Mathematik Serie 2 (60 Min.)
|
|
|
- Swen Wagner
- vor 9 Jahren
- Abrufe
Transkript
1 Aufnahmeprüfung 2011 Mathematik Serie 2 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! - Die Lösungen sind in die dafür vorgesehenen Lösungsfelder zu schreiben - Bei entsprechenden Aufgaben ist ein Antwortsatz zu schreiben Maximal erreichbare Punktzahl 40 Punkte Erreichte Punktzahl... Punkte Prüfungsnote... Die Expertin / der Experte... 1 / 11
2 1. Aufgabe (5 Punkte) a) Mache folgende Terme gleichnamig: 7g 5 d ; ; 2 2 3e ed 5 (2 Punkte) b) Vereinfache so weit wie möglich: 5 a 7 c 4 3 a c 5 Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 2 / 11
3 2. Aufgabe (5 Punkte) a) Vereinfache so weit wie möglich und kürze das Resultat: ab c a b b a b : 2 4a c 10 b) Vereinfache so weit wie möglich: 3 x x 3 x 3 2 (2 Punkte) Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 3 / 11
4 3. Aufgabe (6 Punkte) a) Bestimme die Lösungsmenge der folgenden Gleichung: G (2 Punkte) 5 y 5 y b) Bestimme die Lösungsmenge der folgenden Gleichung: G (4 Punkte) 2 x 10 3 x 15 9 x 20 0 x 2 x 2 4 x 8 Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 4 / 11
5 4. Aufgabe (5 Punkte) a) Zerlege die folgenden Terme in möglichst viele Faktoren: i. a 2 18a 81 ii. 4a 2 16a 20 b) Berechne beide Terme mit dem Taschenrechner und runde auf 3 Stellen nach dem Komma: i ii : (2 Punkte) Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 5 / 11
6 5. Aufgabe (7 Punkte) a) Löse folgende Aufgabe mit einer Gleichung. Notiere zuerst die Bedeutung der Variablen, die du gewählt hast! Manfred behauptet, dass er heute dreimal so alt ist wie Sandra. Vor 12 Jahren sei er noch um 350 % älter als Sandra gewesen. Wie alt sind Manfred und Sandra heute? (4 Punkte) Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 6 / 11
7 b) Mario startet in der Ortschaft A mit durchschnittlich 20 km/h. Gleichzeitig startet in der 18 km entfernten Ortschaft B seine Freundin Andrea und fährt Mario entgegen. Andrea muss auf ihrem Weg 3 Minuten vor einem geschlossenen Bahnübergang warten. Mit welcher durschnittlichen Geschwindigkeit im km/h fährt Andrea, wenn sich die beiden nach 33 Minuten treffen? Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 7 / 11
8 6. Aufgabe (6 Punkte) a) Am besitzt Nina auf ihrem Bankkonto Franken, welche mit 0.6 % verzinst werden. Aus Spargründen wird der Zinsfuss ab dem 1. August 2010 um 0.3 % gekürzt. Wie gross ist Ninas Kapital am , wenn weder Ein- noch Auszahlungen getätigt wurden? (Runde auf 5 Rp. genau) Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 8 / 11
9 b) Frau Kuster kommt aus den USA zurück mit 750 Dollar, die sie in Zürich in Franken wechselt und auf ihr Konto (2 % Zins) einzahlt. Acht Monate später reist sie wieder in die USA und braucht hierfür wieder Dollar. Hätte sie die 750 Dollar besser Zuhause aufbewahrt? Begründe mit einer Rechnung. Kurse in Zürich Ankauf Verkauf 1 Dollar 1.02 Fr Fr. Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 9 / 11
10 7. Aufgabe (6 Punkte) a) Berechne die Lösungsmenge des folgenden Gleichungssystems G : 2x y 4 x4y 16 (4 Punkte) Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 10 / 11
11 b) Gegeben ist das Zahlenpaar 4 / 4. Susi Muster behauptet nun, dass dieses Zahlenpaar eine Lösung des folgenden Gleichungssystems G ist: 3 x 2y 20 5 x 3 y 7 Stimmt diese Behauptung? Begründe deine Entscheidung. (2 Punkte) Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 11 / 11
12 Aufnahmeprüfung 2011 LÖSUNGEN Mathematik Serie 2 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! - Die Lösungen sind in die dafür vorgesehenen Lösungsfelder zu schreiben - Bei entsprechenden Aufgaben ist ein Antwortsatz zu schreiben Max. 2 Punkte für das Fehlen eines Antwortsatzes verrechnen! Maximal erreichbare Punktzahl 40 Punkte Erreichte Punktzahl... Punkte Prüfungsnote... Die Expertin / der Experte... 1 / 11
13 1. Aufgabe (5 Punkte) a) Mache folgende Terme gleichnamig: 7g 5 d ; ; 2 2 3e ed 5 b) Vereinfache so weit wie möglich: 5 a 7 c 4 3 a c 5 (2 Punkte) Lösung 1a: d g 75e 3d e ; ; 2 Punkte e d 15e d 15e d Pro Fehler Abzug Lösung 1b: 5a 7c 4 3 a 5 c a c a c 15a c a 35c 12a 12c 15a c 13a 47c 15 a c HN=15 ac Pro Fehler Abzug Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 2 / 11
14 2. Aufgabe (5 Punkte) a) Vereinfache so weit wie möglich und kürze das Resultat: ab c a b b a b : 2 4a c 10 b) Vereinfache so weit wie möglich: 3x x 3 x 3 2 (2 Punkte) Lösung 2a: ab c a b b a b : 2 4a c c 7a b 7a b 8 a b 10 4 a c 4 b 5 7a b 7a b 2 ab 2 Punkte Pro Fehler Abzug Lösung 2b: 3 x x 3 x x 9x x 6 x x 9 x x 6 x x 3 x 9 Pro Fehler Abzug Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 3 / 11
15 3. Aufgabe (6 Punkte) a) Bestimme die Lösungsmenge der folgenden Gleichung: G (2 Punkte) 5 y 5 y b) Bestimme die Lösungsmenge der folgenden Gleichung: G (4 Punkte) Lösung 3a: 2 x 10 3 x 15 9 x 20 0 x 2 x 2 4 x 8 5 y 5 y HN y 20 y y 3 y Lösung 3b: 1 L Pro Fehler Abzug Keine Lösungsmenge: Abzug 0 D 2 x 10 3 x 15 9 x 20 x 2 x 2 4 x 8 x \ 2 HN x x 60 9 x x 16 x L 16 Pro Fehler Abzug Keine Lösungsmenge: Abzug Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 4 / 11
16 4. Aufgabe (5 Punkte) a) Zerlege die folgenden Terme in möglichst viele Faktoren: i. a 2 18a 81 ii. 4a 2 16a 20 b) Berechne beide Terme mit dem Taschenrechner und runde auf 3 Stellen nach dem Komma: i ii : (2 Punkte) Lösung 4a: 2 i. a 18a 81 a 9 a 9 a ii : 4a 16a 20 4 a 4a 5 a a Pro Fehler Abzug Lösung 4b: i ii : Pro Fehler (zum Beispiel falsch gerundet) Abzug Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 5 / 11
17 5. Aufgabe (7 Punkte) a) Löse folgende Aufgabe mit einer Gleichung. Notiere zuerst die Bedeutung der Variablen, die du gewählt hast! Manfred behauptet, dass er heute dreimal so alt ist wie Sandra. Vor 12 Jahren sei er noch um 350 % älter als Sandra gewesen. Wie alt sind Manfred und Sandra heute? (4 Punkte) Lösung 5a: Alter Manfred heute: 3x Alter Sandra heute: x Alter Manfred vor 12 J.: 3x 12 Alter Sandra vor 12 J.: x 12 3x x12 3x x x x 3x Manfred ist heute 84 Jahre und Sandra 28 Jahre alt. Pro Fehler: Abzug Kein Satz und/oder fehlende Sorte: Abzug Nur ein Alter berechnet: Abzug Ein Satz alleine ergibt KEINE Punkte! Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 6 / 11
18 b) Mario startet in der Ortschaft A mit durchschnittlich 20 km/h. Gleichzeitig startet in der 18 km entfernten Ortschaft B seine Freundin Andrea und fährt Mario entgegen. Andrea muss auf ihrem Weg 3 Minuten vor einem geschlossenen Bahnübergang warten. Mit welcher durschnittlichen Geschwindigkeit im km/h fährt Andrea, wenn sich die beiden nach 33 Minuten treffen? Lösung 5b: 3min 20 km 1km 60min x 60 km x Geschw. Andrea : 14 h km Die Geschwindigkeit von Andrea beträgt 14. h Alternative Marios Weg bis zum Treffpunkt. 33min 20km 11km 1 Pun kt 60min Somit hat Andrea 7km (18km - 11km) bis zum Treffpunkt absolviert Geschwindigkeit von Andrea : km 7km in 30 min (33 min - 3 min) ergibt 14 h Pro Fehler: Abzug Kein Satz oder fehlende Sorte: Abzug Ein Satz alleine ergibt KEINE Punkte! Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 7 / 11
19 6. Aufgabe (6 Punkte) a) Am besitzt Nina auf ihrem Bankkonto Franken, welche mit 0.6 % verzinst werden. Aus Spargründen wird der Zinsfuss ab dem 1. August 2010 um 0.3 % gekürzt. Lösung 6a: Wie gross ist Ninas Kapital am , wenn weder Ein- noch Auszahlungen getätigt wurden? (Runde auf 5 Rp. genau) Marchzins bis 1. August: 8' Marchzins vom 1. August bis Ende Jahr: 8'000 ( ) Schlusskapital am : 8' '038.00Fr. Das Kapital am beträgt 8' Franken. Pro Fehler: Abzug Kein Satz oder fehlende Sorte: Abzug Ein Satz alleine ergibt KEINE Punkte! Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 8 / 11
20 b) Frau Kuster kommt aus den USA zurück mit 750 Dollar, die sie in Zürich in Franken wechselt und auf ihr Konto (2 % Zins) einzahlt. Acht Monate später reist sie wieder in die USA und braucht hierfür wieder Dollar. Hätte sie die 750 Dollar besser Zuhause aufbewahrt? Begründe mit einer Rechnung. Kurse in Zürich Ankauf Verkauf 1 Dollar 1.02 Fr Fr. Lösung 6b: 1.00Dollar 1.02 Fr. 750 Dollar 765 Fr. Zins auf der Bank Fr Fr Fr. 1Dollar Dollar Frau Kuster hätte die 750 Dollar besser nicht gewechselt. Pro Fehler: Abzug Kein Satz oder fehlende Sorte: Abzug Ein Satz alleine ergibt KEINE Punkte! Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 9 / 11
21 7. Aufgabe (6 Punkte) a) Berechne die Lösungsmenge des folgenden Gleichungssystems G : 2x y 4 x4y 16 (4 Punkte) Lösung 7a: 2x y 4 x4y 16 Das Lösungsverfahren ist frei wählbar. Vorschlag: Erste Gleichung mit 4 multiplizieren: 8x 4y 16 x4y 16 9x 0 x y 4 4 y L 0 / 4 Pro Fehler: Abzug Falls eine Variable richtig ausgerechnet und die andere Variable falsch (Folgefehler): nur Abzug Lösungsmenge muss korrekt notiert sein, sonst Abzug Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 10 / 11
22 b) Gegeben ist das Zahlenpaar 4 / 4. Susi Muster behauptet nun, dass dieses Zahlenpaar eine Lösung des folgenden Gleichungssystems G ist: 3 x 2y 20 5 x 3y 7 Stimmt diese Behauptung? Begründe deine Entscheidung. (2 Punkte) Lösung 7b: Lösungspaar einsetzen 2. Gleichung wird falsche Aussage Behauptung ist falsch Es muss eine klare Entscheidung Ja/Nein und eine Begründung vorhanden sein (Gleichungssystem lösen, graphische Lösung, Zahlenpaar einsetzen). Eine Entscheidung OHNE klare Begründung ergibt KEINE Punkte! Diese Prüfungsaufgaben dürfen im Prüfungsjahr 2011 / 2012 nicht im Unterricht verwendet werden. 11 / 11
Aufnahmeprüfung 2011 LÖSUNGEN Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 011 LÖSUNGEN Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig!
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 011 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! - Die
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 2011 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -
Kaufmännische Berufsmatura im Kanton Zürich. Mathematik Serie 1. Vorname... Adresse...
Aufnahmeprüfung 2010 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 01 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! - Die
Aufnahmeprüfung 2012 LÖSUNGEN Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 01 LÖSUNGEN Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt!
Mathematik Serie 2 (60 Min.)
Aufnahmeprüfung 01 Mathematik Serie (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! - Die
Aufnahmeprüfung 2009 LÖSUNGEN Mathematik Serie 2
Aufnahmeprüfung 009 LÖSUNGEN Mathematik Serie (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig!
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 01 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! - Die
Aufnahmeprüfung 2009 LÖSUNGEN Mathematik Serie 1
Aufnahmeprüfung 009 LÖSUNGEN Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig!
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 2013 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! -
Kaufmännische Berufsmatura im Kanton Zürich. Mathematik Serie 2. Name... Vorname... Adresse...
Aufnahmeprüfung 2009 Mathematik Serie 2 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -
Aufnahmeprüfung 2008 LÖSUNGEN Mathematik Serie 2 (60 Min.)
Aufnahmeprüfung 008 LÖSUNGEN Mathematik Serie (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig!
Aufnahmeprüfung 2008 LÖSUNGEN Mathematik Serie 1
Aufnahmeprüfung 008 LÖSUNGEN Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig!
Kaufmännische Berufsmatura im Kanton Zürich. Mathematik Serie 1. Name... Vorname... Adresse
Aufnahmeprüfung 008 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! - Die
Kaufmännische Berufsmatura im Kanton Zürich. Mathematik Serie 1. Name... Vorname... Adresse...
Aufnahmeprüfung 2008 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -
Aufnahmeprüfung 2014 LÖSUNGEN Mathematik Serie 5 (60 Min.)
Aufnahmeprüfung 014 LÖSUNGEN Mathematik Serie 5 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt!
MATHEMATIK. Name: Vorname: maximale Punkte 1 a), b) 4 2 a), b), c) 6 3 a), b) Gesamtpunktzahl 38. Die Experten: 1.
Berufsmaturität Kanton Glarus Aufnahmeprüfung 2013 Kaufmännische Berufsfachschule Glarus Kaufmännische Richtung MATHEMATIK Name: Vorname: Note Aufgabe Nr. Teilaufgaben erreichte Punkte maximale Punkte
Mathematik Serie 5 (60 Min.)
Aufnahmeprüfung 014 Mathematik Serie 5 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! -
Mathematik Serie 2 (60 Min.)
Aufnahmeprüfung 2008 Mathematik Serie 2 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -
Mathematik Serie 1 (60 Min.)
Kaufmännische Berufsmatura im Kanton Zürich Aufnahmeprüfung 004 Lösungen Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Maximal erreichbare Punktzahl 100 Punkte Unbelegte Resultate werden nicht
Lösungen. Aufnahmeprüfung 2014 Mathematik Name: Berufsfachschulen Graubünden. Note: Vorname: Ergebnis (bitte leer lassen)
Berufsfachschulen Graubünden Aufnahmeprüfung 2014 Mathematik Name: Vorname: - Teil A und B dauern je 45 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit Taschenrechner gelöst werden.
Mathematik Serie 2 (60 Min.)
Kaufmännische Berufsmatura im Kanton Zürich Aufnahmeprüfung 2004 Lösungen Mathematik Serie 2 (60 Min.) Hilfsmittel: Taschenrechner Maximal erreichbare Punktzahl 100 Punkte Unbelegte Resultate werden nicht
Mathematik Serie 1. 2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie : Lösungen Mathematik Serie Serie Lösungen Prüfungsdauer: Ma. Punktzahl: 50 Minuten 00 Punkte Allgemeine Bewertungshinweise:. Mehrfachlösungen
Kaufmännische Berufsmatura 2012
Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 6 6 33 Die Prüfung dauert
Teil I (Richtzeit: 30 Minuten)
Gymnasium Unterstrass Zürich Seite Aufnahmeprüfung 00 Mathematik (. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 00 Kurzgymnasium (Anschluss. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra A Schreiben Sie ohne Klammern und vereinfachen Sie so weit wie möglich.
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2014 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:
Zentrale Aufnahmeprüfung 2015 für die Kurzgymnasien des Kantons Zürich
Zentrale Aufnahmeprüfung 2015 für die Kurzgymnasien des Kantons Zürich Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen.
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Mathematik Dauer: 90 Minuten Serie: E2 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung: - Zeichenutensilien, Taschenrechner,
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra A 2015
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2015 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:
Repetition Mathematik 8. Klasse
Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung:
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 2007 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! -
Terme, Rechengesetze, Gleichungen
Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E1 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: A1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
BMS Bern, Aufnahmeprüfung 004 Technische Richtung Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Zweiter Teil mit Taschenrechner
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 7 Total Note Punkte total Punkte erreicht 6 5 4 4 3 3 5 30 Die Prüfung dauert
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Aufnahmeprüfung 017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Lösungen Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Allgemeine Richtlinien für die Korrektur
Mathematik, 2. Sekundarschule Neues Lehrmittel Mathematik, Erprobungsversion
Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Neues Lehrmittel Mathematik, Erprobungsversion Von der Kandidatin oder
Aufnahmeprüfung 2012 Mathematik, Lösungen
Aufnahmeprüfung 0 Mathematik, Lösungen. Teil ohne Taschenrechner Aufgabe 4 () a) 0.6 0.8 7 9 9 4 7 47 9 90 7 4 8 47 Pro Fehler Abzug, Flüchtigkeitsfehler Abzug 4 90 0 90 7 90 7 b) Vereinfache den folgenden
Aufnahmeprüfung 2012 Mathematik, Lösungen
Aufnahmeprüfung 0 Mathematik, Lösungen. Teil ohne Taschenrechner Aufgabe () a) 0. 0. 7 0 7 7 7 7 0 0 0 7 0 7 Pro Fehler Punkt Abzug, Flüchtigkeitsfehler 0. Punkte Abzug b) Vereinfache den folgenden Term:
AUFNAHMEPRÜFUNG 2014
Luzerner Berufs- und Fachmittelschulen AUFNAHMEPRÜFUNG 2014 ARITHMETIK / ALGEBRA 1 15. März 2014 Name, Vorname Nr. Zeit Minuten Note Hilfsmittel Taschenrechner (nicht programmierbar, netzunabhängig) Ein
Sekundarschulabschluss für Erwachsene. Arithmetik, Algebra, Stochastik Sek A 2018
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik, Algebra, Stochastik Sek A 2018 Totalzeit: 90 Minuten Hilfsmittel: Nicht programmierbarer Taschenrechner und Geometriewerkzeug (Geodreieck,
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E1 Lösungen Aufgabe 1 3 P. Vereinfachen Sie so weit wie möglich: 4a 1 2a 5 5 b 2 5 4a 1 2a 4a 20ab
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra Sek B 2017
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra Sek B 2017 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug (Geo-Dreieck, Zirkel,
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E2 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Kaufmännische Berufsmatura 2011 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra Sek B 2016
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra Sek B 2016 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug (Geo-Dreieck, Zirkel,
Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen?
Information zur Aufnahmeprüfung WO Mathematik Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Musterprüfung: Lösen von linearen Gleichungen Aufgabe 1 Lösen von quadratischen Gleichungen
Sekundarschulabschluss für Erwachsene. Arithmetik, Algebra, Stochastik Sek A Lösungen 2018
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik, Algebra, Stochastik Sek A Lösungen 2018 Totalzeit: 90 Minuten Hilfsmittel: Nicht programmierbarer Taschenrechner und Geometriewerkzeug
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2011 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:
Übertrittsprüfung 2014
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra B Schreiben Sie in Worten: 2'400'340'572 (2 P)
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra B 201 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl:
Kaufmännische Berufsmatura 2011
Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012. Teil 1: Terme, Termumformungen, Gleichungen, Brüche
Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012 Teil 1: Terme, Termumformungen, Gleichungen, Brüche Version Oktober 2013 verf. v. Adrian Christen SchulArena.com
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B2 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
Name:... Vorname:...
Zentrale Aufnahmeprüfung 2013 für die Kurzgymnasien des Kantons Zürich Mathematik Neues Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
SAE. Arithmetik und Algebra B Name: Sekundarschulabschluss für Erwachsene
SAE Name: Sekundarschulabschluss für Erwachsene Nummer: Arithmetik und Algebra B 2014 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl:
Übertrittsprüfung 2015
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2015 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 5 5 5 4 6 6 31 Die Prüfung dauert 45 Minuten.
AUFNAHMEPRÜFUNG BERUFSMATURITÄT April Name: Vorname:
Berufsfachschulen Graubünden AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2017 5. April 2017 Mathematik Name: Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit
Wirtschaftsmittelschulen Bern Biel Thun La Neuveville
Wirtschaftsmittelschulen Bern Biel Thun La Neuveville Aufnahmeprüfungen 01 Datum: Montag, 19. März 01 Fach: Zeit: Mathematik 60 Minuten Prüfungsteil Maximale Punktzahl 1. Teil: Faktorisieren 4 Erreichte
Terme vereinfachen bedeutet nichts anderes, als dass man verschiedene Variable addiert, subtrahiert, dividiert oder miteinander multipliziert.
Hilfe 1 Terme vereinfachen 1 Terme vereinfachen bedeutet nichts anderes, als dass man verschiedene Variable addiert, subtrahiert, dividiert oder miteinander multipliziert. Du musst allerdings einige Regeln
MATHEMATIK 8. Schulstufe Schularbeiten
MATHEMATIK 8. Schulstufe Schularbeiten 1. S c h u l a r b e i t Terme Lineare Gleichungen mit einer Variablen Bruchterme Gleichungen mit Bruchtermen Der Preis einer Ware beträgt x Euro. Dieser Preis wird
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note:
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 2 mit Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 Punkte Löse
AUFNAHMEPRÜFUNG 2016
Luzerner Berufs- und Fachmittelschulen AUFNAHMEPRÜFUNG 2016 ARITHMETIK / ALGEBRA 1 12. März 2016 Name, Vorname Nr. Zeit Minuten Note Hilfsmittel Taschenrechner (nicht programmierbar, netzunabhängig) Ein
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra B 2012
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra B 2012 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl:
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 4 5 30 Die Prüfung dauert
Name:... Vorname:...
Zentrale Aufnahmeprüfung 2012 für die Kurzgymnasien des Kantons Zürich Mathematik, 2./3. Sekundarschule Neues Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten
Rechnen mit rationalen Zahlen
Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)
Lineare Gleichungen mit 2 Variablen
Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner Prüfungsbedingungen Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt unterhalb
Aufnahmeprüfung 2015 Mathematik
Berufsfachschulen Graubünden Aufnahmeprüfung 2015 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit Taschenrechner gelöst werden. - Für
Mathematik / Lösungen Datum Samstag, 10. März 2018, Serie 1
Kaufmännische Berufsfachschulen Bern Biel La Neuveville Langenthal Thun Aufnahmeprüfungen 2018 Bitte ankreuzen Name BM 1 Typ Wirtschaft Vorname BM 1 Typ Dienstleistungen Kand. Nr. BM 2 Typ Dienstleistungen
Abschlussprüfung 2014 Mathematik
Abschlussprüfung 2014 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
Klausur: Mathematik/BWL WS 2017/18
Eignungsprüfung für den Hochschulzugang Klausur: Mathematik/BWL WS 2017/18 Bewerber Name, Vorname... Geburtsdatum:.. Hilfsmittel: Bearbeitungszeit: einfacher Taschenrechner 120 Minuten maximale Punktzahl:
MATHEMATIK. Lösungen. erreichte Punkte. maximale Punkte 1 a), b) 4 2 a), b) 5 3 a), b), c) Gesamtpunktzahl 39. Note.
Berufsmaturität Kanton Glarus Aufnahmeprüfung 2016 Kaufmännische Berufsfachschule Glarus Kaufmännische Richtung MATHEMATIK Name: Vorname: Lösungen Aufgabe Nr. Teilaufgaben maximale Punkte 1 a), b) 4 2
