Formelsammlung zur Statistik

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung zur Statistik"

Transkript

1 Darstellug uivariater Date Formelsammlug zur Statistik Urliste x i : x 1,... x, aufsteiged geordete Urliste x (i) Die k (verschiedee) Auspräguge: a 1 <... < a k h i absolute Häufigkeit, kumulierte absolute Häufigkeit: H i h i = (Azahl der Date) f i relative Häufigkeit, kumulierte relative Häufigkeit: F i f i = h i / ud k f i = 1 Empirische Verteilugsfuktio: Treppefuktio x-achse: x i, y-achse: kumulierte Häufigkeite F i Maßzahle eier Verteilug Lagemaße Modus: häufigste Merkmalsausprägug Media/Quatile aus Urliste: geordete Liste!, Azahl der Beobachtuge: Media x 0,5 Azahl der Beobachtuge ugerade x 0,5 = x ( +1 Azahl der Beobachtuge gerade x 0,5 = x ( ) oder x 0,5 = x ( +1) für metrische Merkmale, gerade x 0,5 = 1 (x ( ) + x ( +1)) ) Quatile x p p icht gazzahlig, (C(p): ächst größere gaze Zahl) x p = x (C(p)) p gazzahlig x p = x (p) oder x p = x (p+1) für metrische Merkmale, p gazzahlig x p = 1 (x (p) + x (p)+1 ) Q 1, Q, Q 3 =Uteres (0,5), mittleres (0,5), oberes (0,75) Quartil: T 1, T =Terzile (1\3, \3) Q 0 =kleister Wert der aufsteiged geordeter Urliste Q 4 =größter Wert der aufsteiged geordeter Urliste Q 3 Q 1 =Iterquartilabstad IQR Q 4 Q 0 =Spaweite R Media/Quatile aus Häufigkeitstabelle F i > p ud F i 1 < p a i = x p F i p ud F i 1 = p a i 1 ud a i sid x p (ordiales Merkmal) x p = 1 (a i 1 + a i ) (metrisches Merkmal) Boxplots graphische Darstellug eies Datesatzes mit Ausgabe vo Q 0 ud Q 4 als Zäue (Wiskers), Q 1 ud Q 3 als Rechteck (box) ud Q als dicker Strich im Rechteck Arithmetisches Mittel (metrisches Merkmal) x = 1 x i = 1 h i a i = f i a i Geometrisches Mittel (isb. für de durchschittliche Wachstumsfaktor der x i = 1 + pi 100 ) G x = x geo = x 1 x... x Für Wachstumsfaktor x i = 1 + pi G x mit Wachstumsrate pi 100 "durchschittl."wachstumsrate: p 100 = 1

2 Streuugsmaße mit Bezug auf das arithmetische Mittel Variaz = 1 (x i x) = 1 ( x i ) x = 1 h i (a i x) = 1 ( h i a i ) x = ( f i a i ) x Stadardabweichug: = Variatioskoeffiziet (relatives Streuugsmaß) v = / x Stichprobevariaz = empirische Variaz s = empirische Stadardabweichug s = s Streuugsmaß mit Bezug auf de Media 1 Gemittelte absolute Abstäde vom Media d 0,5 = 1 x i x 0,5 1=1 Trasformatioseigeschaft der Maßzahle Vo x i ach y i = a x i + b x 0,5 y 0,5 = a x 0,5 + b x ȳ = a x + b x y = a x Isbesodere für y i = x i x gilt ȳ = 0 ud y = 1 Klassebildug Klassegreze x 0 <... < x k aufsteiged sortiert, die Werte der Urliste dazwische erste Klasse [x 0; x 1], alle adere Klasse ( x i 1 ; ] x i Klassebreite i = x i x i 1 Absolute Häufigkeit h i Azahl der Date i der i-te Klasse, kumuliert H i Relative Häufigkeit f i = h i /, kumuliert F i Häufigkeitsdichte absolut h i = h i/ i Häufigkeitsdichte relativ fi = h i / = f i/ i Klassemitte m i = (x i + x i 1 )/ Klassemittelwert x i Mittelwert der Elemete der Urliste i der Klasse i Histogramm: x-achse: x i, Rechtecke der Breite i ud Höhe fi Approximierede empirische Verteilugsfuktio F : Polygozug durch die Pukte (x i ; F i ) Maßzahle bei klassierte Date (äherugsweise) Modus: Klasse mit dem größte Wert vo fi bzw. dere Klassemitte Media ud Quatile x p = x i 1 + (p F i 1)/fi mit F i 1 < p ud F i p Arithmetisches Mittel ud Variaz x = 1 h i x i = ( 1 h i x i ) x We x i ubekat, da durch m i ersetze Empirische Variaz s = 1 Relative Kozetratio (Disparität) Urliste aufsteiged sortiert! Merkmalssumme S = j=1 x (j) = k j=1 h j a j Relative Ateile q i = x (i) /S bzw. (h i a i )/S kumuliert Q i

3 Lorezkurve: Polygozug durch die Pukte (F i ; Q i ), bleibt uterhalb der Wikelhalbierede Gii-Koeffiziet G = 1 k f i(q i 1 + Q i ) ormierter Gii-Koeffiziet G orm = G max G = 1 G (=1 bei maximale Kozetratio) Klassierte Date : mit Klassemittelwerte x i mit Klassemitte m i Idizes Symbole: Beitrag der i-te Klasse zur Merkmalssumme s i = x i h i s i = m i h i (0) für Basiszeit (1) für Berichtzeit L für Laspeyres P für Paasche P für Preisidex (Preis variiert, Mege fest) Q für Megeidex (Mege variiert, Preis fest) Laspeyres Paasche Preisidizes LP 01 = Megeidizes LQ 01 = j=1 p(j) 1 q(j) 0 j=1 p(j) 0 q(j) 0 j=1 q(j) 1 p(j) 0 j=1 q(j) 0 p(j) 0 Zweidimesioale Stichprobe Korrelatioskoeffiziet ud Kovariaz Zweidimesioale Stichprobe (x 1, y 1 ),..., (x, y ) Kovariaz der Stichprobe (empirische Kovariaz) s xy = % P P 01 = 100% P Q 01 = j=1 p(j) 1 q(j) 1 j=1 p(j) 0 q(j) 1 j=1 q(j) 1 p(j) 1 j=1 q(j) 0 p(j) 1 (x k x)(y k ȳ) 100% 100% Wobei x ud ȳ die jeweilige arithmetische Mittel ud s x ud s y die jeweilige Stadardabweichuge der eidimesioale Stichprobe x 1,..., x ud y 1,..., y bezeiche. Korrelatioskoeffiziet ach Bravais-Pearso r xy = s xy s x s y = Lieare Regressio (x k x)(y k ȳ) = (x k x) (y k ȳ) Regressiosgerade: die Gerade f(x) = mx + b, Steigug m ud Achseabschitt b gegebe durch ( x k y k ) xȳ ( x k ) x ( x k y k ) xȳ s y m = r xy = s x (, b = ȳ m x, x k ) x ( yk ) ȳ Bestimmtheitsmaß für lieare Regressio R = r [0, 1] beschreibt "wie gut die Regressiosgerade die Date approximiert"(kleie Werte bedeute schlechte Übereistimmug) 3

4 Wahrscheilichkeitsrechug Ereigisraum Ω Mege der mögliche Ergebisse (=elemetare Ereigisse) Ω ist das sichere Ereigis, das umögliche Ereigis, Ā ist "icht A"(Negatio), A B bzw. A B ist "A oder B"bzw. "A ud B"(ist Vereiigug bzw. Schittmege) A\B ist A ohe B (Differez) A ud B uvereibar (disjukt: A B = ) A impliziert B heißt A B Zerlegug E i : die E i sid paarweise disjukt ud die Vereiigug aller E i ergibt Ω. P (A) Wahrscheilichkeit, dass das Ereigis A eitritt. P (A B) P (B A) = bedigte Wahrscheilichkeit P (A) Recheregel P (Ω) = 1 P ( ) = 0 P (A B) = P (A) + P (B) we A ud B disjukt P (A 1... A ) = P (A 1 ) +... P (A ) we A i paarweise disjukt P (A B) = P (A) + P (B) P (A B), Additiossatz P (Ā) = 1 P (A) P (A\B) = P (A) P (A B) P (A B) = P (A B)/P (B) P (A B) = P (A B) P (B), Multiplikatiosatz A ud B heiße stochastisch uabhägig we P (A) P (B) = P (A B) Satz der totale Wahrscheilichkeit Seie E 1, E,..., E disjukte Teilmege, die vereit die Grudmege ergebe. Da gelte für jedes Ereigis A P (A) = P (A E k) = P (A E k) P (E k ) Satz vo Bayes Seie E 1, E,..., E disjukte Teilmege, die vereit die Grudmege ergebe ud A ei Ereigis mit P (A) > 0 ud P (A E i ) > 0 für midestes ei i. Da ist P (E i A) = P (A E i) P (E i ) P (A) = P (A E i ) P (E i ) P (A E k) P (E k ) 4

5 Zufallsvariable X : Ω R Zufallsvariable Diskret Stetig Realisieruge x i Wahrscheilichkeitsfuktio f(x i ) = P (X = x i ) ud f(x) = 0 für x x i Dichtefuktio f = F, P (X = x) = 0 für alle x Verteilugsfuktio F (x) = P (X x) F (x) = x f(x i ) F (x) = f(u) du x i x P (a < X b) = F (b) F (a) P (a X b) = P (a < X) = 1 F (a) Erwartugswert E(X) = µ b a f(u) du = F (b) F (a) P (a X) = P (a < X) = 1 F (a) µ = x k f(x k ) µ = xf(x) dx k Variaz Var(X) = E ( (X E(X)) ) = E(X ) E(X) = = ( ) (x k µ) f(x k ) = x k f(x k) µ = (x µ) f(x) dx k k Stadardabweichug Std(X) = (Var(X)) = Sei X eie Zufallsvariable ud a, b R beliebig. Für Erwartugswert E ud Variaz Var gilt: E(aX + b) = a E(X) + b, Var(aX + b) = a Var(X) Die Liste der Paare (x i, f(x i )) heißt Verteilug der diskrete Zufallsvariable X ud (x i, F (x i )) heißt kumulierte Verteilug der diskrete Zufallsvariable X. Für eie stetige Zufallsvariable X mit Verteilugsfuktio F (x) ud p (0, 1) heißt der Wert x p mit F (x p ) = p das p-quatil vo X. Das Quatil zu p = 0.5 heißt Media. Fakultät, Biomialkoeffiziet! = 1 3 für N, 0 0! = 1 (! k) = für, k N k k! ( k)! 5

6 Diskrete ZV Bezeichug Realisieruge Wahrscheilichkeitsfuktio Erwartugswert Variaz Diskr. Gleichv. U(m, ) x = m,..., m + 1 f(x) = 1 m Berouilli-V Be(p) x = 0, 1 f(1) = p f(0) = 1 p p p(1 p) Biomial-V B(, p) x = 0, 1,..., f(x) = ( x) p x (1 p) x p p(1 p) P o(p) falls 50 ud p 0, 1 oder 30 ud p 0, 05 Geometrische V Geom(p) x = 1,,... f(x) = p(1 p) x 1 1 p 1 p p F (x) = 1 (1 p) x für x = 1,,... Hypergeom. V H(, M, N) x = 0,..., mi(m, ) f(x) = (M x )( N M x ) ( N ) M N M N (1 M N ) N N 1 B(, M N ) falls /N 0, 05 Poisso-V P o(λ) x = 0, 1,... f(x) = λx x! e λ λ λ auch P s(λ), (1) Stetige ZV Bezeichug Dichte Erwartugswert Variaz Gleichv. Parameter a, b f(x) = 1 a+b b a x [a, b], 0 sost (a b) 1 Stadardormalv. ϕ(z) = 1 π e z 0 1 Verteilugsfuktio Φ(x) tabelliert Normalv. N(µ, ) f(x) = 1 { Expoetialv. λ f(x) = x µ ϕ( ) µ () λe λx, für x 0 0, für x < 0. 1 λ 1 λ F (x) = 1 e λx für x 0, 0 sost (1) für uabhägige X1 P o(λ1), X P o(λ) ist X1 + X P o(λ1 + λ) () Für X ormalverteilt mit Parameter µ ud gelte folgede Zusammehäge zwische der Verteilugsfuktio F ud Dichte f vo X ud de etsprechede Größe der Stadardormalverteilug Φ ud ϕ: F (x) = Φ ( x µ ) f(x) = 1 ϕ ( x µ Für die p-quatile gilt: xp = Φ 1 (p) + µ, Φ 1 (p) = Φ 1 (1 p) (3) Biomialverteilte Zufallsvariable X mit Parameter ud p mit p(1 p) 9 lässt sich durch Normalverteilug mit µ = p ud = p(1 p) aäher, bzw. Poisso verteilte Zufallsvariable X mit Parameter λ 9 lässt sich durch die Normalverteilug mit µ = λ ud = λ aäher, d.h: FX(x) Φ ( x µ ) ) 6

Fakultät für Wirtschafts- und Rechtswissenschaften

Fakultät für Wirtschafts- und Rechtswissenschaften F A C H H O C H S C H U L E K Ö L N Fakultät für Wirtschafts- ud Rechtswisseschafte F O R M E L S A M M L U N G Deskriptive Statistik Iduktive Statistik Herausgeber: c 2004 Fachgruppe Quatitative Methode

Mehr

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Formelsammlug Deskriptive Statistik ud Elemetare Wahrscheilichkeitsrechug Prof. Dr. Ralf Rude Statistik ud Ökoometrie, Uiversität Siege Prof. Dr. Ralf Rude - Uiversität Siege I Statistische Grudbegriffe

Mehr

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte . Wer Rechtschreibfehler fidet, darf sie behalte. Rechefehler werde zurückgeomme. Absolute Häufigkeit: h Wie viele Elemete weise diese bestimmte Wert (= diese bestimmte Ausprägug) auf? > Azahl h der Elemete

Mehr

Kleine Formelsammlung Beschreibende Statistik

Kleine Formelsammlung Beschreibende Statistik Kleie Formelsammlug Beschreibede Statistik Prof. Dr. Philipp Sibbertse Wirtschaftswisseschaftliche Fakultät Leibiz Uiversität Haover Ihaltsverzeichis 1 Lage- ud Streuugsmaße 2 1.1 Der Media...................................

Mehr

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia Statistik I - Formelsammlug Ihaltsverzeichis 1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre................................. 1. Kombiatorik........................................ 1.3 Wahrscheilichkeite....................................

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Formelsammlung. PD Dr. C. Heumann

Formelsammlung. PD Dr. C. Heumann Formelsammlug zur Vorlesug Statisti I PD Dr. C. Heuma Formelsammlug Statisti I Desriptive Statisti Häufigeitsverteiluge Darstellugsforme vo Date Rohdate: x 1, x 2,..., x x i Azahl der Beobachtuge Mermalsausprägug

Mehr

Formelsammlung. PD Dr. C. Heumann

Formelsammlung. PD Dr. C. Heumann Formelsammlug zur Vorlesug Statistik II PD Dr C Heuma Formelsammlug Statistik II Iduktive Statistik Regel der Kombiatorik ohe Wiederholug mit Wiederholug! Permutatioe! 1! s! ( ) ( ) + m 1 ohe Reihefolge

Mehr

Formelsammlung Statistik 29. Januar 2019

Formelsammlung Statistik 29. Januar 2019 Formelsammlug Statistik Seite 1 Formelsammlug Statistik 9. Jauar 019 Witersemester 018/19 Adreas Löpker, HTW Dresde 1. Deskriptive Statistik (F1) Stichprobe x vom Umfag, Stichprobe y vom Umfag m x = (x

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Statistik I für Studierende der Soziologie

Statistik I für Studierende der Soziologie Name: Matrikelummer: Formelsammlug zur Vorlesug Statistik I für Studierede der Soziologie Dr. Caroli Strobl & Gero Walter WS 2008/09 1 Eiführug 1.1 Orgaisatorisches 1.2 Grudbegriffe 1.2.1 Statistische

Mehr

Induktive Statistik. Formelsammlung. Prof. Dr. W. Assenmacher. Stichprobenraum: Ω = {ω 1, ω 2,...,ω m }

Induktive Statistik. Formelsammlung. Prof. Dr. W. Assenmacher. Stichprobenraum: Ω = {ω 1, ω 2,...,ω m } Prof. Dr. W. Assemacher Statistik ud Ökoometrie Uiversität Duisburg-Esse Campus Esse Iduktive Statistik Formelsammlug Stichproberaum: Ω = {ω 1, ω,...,ω m } Vollstädiges System vo Ereigisse {A 1,..., A

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Reader Teil 1: Beschreibende Statistik

Reader Teil 1: Beschreibende Statistik Dr. Katharia Best Sommersemester 2011 14. April 2011 Reader Teil 1: Beschreibede Statistik WiMa-Praktikum Um Date darzustelle ud eie Übersicht über die Struktur der Date zu erstelle, stellt die beschreibede

Mehr

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A FORMELSAMMLUNG V03 Alle Formel ohe Gewähr auf Korrektheit Grudlage der Wahrscheilichkeitstheorie 1) Wahrscheilichkeitsbegriff ud Reche mit Wahrscheilichkeite Relative Häufigkeit r N A = h N A N = Abs.

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Statistik und Biometrie. Deskriptive Statistik I

Statistik und Biometrie. Deskriptive Statistik I Statistik ud Biometrie Deskriptive Statistik I Spruch des Tages Traue keier Statistik, die du icht selbst gefaelscht hast Wiederholug Merkmale Beobachtugseiheite sid Träger vo Merkmale Wiederholug Die

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Statistik Einführung // Beschreibende Statistik 2 p.2/61

Statistik Einführung // Beschreibende Statistik 2 p.2/61 Statistik Eiführug Beschreibede Statistik Kapitel Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Beschreibede Statistik

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

Aufgabe 5: Grundlagen Wahr keit, Satz von Bayes und Binomialverteilung

Aufgabe 5: Grundlagen Wahr keit, Satz von Bayes und Binomialverteilung Klausur: Statistik Jürge Meisel Zugelassee Hilfsmittel: icht progr. Tascherecher Bearbeitugszeit: 60 Miute Amerkug zur Bearbeitug: Die Klausur besteht aus isgesamt 6 Aufgabe. Sie müsse ur 5 davo bearbeite.

Mehr

Formelsammlung in Statistik

Formelsammlung in Statistik Formelsammlug i Statistik Häufigkeitsverteilug ud Summeverteilug Zählidices Klassierug vo Date absolute Häufigkeit relative Häufigkeit i = 1,..., zählt die Elemete der Urliste j = 1,...,m zählt die Merkmalsauspräguge

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Formelsammlung Grundzüge der Statistik für die Veranstaltungen Statistik I und Statistik II im Grundstudium

Formelsammlung Grundzüge der Statistik für die Veranstaltungen Statistik I und Statistik II im Grundstudium Formelsammlug Grudzüge der Statistik für die Verastaltuge Statistik I ud Statistik II im Grudstudium Prof. Dr. Claudia Becker Lehrstuhl für Statistik Ihaltsverzeichis 1 Summezeiche 5 2 Häufigkeitsverteiluge

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Kapitel 15 Wahrscheilichkeitstheorie ud Statistik Verstädisfrage Sachfrage 1. Erläuter Sie de Begriff der absolute ud relative Häufigkeit eier Stichprobe! 2. Erläuter Sie de Begriff der Klassehäufigkeit

Mehr

Konzentration und Disparität

Konzentration und Disparität Begleitede Uterlage zur Übug Deskriptive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 6 Kozetratios- ud Disparitätsmessug................................ 2 6.1 Begriff ud Eileitug.......................................

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

8. Regressionsanalyse

8. Regressionsanalyse 8. Regressiosaalyse Beschreibug der Abhägigkeit zweier Merkmale Gegebe eie Stichprobe (X ; Y ) : : : (X ; Y ) zur Grudgesamtheit (X; Y ), = corr(x; Y ) Korrelatioskoe ziet, R empirischer Korrelatioskoe

Mehr

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y 7 5 7 5 5 7 Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 8 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (.5 Pukte) Wir defiiere die Ereigisse D = die ähmaschie bekommt eie kleie Defekt} ud U

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Formelsammlug Statistik Versio: 6. September 013 Defiitio 1. statistische Variable : Sei eie Grudmege G gegebe: Jede Zerlegug (= Partitio) Z der Grudmege G ee wir (statistische) Variable. Die (ichtleere)

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable.

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable. Empirische Ökoomie 1 Sommersemester 2013 Formelsammlug Hiweis: Alle Variable, Parameter ud Symbole sid wie i de Vorlesugsuterlage defiiert. Statistische Grudlage Erwartugswert Erwartugswert ud Variaz eier

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Witer 28 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (2 Pukte) Wir defiiere die Ereigisse K {die Perso ist krak} ud T {der Test ist positiv}.

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Zusammenfassung: Statistik

Zusammenfassung: Statistik Zusammefassug: Statistik Attribute ud ihre Werte qualitativ: Familiestad, Geschlecht, Kofessio, Ragmerkmal: Schulote, Diestgrad, quatitativ-diskret: Azahl der Fachsemester, quatitativ-stetig: Größe, Etferug,

Mehr

A Anhang 89. A.1 Beispieldatensätze A.2 Die Importfunktion A.3 Symbole zur Beschreibung von Interaktionsmöglichkeiten 105

A Anhang 89. A.1 Beispieldatensätze A.2 Die Importfunktion A.3 Symbole zur Beschreibung von Interaktionsmöglichkeiten 105 Kapitel A Ahag A A Ahag 89 A.1 Beispieldatesätze... 89 A A.2 Die Importfuktio... 103 A.3 Symbole zur Beschreibug vo Iteraktiosmöglichkeite 105 A.1 Beispieldatesätze 89 A Ahag A.1 Beispieldatesätze A.1

Mehr

Weitere Lagemaße: Quantile/Perzentile I

Weitere Lagemaße: Quantile/Perzentile I 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile I Für jede Media x med gilt: Midestes 50% der Merkmalswerte sid kleier gleich x med ud ebeso midestes 50% größer gleich

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG 9 - LÖSUNGEN. Ziehug vo Kugel aus eier Ure a. Die Zahl der Permutatio der Kugel, die aus Klasse utereiader gleicher

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert.

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert. Übersicht: eidimesioal mehrdimesioal Häufigkeitsverteilug uklassiert klassiert tabellarische Darstellug Modul 07, graphische Darstellug Modul 07,2 Parametrisierug Lageparameter Modul 08 Streuugsparameter

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile I 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile II Für jede Media x med gilt: Midestes

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug 9. Vorlesug Joche Köhler 1 Statistik ud Wahrscheilichkeitsrechug Testatprüfug am Doerstag 5.Mai Wa? Doerstag, 5. Mai, 8:00 Uhr

Mehr

Unsere Daten. Konzentrationsmessung. Konzentrationskurve Summenkurve der Bierkonsumierung. Statistik 2. Vorlesung, Feb. 29, 2012

Unsere Daten. Konzentrationsmessung. Konzentrationskurve Summenkurve der Bierkonsumierung. Statistik 2. Vorlesung, Feb. 29, 2012 Statisti. Vorlesug, Feb. 9, Usere Date Höhe Gewicht 5 5 Coctails 5 7 75 5 7 cm Gewicht Glas Schuhgrösse Mathe 5 7 -.5..5..5..5 Reisezeit y 7 9 5 cm Mi Kozetratiosmessug Was für ei Ateil der Eiomme gehört

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

x 1, x 2,..., x n ist eine Liste von n reellen Zahlen. Das arithmetische Mittel x der Zahlen ist x = x 1 + x x n n

x 1, x 2,..., x n ist eine Liste von n reellen Zahlen. Das arithmetische Mittel x der Zahlen ist x = x 1 + x x n n Mathemati macht Freu()de AB Statistische Kegröße ud Boxplot x 1, x,..., x ist eie Liste vo reelle Zahle. Das arithmetische Mittel x der Zahle ist x = x 1 + x + + x. Arithmetischer Mittelwert Arithmetischer

Mehr

- Fakultät Verkehrswissenschaften Friedrich List. Professur für Ökonometrie und Statistik, insb. im Verkehrswesen - Formelsammlung

- Fakultät Verkehrswissenschaften Friedrich List. Professur für Ökonometrie und Statistik, insb. im Verkehrswesen - Formelsammlung - Fakultät Verkehrswisseschafte Friedrich List Professur für Ökoometrie ud Statistik, isb im Verkehrswese - Formelsammlug zu Vorlesuge Statistik Deskriptive Statistik Wahrscheilichkeitstheorie c I Okhri,

Mehr

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur Techische Uiversität Müche Sommersemester 007 Istitut für Iformatik Prof. Dr. Javier Esparza Diskrete Wahrscheilichkeitstheorie Wiederholugsklausur LÖSUNG Hiweis: Bei alle Aufgabe wird ebe dem gefragte

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

= 3. = 14,38... = x neu x = 0, = 97,87...%. Wie verändert sich der arithmetische Mittelwert von 20 Zahlen, wenn...

= 3. = 14,38... = x neu x = 0, = 97,87...%. Wie verändert sich der arithmetische Mittelwert von 20 Zahlen, wenn... Mathemati macht Freu()de AB Statistische Kegröße ud Boxplot Arithmetischer Mittelwert x 1, x,..., x ist eie Liste vo reelle Zahle. Das arithmetische Mittel x der Zahle ist x = x 1 + x + + x. Arithmetischer

Mehr

Vorlesung Basismodul Statistik SS 13

Vorlesung Basismodul Statistik SS 13 Basismodul Statistik Prof. Dr. Peter Kischka, Lehrstuhl für Wirtschafts- ud Sozialstatistik Wirtschaftswisseschaftliche Fakultät Lehrstuhl für Wirtschafts- ud Sozialstatistik Prof. Dr. Peter Kischka Vorlesug

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Musterlösung 11 = Φ( 6/5) = 1 Φ(6/5) = = 0.

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Musterlösung 11 = Φ( 6/5) = 1 Φ(6/5) = = 0. D-ITET Wahrscheilichkeitstheorie ud Statistik FS 17 Prof. P. Noli Musterlösug 11 1. Sei Φ die Verteilugsfuktio der Stadardormalverteilug. a Da T B N 6, 4, ist T B + 6/4 stadardormalverteilt. Folglich ist

Mehr

X X Schätzen von Vertrauensintervallen Schwankungsintervall

X X Schätzen von Vertrauensintervallen Schwankungsintervall .. Schätze vo Vertrauesitervalle..1. Schwakugsitervall Beispiel: X = Betrag vo Geldüberweisuge, ormalverteilt, µ = 5000, = 1000 Zufallsstichprobe mit = 100, Schätzer für µ: X X Gesucht: Itervall, i dem

Mehr

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,...

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,... Statistik. Vorlesug, März, 9 Harmoisches Mittel xh = w wk +... + x x k Wobei w, w,... w k sid die gewichte (w + w + w +...+ w k = Beispiel: wir habe km mit eier Geschwidigkeit vo km/h, ud eie adere km

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit 3. Itervallschätzuge 3.1. Zufallsstichprobe ud Stichprobefuktioe 3.1.1 Zufallsstichprobe 1 Sei eie Zufallsvariable ud seie gemeisamer Verteilug,,,, Zufallsvariable mit - da heiße 1,,, Zufallsstichprobe

Mehr

Wahrscheinlichkeitsrechnung und Statistik HS2009 1

Wahrscheinlichkeitsrechnung und Statistik HS2009 1 Wahrscheilichkeitsrechug ud Statistik HS009 Stefa Heule Cotributors: Severi Heiiger, Adrea Helfestei, Pascal Spörri 30. Jauar 00 Licece: Creative Commos Attributio-Share Alike 3.0 Uported (http://creativecommos.org/liceses/by-sa/3.0/)

Mehr

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK Statistische Formelsammlug Begleitede Materialie zur Statistik - Vorlesug des Grudstudiums im Fachbereich IK Erstellt im Rahme des studierede Projektes PROST Studiejahr 00/00 uter Aleitug vo Frau Prof.

Mehr

Einführung in die Stochastik für Mathematiker - SS 03 Prof. Dr. M. Schaefer, RWTH Aachen Definitionen und Sätze

Einführung in die Stochastik für Mathematiker - SS 03 Prof. Dr. M. Schaefer, RWTH Aachen Definitionen und Sätze Eiführug i die Stochastik für Mathematiker - SS 03 Prof. Dr. M. Schaefer, RWTH Aache Defiitioe ud Sätze Erstellt vo Lars Otte lars.otte@kulle.rwth-aache.de 5. September 2003 Diese Aufzeichuge stamme icht

Mehr

2. Repetition relevanter Teilbereiche der Statistik

2. Repetition relevanter Teilbereiche der Statistik . Repetitio Statistik Ökoometrie I - Peter Stalder. Repetitio relevater Teilbereiche der Statistik (Maddala Kapitel ) Zufallsvariable ud Wahrscheilichkeitsverteiluge Zufallsvariable X (stochastische Variable)

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Der Modus. Lageparameter. Beispiel (Einrichtungen) Beispiel (Lieblingsfarben) Modus. Untersuchungseinheiten U 1,...,U n. Merkmal X

Der Modus. Lageparameter. Beispiel (Einrichtungen) Beispiel (Lieblingsfarben) Modus. Untersuchungseinheiten U 1,...,U n. Merkmal X Lageparameter Der Modus Utersuchugseiheite U,...,U Modus mod Mermal X Urliste,..., geordete Urliste (),..., () Es gilt i.allg.: ( ), i, K i i, Mermalsauspräguge a,..., a wird auch Modalwert oder häufigster

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Ihaltsverzeichis 1 Vorbemerkuge 1 Zufallsexperimete - grudlegede Begriffe ud Eigeschafte 3 Wahrscheilichkeitsaxiome 4 4 Laplace-Experimete 6 5 Hilfsmittel aus der Kombiatorik 7 6 Bedigte Wahrscheilichkeite

Mehr

Ökonometrie Formeln und Tabellen

Ökonometrie Formeln und Tabellen Ökoometrie Formel ud Tabelle Formelsammlug 1 Lieares Modell ud KQ-Schätzug 11 Eifachregressio Lieares Modell: Y i = β 0 + β 1 x i + U i, i = 1,2,, Aahme des lieare Modells: A1: E[U i ] = 0 für alle i =

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3])

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3]) I- Messusicherheite: Lit.: Prof. Dr. Gerz Wahrscheilichkeitsrechug ud Usicherheitsberechug IO/BIPM-Leitfade Guide to the Epressio of Ucertaity i Measuremet, GUM (008 überarbeitet, die deutsche Fassug ist

Mehr

Kapitel 2. Kapitel 1 Skalierungen. Graphische Darstellungen. Seite 1/5 Deskriptive Statistik. Aufgabe 1 Welche Skalenniveaus liegen vor?

Kapitel 2. Kapitel 1 Skalierungen. Graphische Darstellungen. Seite 1/5 Deskriptive Statistik. Aufgabe 1 Welche Skalenniveaus liegen vor? Seite 1/5 Deskriptive Statistik Kapitel 1 Skalieruge Aufgabe 1 Welche Skaleiveaus liege vor? Telefoummer Hausummer Ihalt vo Bierflasche i Zetiliter Haushaltsgröße i Persoe Lägegrade Nummerschilder Kapitel

Mehr

Kursthemen 5. Sitzung. Lagemaße

Kursthemen 5. Sitzung. Lagemaße Kurstheme 5. Sitzug Folie I - 5 - Lagemaße A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) B) Der Additiossatz für AM (Folie

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Absolutskala: metrische Skala mit einem natürlichen Nullpunkt und einer natürlichen Einheit. (Z.B. Einwohnerzahl). Nicht alle Variablen lassen sich

Absolutskala: metrische Skala mit einem natürlichen Nullpunkt und einer natürlichen Einheit. (Z.B. Einwohnerzahl). Nicht alle Variablen lassen sich Grudbegrie Die beschreibede Statistik (deskriptive Statistik) ist eie systematische Zusammestellug vo Zahle ud Date zur Beschreibug bestimmter Zustäde, Etwickluge oder Phäomee. Die beschreibede Statistik

Mehr

3 Wichtige Wahrscheinlichkeitsverteilungen

3 Wichtige Wahrscheinlichkeitsverteilungen 26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen Istitut für agewadte Mathematik Witersemester 9/ Adreas Eberle, Matthias Erbar, Berhard Hader. (Reelle Zufallsvariable) Klausur zu,,eiführug i die Wahrscheilichkeitstheorie Musterlösuge a) Die Verteilugsfuktio

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Uabhägigkeit, bedigte Wahrscheilichkeite 2.1 Stochastische Uabhägigkeit vo Ereigisse Im Folgede gehe wir vo eiem W-Raum (Ω, A, P aus. Der Begriff der stochastische Uabhägigkeit

Mehr

Zenraler Grenzwertsatz

Zenraler Grenzwertsatz Zeraler Grezwertsatz Ato Klimovsky Zetraler Grezwertsatz. Kovergez i Verteilug. Normalapproximatio. I diesem Abschitt beschäftige wir us mit der folgede Frage. Frage: Wie sieht die Verteilug eier Summe

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr