Formelsammlung Mathematik

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung Mathematik"

Transkript

1 Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1 R 0 = 1 q R q 1 q 1 = R q vorschüssig R = (q R) q 1 q 1 R 0 = 1 q R q 1 1 q 1 = R q 1.2 Tilgugsrechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie K 0 die Kreditsumme, die Laufzeit Auitätetilgug (Gleich hohe Auitäte) A = K 0 q q 1 q 1.. Auitat K t = K 0 q t A qt 1 q 1 Restschuld ach Ablauf vo t Jahre Ratetilgug (Gleich hohe Tilgugsrate) K t = K t 1 K0 Restschuld ach Ablauf vo t Jahre 1.3 Festverzisliche Wertpapiere Sei der omielle Jahreszissatz p %. Redite = Effektivzissatz p eff %, so dass für q eff = 1 + p eff 100 gilt: Emissioskurs C 0 = 1 q eff ( ) p q eff 1 q eff 1 + C 1

2 1.4 Ivestitiosrechug Sei der Kalkulatioszissatz p%, der Zisfaktor q = 1 + p 100. Seie R 0 R 1... R die Zahlugsreihe, die Laufzeit. Kapitalwert C 0 = k=0 1 q k R k = EV q Edvermögesdifferez EV = k=0 q k R k = C 0 q Iterer Zissatz = Effektifzissatz = p it %, so dass C 0 (q it )= 0 ist 2 Aalysis 2.1 Logarithme Umrechug vo Logarithme zu verschiedee Base: log a (x) = log b (x) log b (a) 2.2 Differetialrechug Tagetegleichug Sei f eie differezierbare Fuktio. Tagete a de Graphe vo f im Pukt x 0 : t(x) = f(x 0 ) + f (x 0 ) (x x 0 ) Ableitugsregel Produktregel: Quotieteregel: Ketteregel: (u v) (x) = u (x) v(x) + u(x) v (x) ( u v) (x) = u (x) v(x) u(x) v (x) v 2 (x) ( 1 v) (x) = v (x) v 2 (x) (u v) (x) = u (v(x)) v (x) Elastizität ǫ f,x = f (x) x f(x).. fur eie Fuktio f eier Variable ǫ f,xi = f x i x i f(x).. fur eie Fuktio f mehrerer Variable 2

3 2.2.4 Lagrage-Fuktio eier Nutzefuktio U uter Budgetbeschräkug Sei eie Budgetgerade gegebe durch p 1 x 1 + p 2 x 2 = C. Lagragefuktio: L(x 1, x 2, λ) = U(x 1, x 2 ) + λ (p 1 x 1 + p 2 x 2 C) Im Haushaltsoptimum gilt das 2. Gossesches Gesetz 1 p 1 U x 1 = 1 p 2 U x 2 3 Lieare Gleichugssysteme 3.1 Iverse eier 2 2 Matrix ( a b Ist A = c d mit deta = a d c b ) eie ivertierbare 2 2 Matrix, so ist A 1 = 1 deta ( d b c a ) 3.2 Lieare Optimierug Gegebe: Lieare Zielfuktio Z(x 1, x 2 ) Restriktioe der Gestalt a 11 x 1 + a 12 x 2 b 1.. ud / oder a m1 x 1 + a m2 x 2 b m c 11 x 1 + c 12 x 2 d 1.. c 1 x 1 + c 2 x 2 d Gesucht: Zulässiger Bereich: Optimum der Zielfuktio Z uter de Nebebediguge Bereich der Werte x i 0, die alle Restriktioe erfülle 3.3 Leistugsverflechtug (Leotief-Modell) ( ) x1 Sei x = der Vektor der vo zwei Produzete hergestellte Mege. x 2 Sei B die Leistugsverflechtugsmatrix: B ethält die Eigeverbrauchsateile jedes Produzete. Beziehuge zwische hergestellte Mege x, Eigeverbrauchsmege w ud für de Verkauf übrige Mege v: Eigeverbrauch: w = B x Hergestellt: x = B 1 w falls B ivertierbar Verkaufsmege: v = (E B) x Hergestellt: x = (E B) 1 v falls E B ivertierbar 3

4 Formelsammlug Statistik 4 Grudlage der Wahrscheilichkeitsrechug Sei Ω die Ergebismege eies Zufallsexperimets. Sei P(A) die Wahrscheilichkeit eies Ereigisses A Ω. 4.1 Additiosgesetz der Wahrscheilichkeitsrechug P(A B) = P(A) + P(B) P(A B) 4.2 Bedigte Wahrscheilichkeit Bedigte Wahrscheilichkeit vo A uter der Bedigug B: P(A B) = P(A B).. P(B) fur P(B) > 0 Recheregel für bedigte Wahrscheilichkeite (i) Multiplikatiossatz P(A B) = P(A B) P(B) = P(B A) P(A) (ii) (iii) Sei A 1, A 2,..., A eie vollstädige Ereigisdisjuktio. Satz vo der totale Wahrscheilichkeit P(B) = i=1 P(B A i) P(A i ) Formel vo Bayes P(A B) = P(B A) P(A) P(B) 4.3 Uabhägige Ereigisse A ud B sid uabhägig geau, we gilt P(A B) = P(A) geau, we gilt P(B A) = P(B) geau, we gilt P(A B) = P(A) P(B) 4

5 5 Zufallsvariable Sei Ω die Ergebismege eies Zufallsexperimets. Sei X eie Zufallsvariable auf Ω mit Wertebereich W. Sei P zugehörige Wahrscheilichkeit. Sei F(x) = P(X x) die Verteilugsfuktio vo X. 5.1 Eidimesioale Zufallsvariable Lageparameter Erwartugswert eier diskrete ZufallsvariableX: E(X) = µ = i=1 x i P(X = x i ) Erwartugswert eier stetige ZufallsvariableX: E(X) = µ = x f(x)dx Media eier diskrete ZufallsvariableX: Zahl µ, so dass gilt: Falls F(x) fur alle x : µ ist miimal mit F( µ) > 1 2 Falls F(x i ) = 1 2 : xi+xi+1 µ = 2 Media eier stetige ZufallsvariableX: Zahl µ mit F( µ) = 1 2 α-quatil eier diskrete ZufallsvariableX: Eie Zahl µ α, so dass gilt: Falls F(x) α fur.. alle x : µ α ist miimal mit F( µ α ) > α Falls F(x i ) = α : µ α = xi+xi+1 2 α-quatil eier stetige ZufallsvariableX: Eie Zahl µ α mit F( µ α ) = α Streuugsparameter diskreter Zufallsvariable Variaz: V ar(x) = σ 2 = i (x i µ) 2 P(x i ) = i x2 i P(x i) µ 2 Stadardabweichug: σ = σ Stadardisierug eier Zufallsvariable X: X = X µ σ. Es gilt: E(X ) = 0, V ar(x ) = 1. 5

6 5.2 Paare diskreter Zufallsvariable Seie X, Y Zufallsvariable auf Ω. Bezeichug: p ij = P(X = x i, Y = y j ) Radverteiluge =Verteiluge der eizele Variable P(X = x i ) = k p ik P(Y = y j ) = l p lj Bedigte Verteiluge P(Y = y j X = x i ) = pij P(X=x i) P(X = x i Y = y j ) = pij P(Y =y j) Uabhägigkeit X ud Y sid uabhägig, we für alle Wertepaare gilt: p ij = P(X = x i ) P(Y = y j ) Kovariaz ud Korrelatioskoeffiziet Cov(X, Y ) = σ XY = i j (x i µ X ) (y j µ Y ) p ij ρ(x; Y ) = σx,y σ X σ Y Korrelatioskoeffiziet 6 Spezielle Verteiluge 6.1 Die diskrete gleichmäßige Verteilug Sei X gleichverteilte diskrete Zufallsvariable mit Wertebereich W = {1,...,m}. Wahrscheilichkeits verteilug : P(X = k) = 1 m.. fur 1 k m Verteilugsfuktio: F(k) = k m.. fur 1 k m Erwartugswert : µ = m+1 2 Variaz : σ 2 = m

7 6.2 Die Biomialverteilug Die Erfolgswahrscheilichkeit bei eiem Zufallsexperimet sei p. X zähle die Erfolgs-Häufigkeit bei Versuche. X B(, p). Wahrscheilichkeits ( verteilug : P(X = k) = k ) p k (1 p) k.. fur 0 k Verteilugsfuktio: F(k) = k i=0 ( i ) p i (1 p) i.. fur 0 k Erwartugswert : µ = p Variaz : σ 2 = p (1 p) 6.3 Die geometrische Verteilug Die Erfolgswahrscheilichkeit bei eiem Zufallsexperimet sei p. X zähle die beötigte Azahl vo Versuche bis zum Erfolg. Wahrscheilichkeits verteilug : P(X = k) = p (1 p) k 1.. fur k 1 Verteilugsfuktio: F(k) = 1 (1 p) k.. fur k 1 Erwartugswert : Variaz : µ = 1 p σ 2 = 1 p p 2 7

8 6.4 Die Poisso-Verteilug Die Erfolgswahrscheilichkeit bei eiem Zufallsexperimet sei p. X zähle die Erfolgs-Häufigkeit. Näherugsweise Awedug für biomial verteilte Zufallsvariable mit λ = p, we 50, p 0.1. Wahrscheilichkeits verteilug : Verteilugsfuktio: Erwartugswert : Variaz : P(X = k) = λk k! e λ.. fur k 0 F(k) = k i=0 λi i! e λ.. fur k 0 µ = λ σ 2 = λ 7 Kofidezitervalle ud Testverfahre für de Erwartugswert bei ubekater Variaz Voraussetzug: Normalverteilte Zufallsvariable X, Y oder 30. Die Quatile der t Verteilug zu Niveaus 1 α 2 t 1;1 α = t 2 1; α ud t 2 1;1 α = t 1;α. ud 1 α seie 7.1 Für eie Erwartugswert Seie x 1,..., x die Werte eier Stichprobe der Läge. Sei x = i=1 xi der Stichprobemittelwert. Sei s 2 = 1 1 i=1 (x i x) 2 diestichprobevariaz Kofidezitervalle eies Erwartugswerts µ zum Niveau 1 α bei ubekater Variaz zweiseitig: [ x t 1;1 α s 2, x + t 1;1 α s 2 ] eiseitig: [ x t 1;1 α s, ) ud [, x + t 1;1 α s ] 8

9 7.1.2 Test eies Erwartugswerts µ bei ubekater Variaz (t Test) zweiseitiger Test vo H 0 : µ = µ 0 : Ablehug vo H 0, we für τ = x µ0 s gilt: τ / [ t 1;1 α, t 2 1;1 α ] 2 eiseitiger Test vo H 0 : µ µ 0 : Ablehug vo H 0, we für τ = x µ0 s gilt: τ > t 1;1 α Ablehug vo H 0, vo H 0 : µ µ 0 : we für τ = x µ0 s gilt: τ < t 1;1 α 7.2 Vergleich zweier Erwartugswerte bei verbudee Stichprobe Seie (x 1, y 1 ),..., (x, y ) die Ergebisse eier zweidimesioale Stichprobe der Läge. Seie x = i=1 xi, ȳ = i=1 yi die Stichprobemittelwerte. Sei die Stichprobe der Differeze d 1 = x 1 y 1,..., d = x y. Seie d = x ȳ der zugehörige Stichprobemittelwert ud s 2 d die Stichprobevariaz. Sei µ D der Erwartugswert der Differez D = X Y Kofidezitervalle vo µ D zum Niveau 1 α zweiseitig: [ d t 1;1 α sd 2, d + t 1;1 α sd 2 ] eiseitig: [ d t 1;1 α sd, ) ud [, d + t 1;1 α sd ] Test vo µ D zum Niveau 1 α zweiseitiger Test vo H 0 : µ D = 0: Ablehug vo H 0, we für τ = d s d gilt: τ / [ t 1;1 α 2, t 1;1 α 2 ] eiseitiger Test vo H 0 : µ D 0 : Ablehug vo H 0, we für τ = d s d gilt: τ > t 1;1 α vo H 0 : µ D 0: Ablehug vo H 0, we für τ = d s d gilt: τ < t 1;1 α 9

10 Ahag: Quatile t ;1 α der t-verteilug 1 α

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch [email protected] 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Formelsammlung. PD Dr. C. Heumann

Formelsammlung. PD Dr. C. Heumann Formelsammlug zur Vorlesug Statistik II PD Dr C Heuma Formelsammlug Statistik II Iduktive Statistik Regel der Kombiatorik ohe Wiederholug mit Wiederholug! Permutatioe! 1! s! ( ) ( ) + m 1 ohe Reihefolge

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A FORMELSAMMLUNG V03 Alle Formel ohe Gewähr auf Korrektheit Grudlage der Wahrscheilichkeitstheorie 1) Wahrscheilichkeitsbegriff ud Reche mit Wahrscheilichkeite Relative Häufigkeit r N A = h N A N = Abs.

Mehr

Statistik. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer [email protected] http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen Istitut für agewadte Mathematik Witersemester 9/ Adreas Eberle, Matthias Erbar, Berhard Hader. (Reelle Zufallsvariable) Klausur zu,,eiführug i die Wahrscheilichkeitstheorie Musterlösuge a) Die Verteilugsfuktio

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH [email protected] Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Formelsammlung zur Statistik

Formelsammlung zur Statistik Darstellug uivariater Date Formelsammlug zur Statistik Urliste x i : x 1,... x, aufsteiged geordete Urliste x (i) Die k (verschiedee) Auspräguge: a 1

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Zweidimensionale Häufigkeitsverteilungen

Zweidimensionale Häufigkeitsverteilungen Voraussetzuge Utersucugseieite U,...,U Merka X, Y Zweidiesioae Häufigkeitsverteiuge Uriste (x, y, (x 2, y 2,..., (x, y geordete Uriste wird scwierig: Ordug ac de x- oder ac de y-werte? 2 diskret vs. stetig

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Witer 28 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (2 Pukte) Wir defiiere die Ereigisse K {die Perso ist krak} ud T {der Test ist positiv}.

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5 TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 13/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Tutoraufgabe: Eiführug i die Wahrscheilichkeitstheorie Lösugsvorschläge zu Übugsblatt

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Formelsammlug Deskriptive Statistik ud Elemetare Wahrscheilichkeitsrechug Prof. Dr. Ralf Rude Statistik ud Ökoometrie, Uiversität Siege Prof. Dr. Ralf Rude - Uiversität Siege I Statistische Grudbegriffe

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Kapitel 15 Wahrscheilichkeitstheorie ud Statistik Verstädisfrage Sachfrage 1. Erläuter Sie de Begriff der absolute ud relative Häufigkeit eier Stichprobe! 2. Erläuter Sie de Begriff der Klassehäufigkeit

Mehr

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln.

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln. FORMELSAMMLUNG A. Ableitugsformel ud Itegralformel Futio ƒ( Ableitug ƒ'( Stammfutio F( IR, ( IN) + + l ( ) + ( + ) + ( + ) + + + + + + + + r r, (r R \ {}) r r r + si os os os si si ta + (ta l os ot [ +

Mehr

Übungsaufgaben mit Lösungen zur Analysis und linearen Algebra

Übungsaufgaben mit Lösungen zur Analysis und linearen Algebra Übugsaufgabe mit Lösuge zur ud lieare Algebra Fuktioe mit eier uabhägige Variable, Folge ud Reihe ) Bilde Sie die. Ableitug der folgede Fuktioe: a) f (x) = (x 7 + 5x + 4) 0 = f (x) = 0(x 7 + 5x + 4) 9

Mehr

Herleitung der Parameter-Gleichungen für die einfache lineare Regression

Herleitung der Parameter-Gleichungen für die einfache lineare Regression Herleitug der Parameter-Gleichuge für die eifache lieare Regressio Uwe Ziegehage. März 03 Historie v.0 6.03.009, erste Versio hochgelade v.0 0.03.03, eie Vorzeichefehler beseitigt, diverse Gleichuge ud

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr