Abstandsberechnungen
|
|
|
- Elmar Schuler
- vor 9 Jahren
- Abrufe
Transkript
1 Abstandsberechnungen von Günter Schmidt Themenbereich Analytische Geometrie im R 3, Verbindungen zu reellen Funktionen/Analysis Inhalte Parameter- und Normalengleichungen von Geraden und Ebenen im Raum Entfernung von Punkten im R 3, Abstand Punkt Ebene, Abstand windschiefer Geraden Lösen von Gleichungssystemen (Gauss-Algorithmus) Extremwertbestimmung bei reellen Funktionen Ziele Problemlösen mit Hilfe mathematischer Modelle Anwenden von Verfahren der Analytischen Geometrie und der Analysis Training der Raumanschauung Zwei Flugzeuge fliegen mit gleichbleibender Geschwindigkeit auf geradem Kurs. Das erste befindet sich zur Zeit t=0 im Nullpunkt eines geeignet gewählten Koordinatensystems. Zur Zeit t=3 ist es in P(6-3 9). Zu den entsprechenden Zeiten befindet sich das zweite in Q( ) bzw. R(5 19-2). (Koordinatenangaben in 10-2 km, Zeiteinheiten in Sekunden) Zu welcher Zeit sind sich die Flugzeuge am nächsten (wie nahe), und in welchen Positionen befinden sie sich dann gerade. Zu welcher Zeit im Intervall [0;60] ist der Abstand der Flugzeuge am größten? Wie groß ist der minimale Abstand der beiden Flugrouten? Mit welchen Geschwindigkeiten fliegen die beiden Flugzeuge? Mit welcher Geschwindigkeit müßte das zweite Flugzeug fliegen, so daß die geringste Entfernung der Flugzeuge mit der minimalen Entfernung der Flugrouten übereinstimmt?
2 Günter Schmidt: Abstandsberechnungen 2 Vorüberlegungen Die Flugrouten liegen wahrscheinlich auf windschiefen Geraden (-> Nachweis). Abstand der Flugzeuge Abstand Flugrouten Der minimale Abstand der Flugrouten entspricht dann dem Abstand der beiden windschiefen Geraden. Er stimmt i.a. nicht mit dem minimalen Abstand der beiden Flugzeuge überein, da deren Positionen durch die Geschwindigkeitsvektoren und den Zeitparameter t bestimmt sind. Das weitere Vorgehen läßt sich der Aufgabenstellung entsprechend in drei Teilaufgaben gliedern: Teil 1: Minimale Entfernung der Flugzeuge 1.1 Die Geradengleichungen a(t) = p + tv 1 und b(t) = q + tv 2 für die Flugrouten der beiden Flugzeuge A und B müssen bestimmt werden. p und q beschreiben die jeweiligen Positionen zum Zeitpunkt t=0. Die Geschwindigkeitsvektoren (Richtungsvektoren v 1 und v 2 der Geraden) werden so gewählt, daß mit dem Parameter t jeweils die Position des Flugzeuges zum Zeitpunkt t (in Sekunden) bestimmt ist. Wichtig: in beiden Geradengleichungen ist dann der Parameter t der gleiche. 1.2 Die Entfernung entf(t) läßt sich nun als Entfernung der jeweiligen Positionen zum Zeitpunkt t bestimmen. 1.3 Anschließend wird das Minimum von entf(t) gesucht, ebenso das Maximum im angegebenen Zeitintervall. Teil 2: Abstand der Flugrouten Es geht um die Bestimmung des Abstandes windschiefer Geraden. Hierfür ist als einfaches Verfahren bekannt: Parallele Ebenen durch beide Geraden legen, dann den Abstand dieser Ebenen bestimmen. Teil 3: Änderung der Geschwindigkeit 3.1 Es müssen die Punkte auf den Flugrouten bestimmt werden, die die Positionen des minimalen Abstands der Flugrouten angeben, Diese entsprechen den Fußpunkten Fa und Fb des gemeinsamen Lotes der windschiefen Geraden. 3.2 Dann wird der Zeitpunkt t 0 bestimmt, zu dem sich Flugzeug A in Position Fa befindet. 3.3 Der Betrag des Geschwindigkeitsvektors des Flugzeugs B muß nun so verändert werden, daß sich das Flugzeug B zum Zeitpunkt t 0 gerade in Position Fb befindet.
3 Günter Schmidt: Abstandsberechnungen 3 Lösungsskizze zu Teil 1 Die Vektoren p, q und r werden unter den entsprechenden Namen gespeichert (Taste STO> ). Mit Hilfe der üblichen Vektoroperationen (S- Multiplikation, Addition und Subtraktion) können wir die Geradengleichungen a(t) für Flugzeug A und b(t) für Flugzeug B so definieren, daß die jeweilige Position zum Zeitpunkt t angegeben wird. Define im Menü F4 Probe: durch Eingabe von a(3) und b(3) erhalten wir die Positionen p und q. An dieser Stelle überprüfen wir nun auch, ob die beiden Geraden windschief sind. Dies ist der Fall, wenn die beiden Richtungsvektoren und die Differenz der beiden Ortsvektoren linear unabhängig sind, d.h. die Gleichung hat nur die triviale Lösung (r 1 /r 2 /r 3 )=(0/0/0). r 1 v 1 +r 2 v 2 +r 3 v 3 =0 Wir überführen die Matrix des 3-3-Gleichungssystems mit ref( im Menü math/matrix in die Dreiecksform und erkennen daraus die lineare Unabhängigkeit der drei Vektoren. Die Formel für die gesuchte Entfernung zwischen den Flugzeugen zum Zeitpunkt t können wir nun direkt mit Hilfe des Befehls norm( im Menü MATH/MATRIX/NORMS bestimmen.
4 Günter Schmidt: Abstandsberechnungen 4 Wir erkennen, daß die Entfernung eine reelle Funktion der Zeit ist, hier speziell die Verkettung einer Wurzelfunktion mit einer quadratischen Funktion. Wir definieren diese Funktion im Funktioneneditor Y=, bestimmen über WINDOW einen passenden Bereich und schauen uns mit GRAPH den Graph der Funktion an. Die Funktion hat offensichtlich ein Minimum, dies liegt ungefähr bei t=12. Mit Hilfe der TRACE-Funktion F3 können wir dies präzisieren, gleichzeitig erkennen wir, daß der minimale Abstand ungefähr 110 m beträgt. Unsere Kenntnisse aus der Analysis erlauben uns auch die rechnerische Bestimmung des Minimums über die Nullstelle der 1. Ableitung. Mit dem Befehl d(differentiate im Menü Calc können wir unsere Funktion entf(t) nach t ableiten. Die Nullstelle der Ableitungsfunktion liegt offensichtlich bei t=12, die Entfernung beträgt zu diesem Zeitpunkt (etwa 110 m). Aus dem Verlauf der Funktion erkennen wir außerdem, daß das Maximum der Entfernung mit etwa 1180 m am rechten Rand des vorgegebenen Intervalls liegt.
5 Günter Schmidt: Abstandsberechnungen 5 Wir können uns an dieser Stelle noch einen anderen Zusammenhang anschaulich bestätigen. Wegen der Monotonie der Wurzelfunktion wissen wir, daß wir nur die Minimumstelle der Funktion y2(x)=x 2-24x+164 suchen müssen, diese stimmt dann mit der für die verkettete Funktion überein. Wir geben die Funktion im Funktions- Editor ein und finden die graphische Veranschaulichung des Zusammenhangs. (Die Vertikale bei x=12 wurde unter dem Menü F7 mit der Option 6:Vertical gezeichnet). Lösungsskizze zu Teil 2 Wir definieren die Ebene E, die die Gerade a enthält und zu der die Gerade b parallel ist. Den Abstand des Punktes q von E bestimmen wir mit Hilfe der Hesseschen Normalform von E, dies ist dann der Abstand der beiden windschiefen Geraden. Den Normalenvektor n bestimmen wir über das Gleichungssystem n. v 1 =0 und n. v 2 =0. Hierzu formen wir die Matrix des Systems in die Diagonalform um. rref( im Menü math/matrix. Aus der Diagonalform können wir n bestimmen, dieser wird dann zu n 0 normiert. Das Skalarprodukt n 0. q liefert dann den gesuchten Abstand. dotp( im Menü math/matrix/norms Lösungsskizze zu Teil 3 Zur Bestimmung der Fußpunkte des gemeinsamen Lotes der windschiefen Geraden lösen wir das Gleichungssystem d. n 0 =t 1. v 1 -(q+t 2. v 2 ) Die Matrix dieses Systems geben wir über den Matrix-Editor ein Taste APPS und Wahl Data/Matrix Editor und speichern sie unter dem Namen m.
6 Günter Schmidt: Abstandsberechnungen 6 Nach Umwandlung in die Diagonalform können wir die Parameter t 1 und t 2 für die jeweiligen Fußpunkte ablesen und durch Einsetzen in die Geradengleichungen die Fußpunkte berechnen. Dann ermitteln wir den Zeitpunkt t 0, zu dem Flugzeug A den Fußpunkt Fa erreicht. Die Geschwindigkeit für Flugzeug B muß nun so verändert werden, daß Flugzeug B zum gleichen Zeitpunkt t 0 den Fußpunkt Fb erreicht. Zur Demonstration lösen wir die beiden einfachen linearen Gleichungen mit dem Befehl solve aus dem Menü F2 Wir erkennen, daß die Geschwindigkeit von Flugzeug B von 184 km/h auf 236 km/h erhöht werden muß, was bei dem dann eintretenden geringen Abstand allerdings nicht zu empfehlen ist.
7 Günter Schmidt: Abstandsberechnungen 7 Zusatzaufgaben und Erweiterungen Ein Sportflugzeug und ein Transportflugzeug befinden sich jeweils auf geradlinigem Kurs. Im Koordinatensystem (Koordinatenangaben in km) des Flughafens werden die Positionen zu einem bestimmten Zeitpunkt 0 und dann 6 Minuten später wieder festgehalten. Ort zum Zeitpunkt 0 Ort nach 6 Minuten Sportflugzeug A(0;4;2) A*(20/-6/2) Transportflugzeug B(3;0;3) B*(3/50/-7) (a) Bestimmen Sie jeweils die Richtung und den Betrag der Geschwindigkeit der Flugzeuge. (b) Bestimmen Sie die kleinste Entfernung der Flugzeuge. Zu welchem Zeitpunkt t ist diese erreicht und in welchen Positionen befinden sich dann die Flugzeuge? (c) Der minimale Abstand der Flugrouten beträgt ungefähr 0.49 und ist geringer als der in (a) berechnete Abstand. Begründen Sie dies. Literatur [1.1] Berg/Bungartz/Löcherbach, Lineare Algebra/Geometrie - Kursheft für Grund- und Leistungskurse (Entwurf), Seite 92/93, Bonn 1984 [1.2] Griesel/Postel (Hrsg.), Mathematik heute - Leistungskurs Lineare Algebra/Analytische Geometrie, Seite , Hannover 1986 [1.3] Herfort/Reinhardt/Schuster, Geometrie und lineare Algebra - MG3 - Analytische Geometrie, MATHEMATIK Studienbriefe zur Fachdidaktik für Lehrer der Sekundarstufe II, Seite 65-70, Deutsches Institut für Fernstudien an der Universität Tübingen, Tübingen 1984 [1.4] Trinkaus, Probleme? Höhere Mathematik - Eine Aufgabensammlung zur Analysis, Vektor- und Matrizenrechnung, Seite , Heidelberg 1988 Kurzkommentar zur Literatur In den gängigen Lehrbüchern zur Analytischen Geometrie in der SII findet man nur vereinzelt Anwendungsaufgaben, die über den engen Kontext des gerade behandelten Inhalts hinausgehen. In [1.1] wird dies in größerem Umfang versucht, hieraus stammt auch die Anregung für die einführende Aufgabe in diesem Beispiel. Leider liegt das Kursheft nur in einer Entwurfsfassung vor. Das Lehrbuch [1.2] steht stellvertretend für die vielen anderen Lehrbücher, in denen man einzelne Aufgaben finden kann, die sich zu einer komplexeren Problemstellung ausbauen lassen, etwa wie in der Zusatzaufgabe. Weitere schöne Aufgaben findet man in dem Studienbrief [1.3] und der Problemsammlung [1.4]. Beide Werke sind für die Hand des Studenten oder des Lehrers geschrieben, können aber ohne Probleme auch von Schülerinnen und Schülern der SII im Rahmen von Referaten oder kleiner Projekte benutzt werden.
Beispiel mit Hinweisen 1 1/3 Dreieck
Beispiel mit Hinweisen 1 1/3 Dreieck Zeige für das Dreieck ABC [ A(5/5), B(29/15), C(5/15) ] die Richtigkeit von folgender Behauptung: Die drei Verbindungsstrecken der Eckpunkte mit den Berührungspunkten
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische
Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen)
Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) 1) a) Ein Flugzeug fliegt von A(4; 2; 5) nach B(12; 6; 10). In S(10; 10; 4,75) befindet sich die Spitze eines Berges. Wie weit fliegt das Flugzeug
Drei Flugzeuge unterwegs
Anwendungsaufgaben: R. 3. 1 Drei Flugzeuge unterwegs Um die Bewegungen dreier Flugzeuge zu analysieren, wird ein räumliches kartesisches Koordinatensystem gewählt, das an die Navigation auf bzw. über der
Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.
Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel
Abstand zweier zueinander windschiefen Geraden
Fachreferat aus dem Fach Mathematik Abstand zweier zueinander windschiefen Geraden Jakob Schöttl 2009-02-17 Inhaltsverzeichnis 1 Deklaration 1 2 Denition von windschief 2 3 Meine eigenen Versuche 2 3.1
Das Wichtigste auf einen Blick
Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,
Analytische Geometrie I
Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend
Lösungen zur Prüfung 2014: Pflichtteil
Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte Kenntnisse: Analysis: Ableiten mit Produktregel, Integral mit Stammfunktion berechnen, Gleichung lösen, Kosinusfunktion, Nullstellen, Funktionswerte
Schulcurriculum Mathematik Kursstufe November 2011
Schulcurriculum Mathematik Kursstufe November 2011 Inhalte Leitidee / Kompetenzen Bemerkungen Die Schülerinnen und Schüler können Analysis Bestimmung von Extrem- und Wendepunkten: Höhere Ableitungen Bedeutung
K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7
Analytische Geometrie mit dem Voyage 1
Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor
Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1
Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h
Mathematik Analytische Geometrie
Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,
Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen
1 Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen [email protected] www.elearning-freiburg.de 2 Aufgabe II 2 In einem Koordinatensystem beschreibt
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil
Inhalt der Lösungen zur Prüfung 2011:
Inhalt der Lösungen zur Prüfung : Pflichtteil Wahlteil Analysis 7 Wahlteil Analysis Wahlteil Analysis 6 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 6 Pflichtteil Lösungen zur Prüfung
Basistext Geraden und Ebenen
Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird
marienschule euskirchen
Schulinternes Curriculum Mathematik Sekundarstufe II Einführungsphase (ab Schuljahr 2014/2015) Lehrbuch: Bigalke/Köhler Mathematik Sekundarstufe II, Cornelsen Verlag GTR: TI-82 Stats 1/8 ca. 8 UE sbezogene
n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )
IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------
Lineare Algebra und analytische Geometrie
TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus
Abitur 2013 Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die
Mathematik Curriculum Kursstufe
Mathematik Curriculum Kursstufe Kompetenzen und Inhalte des Bildungsplans Leitidee Funktionaler können besondere Eigenschaften von Funktionen rechnerisch und mithilfe des GTR bestimmen. Unterrichtsinhalte
) (1 BE) 1 2 ln 2. und somit
1 Aufgaben aus dem Aufgabenpool 1 1.1 Analysis A1_1 Eine Funktion f ist durch 1 x f(x) e 1, x IR, gegeben. Ermitteln Sie die Nullstelle der Funktion f. ( ) b) Die Tangente an den Graphen von f im Punkt
Abitur 2011 G8 Musterabitur Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur G Musterabitur Mathematik Geometrie V In einem kartesischen Koordinatensystem beschreibt die x x -Ebene eine flache Landschaft, in der sich ein Flughafen
Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ
Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts
Lagebeziehung von Ebenen
M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um
Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren
Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier
Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif
14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.
Springbrunnen. von Günter Schmidt. Themenbereich Analysis. Zeige, daß die Wasserteilchen der Fontänen sich auf Parabelbahnen bewegen.
Springbrunnen von Günter Schmidt Themenbereich Analysis Inhalte schiefer Wurf und Parabeln Parameterdarstellung von Funktionen Extremwertbestimmung bei reellen Funktionen Ziele Beschreiben realer Phänomene
Schulinternes Curriculum. Mathematik Sekundarstufe II, Einführungsphase
Schulinternes Curriculum Mathematik, Lehrbuch: Gymnasiale Oberstufe, Cornelsen Verlag, Ausgabe Nordrhein-Westfalen GTR: TI-82 Stats (bis einschließlich Abiturjahrgang 2020) TI-Nspire CX (ab Abiturjahrgang
Verlauf Material LEK Glossar Lösungen. Flugerlaubnis erteilt! Die gegenseitige Lage von Geraden im Raum. Dr. Rebecca Roy, Reutlingen VORANSICHT
Reihe 4 S 1 Verlauf Material Flugerlaubnis erteilt! Die gegenseitige Lage von Geraden im Raum Dr. Rebecca Roy, Reutlingen Die Flugerlaubnis wird erst erteilt, wenn die Luft rein ist. Klasse 12 (im G 8:
Mathematik 12. Jahrgangsstufe - Hausaufgaben
Mathematik. Jahrgangsstufe - Hausaufgaben Inhaltsverzeichnis Raumgeometrie. Punkte einer Geraden............................... Punkte und Geraden................................ Geraden und Punkte................................5
FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II
Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B( 3) und C( 3) gegeben.. Die Punkte A und B bestimmen die Gerade g. Die Ebene E enthält den Punkt C und steht senkrecht auf
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U
Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade (R 3 )
Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade R 3 ) Gerade - Gerade in R 3 ) Der Fall sich schneidender Geraden ist uninteressant. Es existiert dann ein beliebiger Abstand je nach der
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung
FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II
FOS, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung. In einem kartesischen Koordinatensystem ist die Gerade g gegeben mit der Gleichung g : x = + σ σ R (a) Die drei Punkte A( ), B(
Zusammenfassung der Analytischen Geometrie
Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren
Aufgabe 4: Analytische Geometrie (WTR)
Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 4 a) (1) SEITENLÄNGEN BERECHNEN Die Seitenlängen sind die Abstände der Eckpunkte voneinander:, 31 30 1 12 10 2 14 16 2 1 4 4 9 3, 31 32 1 12 11 1 14
1 Vektoren, Vektorielle analytische Geometrie der Ebene
Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen
Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt
Probleme lösen mit Hilfe von Ableitungen, Extrem- und Wendepunkten
Kompetenzen und Inhalte des Bildungsplans Unterrichtsinhalte Die Schülerinnen und Schüler können - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des GTR bestimmen; Bestimmung von Extrem-
5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren
5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination
~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k
v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf
Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.
Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen
Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie
Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen
Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen ) Ein Flugzeug fliegt auf geradem Weg von A(; 4; ) nach B(5; ; ) und benötigt dafür eine Minute. Die Koordinaten wurden in km angegeben. Es fliegt
4. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen
Analytische Geometrie II
Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor
Aufgaben für das Fach Mathematik
Niedersächsisches Kultusministerium Referat 33 / Logistikstelle für zentrale Arbeiten August 017 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool
Algebra 2.
Algebra 2 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A(10 0 0), B(0 4 0) und C(0 0 6) sowie die Ebenenschar E t : 3y + tz 3t = 0 (t R) gegeben. Die Punkte
= und t ( 2) = f (2) = ergibt sich die Tangentengleichung
Lösungen Nr. a b c d e f '( = x x f ''( = x 8 6 8 f '( = 0... x = 0 x = 4 Damit ergeben sich wegen ''(0) = < 0 8 f ''(4) = > 0 ein Tiefpunkt T ( 4 0). 8 f ''( = x = 0 x = 6 8 Wegen f '''( = ist f '''()
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analysis... 7 Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analytische Geometrie... 9 Wahlteil Analytische Geometrie... 008 Pflichtteil Lösungen zur Prüfung 008: Pflichtteil
c) Am Punkt R( ) ändert das U-Boot seine Fahrtrichtung und fährt in Richtung des Vektors w = 13
Lineare Algebra / Analytische Geometrie Grundkurs Aufgabe 9 U-Boot Während einer Forschungsfahrt tritt ein U-Boot am Punkt P(100 0 540) alle Angaben in m in den Überwachungsbereich seines Begleitschiffes
Normalenformen. 1 Normalengleichung einer Geraden im IR 2. Bekannt als parameterfreie Form aus Kapitel IV.4.5 jetzt genauer unter die Lupe genommen!
VII Normalenformen Bekannt als parameterfreie Form aus Kapitel IV.4.5 jetzt genauer unter die Lupe genommen! 1 Normalengleichung einer Geraden im IR Definition der Normalengleichung der Geraden geht nur
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U
Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene
Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen
Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23
Inhaltsverzeichnis Einführung 17 Zu diesem Buch 17 Konventionen in diesem Buch 17 Törichte Annahmen über den Leser 17 Wie dieses Buch aufgebaut ist 18 Teil I: Zu den Grundlagen der linearen Algebra 18
Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13
Kern- und Schulcurriculum Mathematik Klasse 11/12 Stand Schuljahr 2012/13 UE 1 Wiederholung Funktionen Änderungsrate Ableitung Ableitung berechnen Ableitungsfunktion Ableitungsregeln für Potenz, Summe
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
Mathematik für Sicherheitsingenieure I A
Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.
5. Probeklausur - Lösung
EI M5 2011-12 MATHEMATIK 5. Probeklausur - Lösung 1. Aufgabe (2 Punkte) Bilde die erste Ableitung der Funktion f mit sin für reelle Zahlen x. Hier haben wir unter der Wurzel noch eine Funktion, daher benutzen
Abitur Mathematik Baden-Württemberg 2012
Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)
A Vektorrechnung. B Geraden und Ebenen
A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit
Vektorgeometrie Abstand Punkt/Ebene (1)
Abstand Punkt/Ebene (1) Aufbau des 3D-Modells x 1, grün = x ): Auf der Grundplatte ein Koordinatensystem festlegen ( blau = Markieren Sie einen beliebigen Punkt P im Raum, z.b. so: Forschungsauftrag (1)
Mathematik Zusammenfassung JII.1 #1
Mathematik Zusammenfassung JII. # Ableiten Definition Eine Ableitung zeigt die Steigung einer Funktion an einer bestimmten Stelle x an. Hier sind die Funktion und ihre Ableitung dargestellt. Möchte ich
B Differenzialrechnung
A Funktionen Seite 1 Abhängigkeiten entstehen... 4 2 Der Funktionsbegriff... 6 3 Lineare Funktionen... 8 4 Lineare Regression... 1 5 Funktionsscharen... 12 6 Betragsfunktionen... 13 7 Potenzfunktionen...
Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung
Abitur Mathematik: Baden-Württemberg 14 Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist das Produkt einer einfachen Funktion u(x) = x und einer Verkettung v(x) = e x
Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015
Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler
Einsatz von CAS im Mathematikunterricht Klasse 8
Einsatz von CAS im Mathematikunterricht Klasse 8 Beispiele für den Einsatz des Voyage 200 im Lernbereich 3 Funktionen und lineare Gleichungssysteme Darstellungsformen von Funktionen Eigenschaften ganz-
Mathematik Zusammenfassung JII.1 #1
Mathematik Zusammenfassung JII.1 #1 Ableiten Definition Eine Ableitung zeigt die Steigung einer Funktion an einer bestimmten Stelle x an. Hier sind die Funktion und ihre Ableitung dargestellt. Möchte ich
Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra
Inhaltsverzeichnis Band b Analytische Geometrie Auf der beigefügten CD befinden sich zwei Verzeichnisse: Inhalt_Mathcad und Inhalt_pdf In diesen Verzeichnissen sind alle Mathcad-Dateien (***.xmcd) und
Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.
Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die
Mathematik I Übungsblatt 5 WS 12/13 Prof. Dr. W. Konen, Dr.A.Schmitter
Bereiten Sie die Aufgaben parallel zu den in der Vorlesung besprochenen Themen für die nächsten Übungsstunden jeweils vor! Aufgabe 5.1 Vektoroperationen Gegeben sind die folgenden Vektoren: u = 3 1 2 v
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe
2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks
2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,
Analytische Geometrie Spatprodukt
Analytische Geometrie Spatprodukt David Schmid, Reto Da Forno Kantonsschule Schüpfheim Januar 2005 Analytische Geometrie: Das Spatprodukt 1 Das Spatprodukt Hinweis: Die Vektoren werden aus darstellungstechnischen
VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)
VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale
Prüfungsteil 2, Aufgabe 5 Analytische Geometrie
Abitur Mathematik Nordrhein-Westfalen 1GK Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 GK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1. SCHRITT:
Brückenkurs Mathematik. Mittwoch Freitag
Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs
5. Ebenengleichungen. Dr. Fritsch, FGG Kernfach Mathematik Klasse 11-A18
5. Ebenengleichungen Eine Ebene im Raum wird durch einen Punkt und zwei nicht parallele Richtungsvektoren bzw. durch drei Punkte, die nicht auf einer Geraden liegen, eindeutig festgelegt. vektorielle Parametergleichung:
Abitur 2010 Mathematik LK Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte
Analytische Geometrie
Analytische Geometrie Wiederholung (Klasse 0) zur Vektorrechnung Hausaufgabe ( Vorbereitung als Vortrag): C:\Users\Hagen\Documents\Dr. H. Fritsch\Eigene Dateien\Gymnasium-Muecheln\ Mathematik\Klasse \Kl--Wdhlg-Vektor.docx
Berechnung des Abstandes eines Punktes P von einer Geraden
Berechnung des Abstandes eines Punktes P von einer Geraden Vorgehen zur Bestimmung des Abstandes des Punktes P von der Gerade g: a) Aufstellen einer Hilfsebene E, die senkrecht auf der Geraden g steht
13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01
. Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:
Dieses Skript ist urheberrechtlich geschützt. Ich behalte mir alle Rechte vor. Eine Vervielfältigung ist nicht gestattet und strafbar.
Dieses Skript ist urheberrechtlich geschützt. Ich behalte mir alle Rechte vor. Eine Vervielfältigung ist nicht gestattet und strafbar. 1 2 Hinweise zum Skript Grundlagen der Wirtschaftsmathematik und Statistik
Wissen und Fertigkeiten Berthold Mersch
Wissen und Fertigkeiten Y= WINDOW ZOOM TRACE GRAPH TBLSET TABLE CALC DRAW Y= Darstellung: Stil Darstellung: Ja/Nein Term: Variable WINDOW? GRAPH ZOOM Wähle den Mittelpunkt der Vergrößerung/Verkleinerung
