte Zusammenfassung Literatur Sinn und
FETTSÄUREBIOSYNTHESE
FETTSÄUREBIOSYNTHESE Im Folgenden geht es um einige speziellere Beispiele aus dem Bereich der Fettsäurebiosynthese. Wie wir gerade am Beispiel der Palmitatsynthese gesehen haben, werden hierzu 8 Moleküle
Praktikumsreferat Biochemie
Praktikumsreferat Biochemie Thema: Glycolyse und Gluconeogenese 1. Glycolyse im Überblick Die Glycolyse (gr.: glykys = süß, lysis = auflösen) beschreibt den Abbau von Glucose zu Pyruvat (aerobe Glycolyse
Atmungskette inklusive Komplex II
Atmungskette inklusive Komplex II Energiegewinnung durch oxidative Phosphorylierung GW2014 Das Prinzip der Oxidativen Phosphorylierung 14_01_01_harness_energy.jpg Chemiosmotische Kopplung 2016 1 1) 2)
Glykolyse! Pyruvat-! dehydrogenase! Citronensäure-! Zyklus!!
Glykolyse! Pyruvat-! dehydrogenase! Citronensäure-! Zyklus!! Indirekte ATP synthese! Protonen können in wässriger Lösung sehr! schnell transportiert werden.! Ionen können biologische Membranen nicht spontan
Klausur zur Vorlesung Biochemie I im WS 1993/1994. am 18. Februar Nachklausur zur Vorlesung Biochemie I im WS 1993/1994. am 30. Mai 1994.
Biochemie 1, WS 93 http://www.uni-kl.de/fb-biologie/fs/klausur/chemie/biochem/bc1ws93.htm 1 von 2 17.07.01 20:50 Klausur zur Vorlesung Biochemie I im WS 1993/1994 am 18. Februar 1994 1 (16 Punkte) Formulieren
WICHTIG!!! Fragen, Kritik, Anmerkungen bitte an [email protected]. Viel Spass
Microbiological Pathways von Florian Diehl 2005 WICHTIG!!! Dies ist eine interaktive Powerpoint-Präsentation. Links (unterstrichene Wörter) können angeklickt werden, und leiten zur jeweiligen Seite weiter.
Sport, oxidativer Stress, körpereigenes antioxidatives System und Antioxidantien - macht eine Supplementation Sinn?
Medizin Jens Brandl Sport, oxidativer Stress, körpereigenes antioxidatives System und Antioxidantien - macht eine Supplementation Sinn? Examensarbeit Technische Universität München Wissenschaftszentrum
Oxidative Phosphorylierung
BICEMIE DER ERÄRUG II Grundzüge des Metabolismus xidative Phosphorylierung 24.04.2012 xidative Phosphorylierung xidative Phosphorylierung -Die Elektronen in AD und in FAD 2 (hohes Übertragungspotential)
Versuchsprotokoll: Leitenzyme
Versuchsprotokoll: Leitenzyme Aufschluss von Lebergewebe / Fraktionierte Zentrifugation / Aufschluss von Mitochondrien / Nachweis von Leitenzymen im Cytosol und 1.1. Einleitung Für die Trennung der Organellen
Biochemie II. im Wintersemester 2009/2010. Joachim Wegener. Institut für Analytische Chemie, Chemo- und Biosensorik Universität Regensburg
Biochemie II im Wintersemester 2009/2010 Joachim Wegener Institut für Analytische Chemie, Chemo- und Biosensorik Universität Regensburg 18.10.2010 1/14 Biochemie II im WS 2010 / 2011 All Dozenten auf einen
Vademecum Metabolicum
Vademecum Metabolicum Diagnose und Therapie erblicher Stoffwechselkrankheiten Bearbeitet von Johannes Zschocke, Georg F. Hoffmann 4., vollst überarb. Aufl. 2011. Taschenbuch. 184 S. Paperback ISBN 978
