Regression und Korrelation
|
|
|
- Astrid Burgstaller
- vor 9 Jahren
- Abrufe
Transkript
1 Regreo ud Korrelato regreo: Zurückführug, Rückchrete correlato: Wechelbezehug Praktche Aäherug (Bepel1) wevele Ewemoleküle d dem Blutplama? (Stück, mol, g, ) we gro t de Ewekozetrato de Blutplama? (St/L, mol/l, g/l) 1 St. HSA Mölekül be Patete Nephroe (chwere Nerekrakhet) mmt der Wert tark ab drekte Methode: Betmmug der Azahl der Moleküle eem Volume(?) drekte Methode : mt Hlfe eer (efach) mebare phkalche Gröe, de teht treg mooto wachedem Zuammehag zu der ubekate Gröe (de olche efachte Fukto t...) m KAD Bemerkug: da Lcht bretet ch Blutplama lagamer, we de Plamaewekozetrato gröer t, d.h. da Lcht hat gröere Brechzahl (determtcher Zuammehag, Mefehler) Brechzahl de Blutplama Plamaewekozetrato (g/l) 3 (Bepel) Gewcht (kg) Date au eer Studetegruppe E (Sept. 1994) (zuammegehörge Wertepaare) Körperhöhe (cm) wa für ee Tedez ka ma bemerke? cm kg
2 De Korrelatorechug bechäftgt ch mt dem mmetrche Zuammehag zweer Zufallgröe potve Korrelato: je mehr, deto mehr egatve Korrelato:je mehr, deto weger her: potve Korrelato 5 Regreoaäherug Sucht ma ee Fuktozuammehag zwche eer (oder mehrere) uabhägge Varable () ud eer abhägge Varable () Vorauetzuge: ud umerche ud tetge Merkmale, Zufallgröe (hre Gröe wrd cht ur vo der uabhägge Varable, oder durch de Zufall beeflut) Regreomodell fert de Tp der Fukto: leare F. (a + b) + h polomale F. a + b 1 + b b + h epoetale F. ab h Potezfukto a b h ud we wrkt der Zufall auf de abhägge Varable addtver Fehler (+ h) oder multplkatver Fehler (. h) (a: Stegug, b: Acheabchtt) 6 Da efachte Regreomodell: leare Regreo leare Fukto: (a + b) + h h -(a + b) we der Pukt (, ) oberhalb der Gerade legt we eht de Formel au, we der Pukt uterhalb der Gerade legt? a + b Bete Gerade: Summe der Fehlerquadrate t mmal (Methode der klete Quadrate) Bedguge zur Awedug (Uter welche Bedguge ka ma ee leare Regreo durchführe?) 1. E gbt ee leare Korrelato zwche ud.. De Mepukte eer Stchprobe d uabhägge Mepukte. 3. Für alle ferte -Werte t de Vertelug vo ormal. 4. De Vertelug vo für alle - Werte hat deelbe Varaz. 5. Ma ka de -Werte ohe Fehler mee. 8
3 de (quadratche) Fehlerfukto: [ ( a + b) ] Q(...) uabhägge Varable? 1 a ud b [ ( a + b) ] Q( a, b) Fehlerfukto 1 Leare Regreo Fuktozuammehag für a ud b? quadratche Zuammehäge We ehe dee Fuktoe au? Parabel mt uterchedlcher Öffug Betze dee Fuktoe Mama oder Mma? de Graphe d obe geöffete Parabel mt Mma 9 Pr.Buch Abb Suche ach der Gerade ( a + b) mt beter Näherug der Mepukte a: Stegug b: Acheabchtt Q( a, b) 1 Möglchkete: [ ( a + b) ] m. 1. quadratche Ergäzug Leare Regreo z.b (-3) +5, Mmum: 3. Dfferetalrechug Mmalerug der Fehlerfukto Pr.Buch Abb Dfferetalquotet: Stegug der Tagete a dem Mmum/Mamum der Kurve t de Stegug der Tagete glech ull Glechuge, Ubekate 1
4 De bete Stegug: ( a + b) Bepel: Refraktometre a Q 1 Q ( )( ) ( ) 1 oder a Der bete Acheabchtt: b 1 1 a a wo Q : 1 Kovaraz We gut pae de Mepukte a de Regreogerade? Korrelatorechug bechrebt de leare Bezehug zwche zwe oder mehr tattche Varable e bechrebt de Stärke der Korrelato e gbt tarke ud chwache Korrelato Korrelatokoeffzet (Pearo) r Q Q Q der Zähler t glech dem Zähler der Stegug der Regreogerade (der Neer t m bede Fall potv) a Q Q potve Stegug: r t potve Zahl egatve Stegug: r t egatve Zahl 1 r 1 15 wetere Bemerkuge: 1 r 1 0 r 1 Korrelatokoeffzet (Pearo) Betmmthetma (coeffcet of determato) Im Fall vo cht-leare Zuammehäge, ud/oder ordale Varable führt deer Pearo- Korrelatokoeffzet zu falche Ergebe. au de Ragwerte kalkulerte Korrelatokoeffzete: Spearma Ragkorrelatokoeffzet ud Kedall Tau De Korrelato bechrebt cht ubedgt ee Urache- Wrkug-Bezehug de ee oder adere Rchtug. 16
5 Korrelert het cht otwedgerwee kaual verküpft(!) Azahl der eue Tumore USA de Zet al verdeckte Varable Bepele: 19 Kw-Koum USA 17 Pr.Buch Abb Puktdagramme
6 Etrembepel: r0.816, (Acombe' quartet) t-tet zur Korrelatoaale m (kg) t - r Gbt e ee Bezehug zw. der Körpergröe ud Gewcht? 1 r h (cm) H 0 : kee Korrelato H 0 : Korrelatokoeffzet der Populato: t t > t krt(0,05).935 > t 1, 4 1, krt(0,01) H 0 t falch (p<0.05) H 0 t falch (p<0.01) Leare Regreo Ecel Name der Fukto (eg) (deu) (eg) (deu) lope, tercept Fuktoe (Acheabchtt, Stegug) a + b lope tercept tred let Stegug Acheabchtt tred rgp tredle korrel(...) (deu) 3 4
7 tred Fukto (eg, deu) -Berech (abolute Referez) -Berech (abolute Referez) -Wert de erte Pukte der Gerade (relatve Referez) Tredle 5 6 Wetere Bepel: Letug der Rötge-Röhre γ-aborpto 0.6 P ~ I m, logp ~ mlogi Lchtaborpto c L, umol/l Pb L. Regr., Pb Fe L. Regr., Fe Al L. Regr., Al Half Itet (cm) 100 Z, kohm Hautmpedaz FREQUENZ DES AKTIONSPOTENZIALS- - BELEUCHTUNGSSTÄRKE (lg-lg Dartellug) P ~ U, logp ~ logu f, Hz Frequez de AP, f (Hz) Beleuchtugtärke (l) 8
Regression und Korrelation
Regreo ud Korrelato regreo: Zurückführug, Rückchrete correlato: Wechelbezehug Praktche Aäherug (Bepel1) wevele Ewemoleküle d dem Blutplama? (Stück, mol, g, ) we gro t de Ewekozetrato de Blutplama? (St/L,
Multiple Regression (1) - Einführung I -
Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da
6. Zusammenhangsmaße (Kovarianz und Korrelation)
6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe
Lineare Regression und Korrelation (s. auch Applet auf Arbeitsblatt 1 : Lineare Regression
Leare Regreo ud Korrelato (. auch Applet auf www.mathematk.ch) Fragetellug: Lerzele: De leare Regreo bechäftgt ch mt der folgede Fragetellug: Gegebe d Pukte ( / ), =,.., m (,)- Koordatetem ( > ). Geucht
Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D:
Streuug omalkalerter Varable Streuug omalkalerter Varable: Smpo D Gültg WHITE BLACK OTHER Geamt RACE OF RESPODET Gültge Kumulerte Häufgket Prozet Prozete Prozete 483 83, 83, 83, 388 13, 13, 96, 11 4, 4,
Statistik mit Excel und SPSS
Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk
Lösungen. Lösung zu d):
Löuge Löug zu a De Date chee ch äherugwee etlag eer Gerade potoert zu e. Da lät cho recht gut vermute, da e learer Zuammehag vorhade e köte. Löug zu b We e Ateg/ee Abahme der Deutche Bak Akte auch zu eem
2.2 Rangkorrelation nach Spearman
. Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable
Lösung : Merkmal Skalierung geeignetes Zusammenhangsmaß. Studienfach nominal korrigierter Kontingenzkoeffizient C korr Anfangsgehalt proportional
Dekrptve Stattk Löug zu.5 Übugaufgabe Aufgabe.) Gb e geegete Zuammehagmaß für de folgede Merkmalpaare a: a) Studefach ud Afaggehalt DM be de Abolvete eer Hochchule. b) Etellugalter ud Afaggehalt DM be
Korrelation und Assoziation
Sche- ud Noe- Korrelato Korrelato ud Aozato Schekorrelato: zwe Merkmale häge bede vo eem wetere drtte ab Noekorrelato: zwe Merkmale habe ee hohe Korrelato, aber kee urächlche Zuammehag Korrelato ud Aozato
Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.
Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date
Regressionsrechnung und Korrelationsrechnung
Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache
Varianzfortpflanzung
5.0 / SES.5 Parameterschätzug Varazortplazug Torste Maer-Gürr Torste Maer-Gürr Dskrete Zuallsvarable Ee dskrete Zuallsvarable mmt edlch vele oder abzählbar uedlch vele Werte a. - Werte: - Wahrschelchket:,,,,,,,,
Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten
Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte
Normalverteilung (Gauss Verteilung) Gauss Kurve. ( x. (Deskriptive Statistik, Vortsetzung)
(Dekrpve Sak, Vorezug) Achaulche Darellug der Fläche uer der heoreche Verelugkurve De heoreche Verelug ka Abhäggke vo der ueruche Varable uerchedlche Forme aehme, der Mehrzahl der Fälle e aber ee ymmerche
2. Zusammenhangsanalysen: Korrelation und Regression
2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt
Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.
Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,
ue biostatistik: korrelation und regression 1/7 h. lettner / physik
ue botattk: korrelato ud regreo /7 h. letter / phk Korrelato ud Regreo Uterucht ma zwe oder mehrere Zufallvarable, da ka ma u. U. fettelle, daß zwche de Zufallvarable e Zuammehag beteht. Z.B. köte ma erwarte,
Ordnungsstatistiken und Quantile
KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der
Maße zur Kennzeichnung der Form einer Verteilung (1)
Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug
Verdichtete Informationen
Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)
Einführung in die deskriptive Statistik
Eführug de dekrptve Stattk Übercht: 1. Grudlage: Mee, Skalere, edeoale Häufgketverteluge 1.1. Mee 1.. Skaleveau 1.3. Mewertklae 1.4. Uvarate Häufgketverteluge 1.5. Graphche Dartellug vo uvarate Häufgketverteluge
Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert:
Korrelatoskoeffzet Der Korrelatoskoeffzet st e Maß für de leare Zusammehag zwsche zwe Varable X ud Y. Er st durch folgede Formel charaktersert: r xy corr XY ( x x)( y y) ( ) x x ( y y) x x y x ( ) ( )
Konzentrationsanalyse
Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher
Einführung Fehlerrechnung
IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate
Quellencodierung I: Redundanzreduktion, redundanzsparende Codes
Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug
Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)
Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)
Statistik für Ingenieure (IAM) Version 3.0/21.07.2004
Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de
Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.
Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0
Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung
De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt
die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).
Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.
2 Regression, Korrelation und Kontingenz
Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse
Histogramm / Säulendiagramm
Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre
Formelzusammenstellung
Hochschule Müche Faultät Wrtschaftsgeeurwese Formelzusammestellug zugelasse für de Prüfug Dateaalyse der Faultät 09 für Wrtschaftsgeeurwese Prof. Dr. Voler Abel Formelsammlug Dateaalyse / Ihaltsverzechs
Deskriptive Statistik Formelsammlung
Facoccule Stralud Facberec Macebau Wrtcaftgeeurwee Dekrptve Stattk Formelammlug Prof. Crta Beck Bearbetet vo: Crta Scedl WING WS 94 Letzte Faug: S. Herrma WING F 3 November 00 Formelammlug. SUMMENBILDUNG
4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern
Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:
v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr
5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =
Erzeugen und Testen von Zufallszahlen
Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto
Allgemeine Prinzipien
Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege
Statistik. Statistik, Prof. Dr. Karin Melzer
Stattk.. Wa t Stattk? (I E geht um de Kut de verüftge Vermute Stuatoe, wo der Zufall m Spel t oder Spel gebracht werde ka. Prof. Dr. Herma Dge (U Frakfurt/Ma, 99 .. Wa t Stattk? (II Ee möglche Atwort:
1 n. STATISTIK I Übung 06 Schiefe und Wölbung. 1 Kurze Wiederholung. Eine dritte Form von Verteilungsparametern?
Stattk I Übu 06 Chrta Reboth STATISTIK I Übu 06 Schefe ud Wölbu Kurze Wederholu Ee drtte For vo Verteluparaeter? Nebe de Maße der zetrale Tedez (Zetru eer Vertelu) ud de Dperoparae- ter (Streuu der Werte
Leitfaden zu den Indexkennzahlen der Deutschen Börse
Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete
14. Folgen und Reihen, Grenzwerte
4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,
Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.
Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud
Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit
Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.
Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik
Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert
6. Zusammenhangsmaße (Kovarianz und Korrelation)
Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede
1.3 Fehlerbetrachtung, Kalibrierung Genauigkeit und Statistische Beschreibung und Analyse von Messungen. Genauigkeit
.3 Fehlerbetrachtg, Kalbrerg.3. Geagket d Stattche Bechrebg d Aale vo Mege Wederholg vo ezele Mege Ergeb eer Meg t ledglch Schätzwert für de wahre Wert eer Megröße 8 Ergeb der Meg Meabwechg (Fehler) ε:
Fehlerrechnung im Praktikum
Fehlerrechug m Pratum Pratum Phsalsche Cheme (A. Dael Boese) I chts zegt sch der Magel a mathematscher Bldug mehr, als eer überbertrebe geaue Rechug. Carl Fredrch Gauß, 777-855 Themegebete Utertelug vo
Der Approximationssatz von Weierstraß
Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert
Statistik. Statistik, Prof. Dr. Karin Melzer
Stattk.. Wa t Stattk? (I E geht um de Kut de verüftge Vermute Stuatoe, wo der Zufall m Spel t oder Spel gebracht werde ka. Prof. Dr. Herma Dge (U Frakfurt/Ma, 99 .. Wa t Stattk? (II Ee möglche Atwort:
