2. Repetition relevanter Teilbereiche der Statistik

Größe: px
Ab Seite anzeigen:

Download "2. Repetition relevanter Teilbereiche der Statistik"

Transkript

1 . Repetitio Statistik Ökoometrie I - Peter Stalder. Repetitio relevater Teilbereiche der Statistik (Maddala Kapitel ) Zufallsvariable ud Wahrscheilichkeitsverteiluge Zufallsvariable X (stochastische Variable) Realisatio vo X: x diskret: X ka ur eie edliche Azahl vo Werte aehme kotiuierlich: X ka (i eiem bestimmte Itervall) jede Wert aehme Das Verhalte vo Zufallsvariable ist durch ihre Wahrscheilichkeitsverteilug defiiert. Diese wird für kotiuierliche Zufallsvariable mit der sogeate Dichtefuktio dargestellt (probabilit desit fuctio, p.d.f.). Diskret (z.b. Müze): Prob(X = 0) = 0.5 Prob(X = ) = 0.5 Kotiuierlich: Dichtefuktio f(x) mit de Eigeschafte f ( x) 0 für alle x f( x) dx. Durch Itegratio lässt sich die Wahrscheilichkeit bestimme, dass X i ei bestimmtes Itervall [a,b] fällt: Prob( a X b ) b a f( x) dx c Kumulative Verteilugsfuktio: Fc ( ) Prob( X c) = f( x) dx somit gilt: Prob( a X b) F(b) - F(a) f(x) Prob( a X b) 0 a b x

2 . Repetitio Statistik Ökoometrie I - Peter Stalder Gemeisame Verteilug vo zwei (oder mehr) Zufallsvariable Im Fall vo zwei (oder mehr) Zufallsvariable ist zu uterscheide zwische der gemeisame Verteilug, der margiale Verteilug (auch Radverteilug geat) ud der bedigte Verteilug: Die gemeisame Verteilug vo X ud Y ist durch die Wahrscheilichkeite für alle mögliche Realisatioe X = x ud Y = defiiert. Die margiale Verteilug vo X zeigt die Wahrscheilichkeite für die Realisatioe X = x, egal welche Wert Y aimmt (aalog für Y). Die bedigte Verteilug vo X zeigt die Wahrscheilichkeite für die Realisatioe X = x, gegebe eie bestimmte Realisatio Y = (aalog für Y). I Maddala, Seite 8/9, fidet sich ei Zahlebeispiel für die gemeisame Verteilug vo zwei diskrete Zufallsvariable, die voeiader uabhägig bzw. abhägig sid. Im Fall vo zwei kotiuierliche Zufallsvariable X ud Y ist die Verteilug durch die gemeisame Dichtefuktio f(x,) gegebe. Die margiale Dichtefuktioe vo X bzw. Y erhält ma durch Itegratio vo f(x,) über bzw. x: f(x) = f ( x, ) d f() = f ( x, ) dx (Ituitiv bedeutet z.b. Itegratio über : Ma lässt alle Werte vo zu.) Die bedigte Verteiluge sid durch die Dichtefuktioe f(x ) (Verteilug vo X gegebe eie bestimmte Realisatio Y = ) bzw. f( x) (Verteilug vo Y gegebe eie bestimmte Realisatio X = x) defiiert. Die gemeisame Dichtefuktio ka stets als Produkt vo margialer ud bedigter Dichtefuktio geschriebe werde: f(x,) = f(x ) f() = f( x) f(x)

3 . Repetitio Statistik Ökoometrie I - Peter Stalder 3 Falls die beide Variable voeiader uabhägig sid, gilt: f(x,) = f(x) f() für alle x ud. I diesem Fall sid die bedigte Dichtefuktioe gleich de margiale Dichtefuktioe: f(x ) = f(x) f( x) = f() Grafische Darstellug eier gemeisame Dichtefuktio f(x,) i Form vo "Höhekurve" eies "Dichtebergs", desse Volume über der (x,)-ebee gleich ist: x Die Normalverteilug ud verwadte Verteiluge Normalverteilug Dichtefuktio: f ( x) exp x Erwartugswert: Variaz: E( x ) E( x ) Stadardabweichug: Kurzschreibweise: x N(, ) Variabletrasformatio: z ( x ) Die Variablez ist stadard-ormalverteilt, d.h. z N( 0, ).

4 . Repetitio Statistik Ökoometrie I - Peter Stalder 4 Chi-Quadrat-Verteilug Gegebe seie uabhägig stadard-ormalverteilte Variable: x i IN( 0, ), i =,..., (IN steht für Idepedet Normal) Eie daraus abgeleitete Variable Z = x i i ist Chi-Quadrat-verteilt mit Freiheitsgrade: Z Studet's t-verteilug Gegebe sei: x IN( 0, ) ud (x ud uabhägig). Eie daraus abgeleitete Variable Z x ist t-verteilt mit Freiheitsgrade: Z t Für grosses kovergiert t gege eie Stadard-Normalverteilug. Für kleies ist t flacher als die Stadard-Normalverteilug. F-Verteilug Gegebe seie ud ( ud uabhägig). Eie daraus abgeleitete Variable Z ist F-verteilt mit ud Freiheitsgrade: Z F, Die F-Verteilug ist somit die Verteilug des Verhältisses vo zwei voeiader uabhägig Chi-Quadrat-verteilte ud durch die jeweilige Azahl Freiheitsgrade geteilte Variable.

5 . Repetitio Statistik Ökoometrie I - Peter Stalder 5 Klassische deduktive Statistik Dategeeriereder Prozess (wahres Modell), charakterisiert durch Wahrscheilichkeits-Dichtefuktio mit ubekate Parameter: z.b. i (, ) N z.b. x t t u mit u t IN ( 0, ) t Parameter:, Parameter:,, Stichprobe:,,..., x, x,..., x T (exoge vorgegebe),,..., T Schätzug: ˆ, ˆ ˆ, ˆ, ˆ Uter eiem sog. Schätzer versteht ma eie Methode (eie Schätzformel), mit der ma aus eier Stichprobe Schätzwerte für die Parameter eies dategeerierede Prozesses ableitet. Für de Mittelwert μ eier ormalverteilte Zufallsvariable lautet die Schätzformel: i i ˆ Aalog zu diesem Beispiel ist die Puktschätzug eies ubekate Parameters stets eie Fuktio der Stichprobewerte der Zufallsvariable : ˆ g(,,..., ) Dies gilt auch für die Schätzug eies Vertrauesitervalls: g (,,..., ) g (,,..., ) g g

6 . Repetitio Statistik Ökoometrie I - Peter Stalder 6 Stichprobeverteilug Die i sid Zufallsvariable => Die geschätzte Parameter (z.b. ˆ ud ˆ ) sid ebefalls Zufallsvariable, de sie sid Fuktioe vo i. Ihre Wahrscheilichkeitsverteilug wird Stichprobeverteilug geat. Die Eigeschafte vo Schätzer leite sich aus der Stichprobeverteilug der geschätzte Parameter ab. Wüschbare Eigeschafte sid: Uverzerrtheit Effiziez Kosistez i kleie Stichprobe relevat i grosse Stichprobe relevat Diese Eigeschafte charakterisiere die Beziehug zwische de ubekate Parameter des dategeerierede Prozesses ( ) ud de geschätzte Parameter (ˆ ). Uverzerrtheit (Erwartugstreue): E ( ˆ ) Effiziez: Uter de uverzerrte Schätzer wird derjeige mit der kleiste Variaz als effiziet bezeichet. Kosistez: Es sei ˆ der Schätzer für aus eier Stichprobe vom Umfag. Dieser Schätzer ist kosistet, falls gilt: lim ( Prob ˆ für beliebig kleies ε I Worte locker formuliert: Ei Schätzer ist da kosistet, we der Schätzwert mit wachsedem Stichprobeumfag immer äher zum ubekate wahre Parameterwert rückt.

7 . Repetitio Statistik Ökoometrie I - Peter Stalder 7 Stichprobeverteilug vo Parameterschätzuge im Falle der Normalverteilug Dategeeriereder Prozess: N(, ) E ( ) (bzw. Grudgesamtheit) E ( ) Stichprobe mit Beobachtugswerte: Schätzug μ : i S i Schätzug : Stichprobeverteilug vo ud S : N (, ) ist ormalverteilt ud ei uverzerrter ud kosisteter Schätzer vo. ) ( )S i i ( (Chi-Quadrat-verteilt) i N( 0, ) ==> i ( )S N( 0, ) ==> ( )S ( ) S t (t-verteilt)

8 . Repetitio Statistik Ökoometrie I - Peter Stalder 8 Hpothesetest. Eie statistische Hpothese ist eie Aussage über Parameterwerte eies dategeerierede Prozesses (bzw. eier Grudgesamtheit). Sie wird ahad eier Stichprobe überprüft.. Wir uterscheide zwische Pukthpothese (z.b. = 4) ud Itervallhpothese (z.b. > 0). 3. Ei Hpothesetest ist ei Verfahre, das agibt, ob die Abweichug eies geschätzte Parameters vo dem i der Hpothese postulierte Wert zufällig oder echt ist (z.b. = 5 vs. = 4). 4. Die getestete Hpothese wird Null-Hpothese geat ud mit H 0 bezeichet. Die alterative Hpothese wird mit H bezeichet. 5. Die Masszahl, welche die Abweichug der Parameterschätzug vo dem i H 0 postulierte Wert agibt, wird Teststatistik geat. Bei jedem Hpothesetest muss ma für die Teststatistik eie kritische Wert ud ei etsprechedes Sigifikaziveau festlege (häufig wird 5% gewählt). Dabei hadelt es sich um die Wahrscheilichkeit dafür, dass die berechete Teststatistik bei Gültigkeit vo H 0 de kritische Wert überschreitet ud H 0 somit fälschlicherweise abgeleht wird (was ma auch als Fehler erster Art bezeichet). 6. Das beobachtete Sigifikaziveau (auch P-Wert geat) ist die Wahrscheilichkeit dafür, dass die Teststatistik bei Gültigkeit vo H 0 de berechete oder eie extremere Wert aimmt. Gebräuliche Praxis: P-Wert kleier als 5%: Die Abweichug zwische der Parameterschätzug ud dem i H 0 postulierte Wert wird als statistisch sigifikat bezeichet, weil es uwahrscheilich erscheit, dass eie Abweichug dieses Ausmasses durch Zufälligkeite i der Stichprobe verursacht wurde. H 0 wird verworfe. P-Wert grösser als 5%: Die Abweichug zwische der Parameterschätzug ud dem i H 0 postulierte Wert wird als statistisch isigifikat bezeichet, weil es icht allzu uwahrscheilich ist, dass eie Abweichug dieses Ausmasses durch Zufälligkeite i der Stichprobe verursacht wurde. H 0 wird icht verworfe.

9 . Repetitio Statistik Ökoometrie I - Peter Stalder 9 Eifache Beispiele für Hpothesetests. Mittelwert eier ormalverteilte Variable Dategeeriereder Prozess: N(, ) Nullhpothese H 0 : = 0 vs. Alterativhpothese H : 0 Stichprobe = 4, i =, -, 3, 5 geschätzter Mittelwert: i = (-+3+5)/4 = geschätzte Variaz: S i = (+9++9)/3 = 0/3 = 6.67 geschätzte Stadardabweichug: S =.58 Stadardabweichug der Mittelwertschätzug: S =.9 ˆ berecheter t-wert: t ber = = /.9 =.55 S kritischer t-wert (5%-Niveau, -seitiger Test): t* = 3.8 t ber t* H 0 icht verwerfe! 0. P-Wert: Prob t.55 > 0.05 H 0 icht verwerfe!

10 . Repetitio Statistik Ökoometrie I - Peter Stalder 0. Müzwurf H 0 : Müze ist regulär, dh. P KOPF = P ZAHL = 0.5 H : Müze ist icht regulär Testverfahre: Die Müze wird 4 Mal geworfe. Verwerfugskriterium: Falls die Müze 4 mal auf Kopf oder 4 mal auf Zahl fällt, soll die Nullhpothese verworfe werde. Uter der Nullhpothese gilt: Prob(K,K,K,K) = = Prob(Z,Z,Z,Z) = = Mit diesem Verwerfugskriterium führt ma folglich eie Test mit eiem Sigifikaziveau vo.5% durch, d.h. es besteht eie Wahrscheilichkeit vo.5%, dass eie richtige Nullhpothese fälschlicherweise verworfe wird (Fehler erster Art). Reduziert ma das Sigifikaziveau z.b. auf 5%, so wäre auch das Ereigis (K,K,K,K,K) oder (Z,Z,Z,Z,Z) mit eiem beobachtete P-Wert vo 6.5% icht geüged uwahrscheilich, um die Nullhpothese zu verwerfe. Bei diesem Vorgehe ergibt sich eie kleiere Wahrscheilichkeit dafür, dass eie falsche Nullhpothese als falsch erkat ud verworfe wird (gerigere Macht des Tests).

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit 3. Itervallschätzuge 3.1. Zufallsstichprobe ud Stichprobefuktioe 3.1.1 Zufallsstichprobe 1 Sei eie Zufallsvariable ud seie gemeisamer Verteilug,,,, Zufallsvariable mit - da heiße 1,,, Zufallsstichprobe

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

X X Schätzen von Vertrauensintervallen Schwankungsintervall

X X Schätzen von Vertrauensintervallen Schwankungsintervall .. Schätze vo Vertrauesitervalle..1. Schwakugsitervall Beispiel: X = Betrag vo Geldüberweisuge, ormalverteilt, µ = 5000, = 1000 Zufallsstichprobe mit = 100, Schätzer für µ: X X Gesucht: Itervall, i dem

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Anwendung für Mittelwerte

Anwendung für Mittelwerte Awedug für Mittelwerte Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Mittelwert der Grudgesamtheit icht zufällig?... beobachtete Mittelwert zufällig Statistik für SoziologIe 1

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12075, p-wert: 00168 f χ 2 (4)

Mehr

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik:

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik: 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 1275, p-wert: 168 8 Apassugs-

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Induktive Schlussweise. Schätzfunktionen und Schätzverfahren. Bibliografie

Induktive Schlussweise. Schätzfunktionen und Schätzverfahren. Bibliografie Auswertug uivariater Datemege -iduktiv - Iduktive Schlussweise Schätzfuktioe ud Schätzverfahre Schätzug I Bibliografie Prof. Dr. Kück Uiversität Rostock Statistik, Vorlesugsskript Abschitt 7..; 7.. Bleymüller

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Parameterschätzung. Numero, pondere et mensura Deus omnia condidit

Parameterschätzung. Numero, pondere et mensura Deus omnia condidit Parameterschätzug Numero, podere et mesura Deus omia codidit Populatio, Zufallsvariable, Stichprobe Populatio Zufallsvariable X Stichprobe x eie"realisierug vo X (Beobachtug) alle mäliche Rekrute der US

Mehr

Maschinelle Sprachverarbeitung: Mathematische Grundlagen

Maschinelle Sprachverarbeitung: Mathematische Grundlagen HUMOLDT-UNIVERSITÄT ZU ERLIN Istitut für Iformatik Lehrstuhl Wissesmaagemet Maschielle Sprachverarbeitug: Mathematische Grudlage Tobias Scheffer Ulf refeld Literatur Huag, cero, Ho: Spoke Laguage rocessig,

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

Statistik. 2. Semester. Begleitendes Skriptum zur Vorlesung. im FH-Masterstudiengang. Technisches Management. von. Günther Karigl

Statistik. 2. Semester. Begleitendes Skriptum zur Vorlesung. im FH-Masterstudiengang. Technisches Management. von. Günther Karigl Statistik. Semester Begleitedes Skriptum zur Vorlesug im FH-Masterstudiegag Techisches Maagemet vo Güther Karigl FH Campus Wie 06/7 Statistische Schätzverfahre Statistische Schätzverfahre Währed die deskriptive

Mehr

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A FORMELSAMMLUNG V03 Alle Formel ohe Gewähr auf Korrektheit Grudlage der Wahrscheilichkeitstheorie 1) Wahrscheilichkeitsbegriff ud Reche mit Wahrscheilichkeite Relative Häufigkeit r N A = h N A N = Abs.

Mehr

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I 6 Hypothesetests Gauß-Test für de Mittelwert bei bekater Variaz 6.3 Gütefuktio ud Fehlerwahrscheilichkeite Rechtsseitiger Test (µ 0 = 500) zum Sigifikaziveau α = 0.30 6 Hypothesetests Gauß-Test für de

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 13

Wahrscheinlichkeit & Statistik Musterlösung Serie 13 ETH Zürich FS 2013 D-MATH Has Rudolf Küsch Koordiator Blaka Horvath Wahrscheilichkeit & Statistik Musterlösug Serie 13 1. a) Die Nullhypothese lautet dass das echte Medikamet höchstes gleich gut ist wie

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

3.2 Wilcoxon Rangsummentest

3.2 Wilcoxon Rangsummentest 3. Wilcoxo Ragsummetest Wir gehe davo aus, dass zwei Teilstichprobe x 1, x,..., x 1 ud y1, y,..., y vorliege, wobei die erste Teilstichprobe aus Realisieruge vo uabhägig ud idetisch stetig verteilte Zufallsvariable

Mehr

Formelsammlung Statistik 29. Januar 2019

Formelsammlung Statistik 29. Januar 2019 Formelsammlug Statistik Seite 1 Formelsammlug Statistik 9. Jauar 019 Witersemester 018/19 Adreas Löpker, HTW Dresde 1. Deskriptive Statistik (F1) Stichprobe x vom Umfag, Stichprobe y vom Umfag m x = (x

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler Statistik ud Wahrscheilichkeitsrechug Testatprüfug am Doerstag 5.Mai Wa? Doerstag, 5. Mai, 8:00 Uhr Dauer der

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Evaluation & Forschungsstrategien

Evaluation & Forschungsstrategien Evaluatio & Forschugsstrategie WS2/2 Prof. Dr. G. Meihardt Johaes Guteberg Uiversität Maiz Prizipie des statistische Schliesses Samplig - Modellvorstellug Populatio Samplig Stichprobe Kewerte x Theoretische

Mehr

Ereignis Wahrscheinlichkeit P (A) A oder B P (A + B) A und B P (AB) B, wenna P (B A)

Ereignis Wahrscheinlichkeit P (A) A oder B P (A + B) A und B P (AB) B, wenna P (B A) Kapitel 10 Statistik 10.1 Wahrscheilichkeit Das Ergebis eier Messug oder Beobachtug wird Ereigis geat. Ereigisse werde mit de Buchstabe A, B,...bezeichet. Die Messug eier kotiuierliche Variable x gibt

Mehr

14 Statistische Beziehungen zwischen nomi nalen Merkmalen

14 Statistische Beziehungen zwischen nomi nalen Merkmalen 14 Statistische Beziehuge zwische omi ale Merkmale 14.1 Der Chi Quadrat Test auf Uabhägigkeit für Vier Feldertafel 14.2 Der Chi Quadrat Test auf Uabhägigkeit für r s Kotigeztafel 14.3 Zusammmehagsmaße

Mehr

5.4.2 Die empirische Verteilungsfunktion als Ausgangspunkt

5.4.2 Die empirische Verteilungsfunktion als Ausgangspunkt Tests 9 5.4 Der Kolmogorov Smirov Test Grudlage für de Kolmogorov Smirov Apassugs Test ist ei Satz vo Kolmogorov, die asymptotische Verteilug eier Statistik Δ betreffed. Aus Δ ergibt sich durch Modifikatio

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Ihaltsverzeichis 1 Vorbemerkuge 1 Zufallsexperimete - grudlegede Begriffe ud Eigeschafte 3 Wahrscheilichkeitsaxiome 4 4 Laplace-Experimete 6 5 Hilfsmittel aus der Kombiatorik 7 6 Bedigte Wahrscheilichkeite

Mehr

Einstichprobentests für das arithmetische Mittel

Einstichprobentests für das arithmetische Mittel Eistichprobetests für das arithmetische Mittel H 0 : = 0 bzw. H 0 : 0 H 1 : 0 zweiseitiger Test) H 1 : 0 zweiseitiger Test) Uter Gültigkeit vo H 0 ist die achfolgede Teststatistik stadardormalverteilt.

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur Techische Uiversität Müche Sommersemester 007 Istitut für Iformatik Prof. Dr. Javier Esparza Diskrete Wahrscheilichkeitstheorie Wiederholugsklausur LÖSUNG Hiweis: Bei alle Aufgabe wird ebe dem gefragte

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen Istitut für agewadte Mathematik Witersemester 9/ Adreas Eberle, Matthias Erbar, Berhard Hader. (Reelle Zufallsvariable) Klausur zu,,eiführug i die Wahrscheilichkeitstheorie Musterlösuge a) Die Verteilugsfuktio

Mehr

Auszüge der nichtparametrischen Statisik

Auszüge der nichtparametrischen Statisik Empirische Wirtschaftsforschug - 1 - Auszüge der ichtparametrische Statisik Kapitel 1: Räge ud lieare Ragstatistike Aahme, Defiitioe ud Eigeschafte (1.1) Aahme: (a) (b) Die Date x 1,, x sid midestes ordial.

Mehr

7. Stichproben und Punktschätzung

7. Stichproben und Punktschätzung 7. Stichprobe ud Puktschätzug 7. Grudgesamtheit ud Stichprobe Ausgagspukt der iduktive Statistik (beurteilede Statistik) sid Stichprobedate. Speziell stamme die Date aus Zufallsstichprobe. Die Stichprobeergebisse

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG 9 - LÖSUNGEN. Ziehug vo Kugel aus eier Ure a. Die Zahl der Permutatio der Kugel, die aus Klasse utereiader gleicher

Mehr

Der Vergleich eines Stichprobenmittelwertes mit einem Populationsmittelwert

Der Vergleich eines Stichprobenmittelwertes mit einem Populationsmittelwert Der Vergleich eies Stichprobemittelwertes mit eiem Populatiosmittelwert Am Beispiel des Falschspielers habe wir - uterstützt durch Ketisse über die Eigeschafte der Biomialverteilug - erstmals gesehe, welche

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 8 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (.5 Pukte) Wir defiiere die Ereigisse D = die ähmaschie bekommt eie kleie Defekt} ud U

Mehr

II. Grundzüge der Stichprobentheorie

II. Grundzüge der Stichprobentheorie II. Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

Kontingenztabellen. Chi-Quadrat-Test. Korrelationsanalyse zwischen kategorischen Merkmalen. 1. Unabhängigkeitstest

Kontingenztabellen. Chi-Quadrat-Test. Korrelationsanalyse zwischen kategorischen Merkmalen. 1. Unabhängigkeitstest Kotigeztabelle. Chi-Quadrat-Test KAD 1.11. 1. Uabhägigkeitstest. Apassugstest. Homogeitätstest Beispiel 1 ohe Frau 8 75 1 Ma 48 49 97 76 14? Korrelatiosaalyse zwische kategorische Merkmale Häufigkeitstabelle

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

10. Übungsblatt zur Einführung in die Stochastik

10. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik rof. Dr. Michael Kohler Dipl.-Math. Adreas Fromkorth Dipl.-If. Jes Mehert SS 09 6.7.2009 0. Übugsblatt zur Eiführug i die Stochastik Aufgabe 38 (3 ukte Die Zufallsvariable X,...,

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

2 Einführung in die mathematische Statistik

2 Einführung in die mathematische Statistik 2 Eiführug i die mathematische Statistik Die Hauptaufgabe der mathematische Statistik ist es, ahad der Eigeschafte eies Teils eier Mege vo Objekte auf die Eigeschafte aller Objekte i dieser Mege zu schließe.

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω Statistik Theorie Defiitioe Ω = Grudmege = Ergebismege = Mege aller mögliche Ergebisse A = Ereigisraum = σ-algebra (Sigma-Algebra) = Mege aller messbare Ergebisse über eie defiierte Grudmege Ω P(Ω) = Potezmege

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Eiführug i die statistische Testtheorie Statistische Tests zu ausgewählte Probleme Teil : Tests für Erwartugswerte Statistische Testtheorie I Eiführug Beschräkug auf parametrische Testverfahre Beschräkug

Mehr

Bayessches Lernen (II)

Bayessches Lernen (II) Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Bayessches Lere (II) Christoph Sawade/Niels Ladwehr Jules Rasetahariso Tobias Scheffer Überblick Wahrscheilichkeite, Erwartugswerte,

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Witer 28 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (2 Pukte) Wir defiiere die Ereigisse K {die Perso ist krak} ud T {der Test ist positiv}.

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik 2 für Naturwisseschafte 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Modul 209 Tabelle Has Walser: Modul 209, Tabelle ii Ihalt Fakultäte... 2 Biomialkoeffiziete... 2 3 Biomische Verteilug... 3

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Kleine Formelsammlung Beschreibende Statistik

Kleine Formelsammlung Beschreibende Statistik Kleie Formelsammlug Beschreibede Statistik Prof. Dr. Philipp Sibbertse Wirtschaftswisseschaftliche Fakultät Leibiz Uiversität Haover Ihaltsverzeichis 1 Lage- ud Streuugsmaße 2 1.1 Der Media...................................

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

2.3 Kontingenztafeln und Chi-Quadrat-Test

2.3 Kontingenztafeln und Chi-Quadrat-Test 2.3 Kotigeztafel ud Chi-Quadrat-Test Die Voraussetzuge a die Date i diesem Kapitel sid dieselbe, wie im voragegagee Kapitel, ur dass die Stichprobe hier aus Realisieruge vo kategorielle Zufallsvariable

Mehr

10. Grundlagen der linearen Regressionsanalyse 10.1 Formulierung linearer Regressionsmodelle

10. Grundlagen der linearen Regressionsanalyse 10.1 Formulierung linearer Regressionsmodelle 10. Grudlage der lieare Regressiosaalyse 10.1 Formulierug liearer Regressiosmodelle Eifaches lieares Regressiosmodell: Das eifache lieare Regressiosmodell ist die simpelste Form eies ökoometrische Modells

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug 9. Vorlesug Joche Köhler 1 Statistik ud Wahrscheilichkeitsrechug Testatprüfug am Doerstag 5.Mai Wa? Doerstag, 5. Mai, 8:00 Uhr

Mehr

Wahrscheinlichkeitstheorie Aufgabensammlung

Wahrscheinlichkeitstheorie Aufgabensammlung rof. Dr. Z. Kabluchko Sommersemester 2016 Herik Flasche 4. Juli 2016 Wahrscheilichkeitstheorie Aufgabesammlug Keie Abgabe 1 Grezwertsätze er Wahrscheilichkeitstheorie 1.1 Lemma vo Borel Catelli Lemma 1.1

Mehr

Ökonometrie Formeln und Tabellen

Ökonometrie Formeln und Tabellen Ökoometrie Formel ud Tabelle Formelsammlug 1 Lieares Modell ud KQ-Schätzug 11 Eifachregressio Lieares Modell: Y i = β 0 + β 1 x i + U i, i = 1,2,, Aahme des lieare Modells: A1: E[U i ] = 0 für alle i =

Mehr

Ulrich Stein Fehlerrechnung

Ulrich Stein Fehlerrechnung Fehlerrechug Verteilug vo Messwerte Mittelwert Stadardabweichug Stadardfehler Rude vo Messwerte Darstellug vo Messwerte (Stellezahl) Fehlerfortpflazug Messergebisse Messug physikalische Realität Messgerät,

Mehr

Kapitel 2: Stochastische Prozesse. Copyright M. Gross, ETH Zürich 2006, 2007

Kapitel 2: Stochastische Prozesse. Copyright M. Gross, ETH Zürich 2006, 2007 Kaitel 2: Coyright M. Gross, ETH Zürich 2006, 2007 Bedigte Verteiluge Ebeso a die Verbudwahrscheilicheit vo Zufallsvariable über bedigte Wahrscheilicheite ausgedrüct werde i i,, i,, Wiederum ommt eie Produtregel

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte 00 180 160 Fraue 140 10 100 80 80 100 10 140 160 180 00 Mäer Modul 08 Teste vo Hypothese Has Walser: Modul 08, Teste vo Hypothese ii Ihalt 1 Ma-Whitey-U-Test

Mehr

Wahrscheinlichkeit und Statistik Zusammenfassung

Wahrscheinlichkeit und Statistik Zusammenfassung Wahrscheilichkeit ud Statistik Zusammefassug Fabia Hah, Dio Werli 9. September 008 Wahrscheilichkeitstheorie Grudlegede Kombiatorik Die folgede Tabelle bezieht sich auf das Uremodell: ziehe aus k geordet

Mehr