Das Doppelspalt-Experiment. Einleitung

Größe: px
Ab Seite anzeigen:

Download "Das Doppelspalt-Experiment. Einleitung"

Transkript

1 Das Doppelspalt-Experiment Einleitung Quantenmechanik ist die Beschreibung des Verhaltens von Materie und Licht in allen Einzelheiten, insbesondere der Vorgänge in atomaren Dimensionen. In sehr kleinen Dimensionen verhalten sich die Dinge überhaupt nicht so wie etwas, von dem wir direkte Erfahrung haben. Sie verhalten sich nicht wie Wellen, nicht wie Teilchen, nicht wie Wolken oder Billardkugeln, Gewichte an Federn oder irgend etwas, was wir je gesehen haben. Newton dachte, das Licht bestehe aus Teilchen, doch dann entdeckte man, dass es sich wie eine Welle verhält. Zu Beginn des 0. Jahrhunderts fand man heraus, dass Licht tatsächlich manchmal auch Teilcheneigenschaften hat. Ursprünglich glaubte man, das Elektron z. B. verhielte sich wie ein Teilchen, dann aber fand man, dass es sich in vieler Hinsicht wie eine Welle verhält. In Wirklichkeit verhält es sich also weder wie das eine noch das andere. Geben wir es also auf es ist keins von beiden. Wir haben jedoch Glück, denn die Elektronen verhalten sich genauso wie das Licht. Das Quantenverhalten von atomaren Objekten (Elektronen, Protonen, Neutronen, Photonen, usw.) ist für alle das gleiche, sie sind alle Teilchenwellen oder wie immer man sie auch nennen möchte. Jede menschliche Erfahrung und Intuition bezieht sich auf große Objekte. Wir wissen, wie sich große Objekte verhalten werden, aber die kleinen Dinge verhalten sich nicht so. Darum müssen wir unsere Erfahrungen durch eine Art von Abstraktion und Imagination sammeln und nicht durch Anschluss an unsere direkten Erfahrungen. Der Doppelspalt-Versuch ist ein Experiment, das auf klassische Art nicht zu erklären ist und das in sich den Kern der Quantenmechanik birgt. Richard Feynman schreibt im dritten Band seiner Vorlesungen über Physik zu diesem Thema: In Wirklichkeit enthält [das Doppelspaltphänomen] das einzige Geheimnis. Wir können das Geheimnis nicht aufdecken, indem wir erklären, wie es funktioniert. Wir können nur berichten, wie es funktioniert, und indem wir dies tun, erörtern wir die grundlegenden Eigentümlichkeiten der ganzen Quantenmechanik. Beginnen wir nun also damit, das Geheimnis zu lüften! Beschreibung des Versuchsaufbaus Es gibt viele trickreiche Varianten dieses Experiments, aber die Grundstruktur ist folgende: Teilchen oder Wellen werden von einer Quelle ausgesandt und treffen nach einiger Entfernung auf einen oder mehrere Spalte (bzw. auf ein Gitter). Der Einfachheit halber beschränken wir uns im weiteren Verlauf auf einen Doppelspalt, bei dem es jedoch möglich sein soll, wahlweise einen der beiden Spalte abzudecken. Hinter dem Doppelspalt befindet sich eine Auffangwand, die die eintreffenden Teilchen oder Wellen registriert, zum Beispiel durch einen beweglichen Detektor. Auf folgender Skizze wird dieses Prinzip durch eine Elektronenkanone dargestellt.

2 Klassische Erwartungen und die Wirklichkeit Beginnen wir mit dem Ergebnis, das uns die klassische Physik liefern würde. In obiger Graphik ist die Wahrscheinlichkeit, die Teilchen bei je einem geöffneten Spalt an der Auffangwand anzutreffen mit p 1 und p gekennzeichnet (b). Sind beide Spalte geöffnet, erhält man die Wahrscheinlichkeit p 1 als Überlagerung der beiden Einzelergebnisse (c). Deckt man also einen der beiden Spalte ab und schießt die Teilchen auf die Wand, registriert man z. B. hinter Spalt 1 das Auftreffen der Elektronen mit der Wahrscheinlichkeitsverteilung p 1. Das Maximum der Kurve ist bei dem x-wert, der in gerader Linie hinter dem Spalt liegt. Umgekehrt liefert das Abdecken des ersten Spalts die Wahrscheinlichkeitsverteilung p, deren Maximum wiederum auf gleicher Höhe mit dem Spalt liegt. Hier ist noch nichts aufregendes passiert, interessant wird es jedoch, wenn beide Spalte geöffnet sind. Sieht man die sich nun ergebende Kurve (c) (oberer Teil der Abbildung) für p 1 am Detektor an, würden wir klassisch als Ergebnis eine einzige Kurve mit einem Maximum bei x = 0 erwarten. Das heißt, die Wahrscheinlichkeiten addieren sich einfach: p + 1 = p1 p Der Effekt bei zwei geöffneten Löchern, ist klassisch also die Summe der Effekte bei je einem geöffneten Loch.

3 Führt man den Versuch nun tatsächlich durch, erhält man jedoch ein anderes Ergebnis, wie es im zweiten Teil der obigen Skizze gezeigt wird. Die resultierende Kurve sieht aus wie eine Überlagerung (Interferenz) mehrerer Wellen! Führt man diesen Versuch nicht mit Teilchen, sondern zum Beispiel mit Wasserwellen durch, würde man auch genau diese Überlagerung erwarten, wie in der nächsten Graphik dargestellt wird: Eine Wasserwelle trifft auf unsere Wand mit den zwei Öffnungen. Entsprechend dem Huygen schen Prinzip ist nun jeder Punkt der Ausgangspunkt einer Kugelwelle und die verschiedenen Wellen interferieren miteinander und erzeugen am Schirm ein charakteristisches Muster. In unserer Abbildung wird die konstruktive Interferenz am Schirm gelb und destruktive Interferenz schwarz dargestellt. Wellenberge sind rot und Wellentäler grün eingezeichnet.

4 Teilchen wie etwa Gewehrkugeln oder Elektronen lassen sich durch ihren Einschlag auf unserer Auffangwand registrieren und bei Wellen kann man die Intensitäten messen. Der Einfachheit halber nehmen wir an, dass es sich bei der Auffangwand bei Wellen um einen Absorber handelt, damit die Wellen nicht reflektiert werden. Das Ergebnis für Wellen ist uns klar, doch warum erhalten wir auch eine Überlagerung wenn wir das Experiment mit Elektronen durchführen? Die Tatsache, dass Materie je nach den Versuchsbedingungen als Welle (Feld) oder Teilchen (Korpuskel) in Erscheinung tritt, ist als Welle-Teilchen-Dualismus bekannt. Streng genommen ist in der Quantenmechanik ein Teilchen aber nicht gleich der Materiewelle! Im Gegensatz zu einer Wasserwelle trifft auf dem Detektor (z. B. einer Photoplatte) jedes Teilchen immer nur an einer einzigen Stelle auf. Nur die Wellenfunktion (Schrödinger Gleichung), welche die Bewegung und Aufenthaltswahrscheinlichkeiten der Teilchen festlegt, verursacht das Verhalten, das man am besten mit Wellen beschreiben kann! Der Dualismus des Lichtes wurde 1905 von Albert Einstein mit seiner Erklärung des Photoeffekts durch korpuskulare Materie konstatiert, nachdem über hundert Jahre die Welleninterpretation des Lichtes dominierte. Sie schien insbesondere seit dem Existenznachweis der elektromagnetischen Wellen von H. Hertz unantastbar. Weitere Beweise für den Welle-Teilchen-Dualismus lieferten der Compton-Effekt (195) und die punktförmige Schwärzung einer Photoplatte durch Lichtblitze geringster Intensität. Somit war also bereits 190 die Teilchennatur des Lichts gut bekannt. Louis de Broglie spekulierte 193 nun mit dem Umkehrschluss, dass einem Materieteilchen in einem strikten Bild des Dualismus von Teilchen und Welle auch Wellencharakter anhaften sollte. Einem Teilchen mit dem mechanischen Impuls p entspricht eine Materiewelle mit Wellenlänge h h λ Materie = = de Broglie Beziehung p mv Man kann einem Teilchen somit eine Materiewelle bestehend aus Betrag und Phase zuordnen (wie gesagt, ist das Teilchen aber nicht gleich der Materiewelle)! Für eine ebene, in x-richtung fortschreitende Welle, lässt sich dann folgende Gleichung anschreiben (siehe auch Vorlesung zur Elektrodynamik): ψ i( kx ωt) = A e Materiewelle Die Interferenzfähigkeit ist ein schlagender Nachweis für den Wellencharakter. Es erhebt sich nunmehr die Frage, ob Interferenzen von Materiewellen nachgewiesen werden können. Teilcheninterferenzen treten nun in dem eben hier beschriebenen Doppelspaltexperiment auf.

5 Um es noch einmal konkret zu wiederholen: Treffen Teilchen auf einen Doppelschlitz, so wird die Streuung an den Schlitzkanten dazu führen, dass man für jeweils nur einen offenen Spalt (Abbildung a und b) die folgende Intensitätsverteilungen I 1 und I beobachtet: I 1 = A 1, I = A (ein Spalt geschlossen) Bei gleichzeitigem Öffnen beider Spalte ist dann das erwartete klassische Verhalten, das man bei den Teilchen beobachten sollte, die reine Addition der Intensitäten I 1, = I 1 + I (dargestellt durch die blaue Linie in c). Stattdessen tritt, wenn beide Spalte geöffnet werden, eine Interferenzfigur (Abbildung c, schwarze Linie) ähnlich wie bei Beugung von Licht am Doppelspalt auf: (beide Spalte offen) 1, = A1 exp( iφ1) A exp( iφ ) I + I = I1 + I + I1I cos( φ 1) 1, φ Beim Öffnen des zweiten Spaltes verringert sich also die Intensität an manchen Punkten des Schirms! Man könnte zunächst glauben, dass jeweils zwei Elektronen, die durch je einen der Spalte hindurchgehen, irgendwie interferieren. Das Experiment zeigt aber, dass die Interferenzfigur in ihrer Struktur unverändert bleibt, wieweit man auch die Intensität des Elektronenstrahls herabsetzt. Das heißt, die Interferenzfigur bleibt auch dann noch bestehen, wenn die Elektronen einzeln am Spaltpaar ankommen. Es muss also offensichtlich ein Elektron durch beide Spalte gleichzeitig hindurchgehen, um Interferenz zu erzeugen. Obwohl durch kein Experiment die Teilbarkeit eines Elektrons nachgewiesen wurde, spürt ein einzelnes Elektron gleichzeitig zwei räumlich getrennte Spalte! Dies ist das Paradoxon des Welle- Teilchen Dualismus: Das Elektron ist als Korpuskel unteilbar und dennoch kann ein einzelnes Elektron als Welle interferieren. Versucht man nun zu entscheiden, durch welchen Spalt das Elektron hindurchgeht, indem man zum Beispiel Licht an den Elektronen streuen lässt und dadurch gewissermaßen das Elektron abbildet (lokalisiert), so wird die Interferenzfigur zerstört und es entsteht die Summe der Ein-

6 zelspaltverteilungen (Abbildung d), d.h. die Intensitäten addieren sich wie bei klassischen Korpuskeln (I 1, = I 1 + I ). Ein solches Verhalten beobachtet man immer dann, wenn man Vorkehrungen trifft, die es gestatten zu unterscheiden, über welchen Weg ein Prozess verläuft. Im Beispiel der Abbildung d hat offensichtlich der Impulsübertrag durch das Photon das Ergebnis geändert. Versucht man die Photonenenergie herabzusetzen, um die Störung durch das Photon sukzessive zu reduzieren, um die Interferenz wieder herzustellen, so muss die Wellenlänge des Lichts entsprechend vergrößert werden! Man stellt dann in der Tat fest, dass in dem Augenblick, in dem die Wellenlänge des Lichts größer als der Abstand der Spalte wird, nicht mehr entschieden werden kann, durch welchen Spalt das Elektron gelaufen ist (Auflösungsgrenze). Die Folge ist das Auftreten von Interferenz! Um zwei wichtige Punkte jetzt nochmals hervor zu heben: 1. Ein Interferenzmuster tritt auch dann auf, wenn sichergestellt ist, dass sich nur ein Teilchen in der Apparatur befindet. Die Interferenz wird somit also nicht durch Wechselwirkung mit anderen streuenden Teilchen hervorgerufen!. Jeder Versuch, zu bestimmen, durch welchen der beiden Spalte (1 oder ) das Teilchen hindurch getreten ist, zerstört das Interferenzmuster. Man sagt die Wellenfunktion ψ > kollabiert. Die Verteilung entspricht dann somit der klassischen Erwartung, also der Abbildung d. Conclusio Das Doppelspaltexperiment ist ein wichtiger Meilenstein in der Entwicklung der Quantenmechanik. Heutzutage dient die Neutronenbeugung als ein nicht mehr wegzudenkendes Werkzeug zur Untersuchung der Struktur von Festkörpern, Flüssigkeiten und (biologischen) Makromolekülen. Die schwersten Teilchen für die Welleneigenschaften in einem Experiment nachgewiesen werden konnte, sind die fußballartigen C 60 und C 70 Moleküle (Fullerene).

7 Um Interferenzexperimente mit immer schwereren Teilchen durchführen zu können, gilt es einige experimentelle Probleme zu überwinden. Für immer kleinere Wellenlängen rücken die Minima des Interferenzbildes immer näher zusammen, um eines dieser Probleme zu nennen. Da die de Broglie Beziehung für die Wellenlänge einer Materiewelle gilt, nimmt die Wellenlänge proportional zur Masse der Teilchen 1 ab. Für die C 60 Moleküle bedeutet das eine Wellenlänge von 5 10 m. Um die Minima für solch schwere Teilchen auflösen zu können, benötigt man daher Detektoren mit einer extrem hohen Auflösung. Aber zumindest theoretisch könnte man, wie wir in der Vorlesung erwähnten, auch Menschen interferieren lassen! Dummerweise müsste dazu der Detektor-Schirm bis an die Grenzen des Universums entfernt sein... Um nun schlussendlich zu resümieren: Photonen, Elektronen, usw. sind weder klassische Teilchen noch klassische Wellen, da ihre Bewegung und ihre Wechselwirkung mit Detektoren mit beiden Bildern unvereinbar sind. Trotz allem lässt sich aus dem Doppelspaltexperiment eine zentrale Eigenschaft der Bewegung von Mikroobjekten erkennen. Obwohl Anfangsbedingungen und Versuchsanordnung für alle Elektronen bzw. Photonen gleich sind, beobachtet man mal hier das Auftreffen eines Elektrons und mal dort. Wir können also eine Wahrscheinlichkeit dafür angeben, dass dieser oder jener Detektor bei der Wiederholung des Versuchs unter gleichen Bedingung ein Teilchen anzeigen wird. Man kann aber nicht vorhersagen, welcher Detektor es im nächsten Augenblick tatsächlich sein wird. Damit sind wir nun am Ende des Überblicks über dieses revolutionäre Experiment angelangt. Es ist einer der berühmtesten Versuche der Physik und wurde von einer Physik-Jury sogar zum schönsten Experiment aller Zeiten gewählt! Abschließend möchten wir noch ein Zitat von Richard Feynman aus seinem Buch Vorlesungen über Physik Band 3 erwähnen:... So müssen wir uns gegenwärtig damit begnügen, Wahrscheinlichkeiten zu berechnen. Wir sagen gegenwärtig, aber wir haben den starken Verdacht, dass dies etwas ist, von dem wir nicht loskommen dass es unmöglich ist, das Rätsel zu überwinden, dass so die Natur wirklich ist.

Quantenobjekte Welle? Teilchen?

Quantenobjekte Welle? Teilchen? 1 Quantenobjekte Welle? Teilchen? Bezug zu den Schwerpunkten / RRL Fragestellung(en) Experiment(e) Hintergrund Benutze die Links, um zu den einzelnen Kategorien zu gelangen! Simulationen Übungen / Aufgaben

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

Welleneigenschaften von Elektronen

Welleneigenschaften von Elektronen Seite 1 von 7 Welleneigenschaften von Elektronen Nachdem Robert Millikan 1911 die Ladung des Elektrons bestimmte, konnte bald auch seine Ruhemasse gemessen werden. Zahlreiche Experimente mit Elektronenstrahlen

Mehr

Doppelspaltexperiment. Katarzyna Huzar Angela Streit

Doppelspaltexperiment. Katarzyna Huzar Angela Streit Doppelspaltexperiment Katarzyna Huzar Angela Streit Überblick Thomas Young Wellen-Teilchen-Dualismus Doppelspalt mit Maschinengewehr Beugung und Interferenz Doppelspalt mit Licht Vergleich klassische Physik

Mehr

Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik

Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik Welle-Teilchen- Dualismus Miguel Muñoz Rojo Seminar zur Quantenphysik I. Korpuskelcharakter von Wellen Gesetz von Planck Lichtelektrische Effekt Compton Effekt Gesetz von Planck Die Energie von einem Oszillator

Mehr

Quantenobjekte. 1. Beschuss des Doppelspalts mit klassischen Teilchen

Quantenobjekte. 1. Beschuss des Doppelspalts mit klassischen Teilchen QUANTENPHYSIK Der Physik-Nobelpreisträger Richard P. Feynman versuchte einem breiten Publikum die Besonderheiten der quantenphysikalischen Objekte wie Photon und Elektron an der einfachen Versuchsanordnung

Mehr

Was sind Quantenobjekte?

Was sind Quantenobjekte? Quantenobjekte Was sind Quantenobjekte? Die Quantentheorie beschreibt das Verhalten von Quantenobjekten in Raum und Zeit. Als Quantenobjekte oder Mikroteilchen werden in der Physik Objekte bezeichnet,

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH

Mehr

14. Teilchen und Wellen

14. Teilchen und Wellen Inhalt 14.1 Strahlung schwarzer Körper 14.2 Der Photoeffekt 14.3 Der Comptoneffekt 14.4 Materiewellen 14.5 Interpretation von Teilchenwellen 14.6 Die Schrödingergleichung 14.7 Heisenberg sche Unschärferelation

Mehr

Beugung, Idealer Doppelspalt

Beugung, Idealer Doppelspalt Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Bernstein. Elektronen sind die wohl bekanntesten Elementarteilchen.

Bernstein. Elektronen sind die wohl bekanntesten Elementarteilchen. Bernstein Elektronen sind die wohl bekanntesten Elementarteilchen. Der Name kommt vom griechischen elektron und bedeutet Bernstein. Bernstein ist eine goldgelbe organische Substanz aus dem fossilen Harz

Mehr

Materiewellen und Welle-Teilchen-Dualismus

Materiewellen und Welle-Teilchen-Dualismus Materiewellen und Welle-Teilchen-Dualismus Vortrag zur Vorlesung Nanostrukturphysik Saarbrücken, den Vortragender: Tobias Baur > Welle-Teilchen-Dualismus Quantenobjekte sind gleichzeitig Wellen und Teilchen

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

Klassische Physik - Quantenpysik

Klassische Physik - Quantenpysik Klassische Physik - Quantenpysik Elektronenfalle aus 40 Eisen- Atomen auf einer Kupfer Oberfläche www.almaden.ibm.com Klassische Physik um 1900 Teilchen und Wellen Rastertunnelmikroskop Wechselwirkungsfreie

Mehr

14 Teilchen und Wellen

14 Teilchen und Wellen 14 Teilchen und Wellen 14.1 Teilchencharakter von elektromagnetischen Wellen 1411 14.1.1 Strahlung schwarzer Körper 14.1.2 Der Photoeffekt 14.1.3 Technische Anwendungen 14.2 Wellencharakter von Teilchen

Mehr

Abbildungsgleichung der Konvexlinse. B/G = b/g

Abbildungsgleichung der Konvexlinse. B/G = b/g Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des

Mehr

Philosophische Aspekte der Modernen Physik. 03 Quantenmechank

Philosophische Aspekte der Modernen Physik. 03 Quantenmechank Philosophische Aspekte der Modernen Physik 03 Quantenmechank Forum Scientiarum SS 2012 Kurt Bräuer 1 Atom als Teilchensystem Braunschen Röhre: Elektronen werden aus Glühdraht heraus beschleunigt, durch

Mehr

Physik-Abitur 2006 Aufgabe III d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA

Physik-Abitur 2006 Aufgabe III d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA Physik-Abitur 2006 Aufgabe III d Albert Einstein schreibt im Jahre 1905: Die [... Wellen]theorie des Lichtes hat sich zur Darstellung der rein optischen Phänomene vortrefflich bewährt und wird wohl nie

Mehr

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt Interferenz makroskopischer Objekte Vortragender: Johannes Haupt 508385 1 Inhalt 1. Motivation 2. Geschichtliche Einführung 3. Experiment 3.1. Aufbau 3.2. Resultate 4. Thermische Strahlung 4.1. Grundidee

Mehr

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

5. Kapitel Die De-Broglie-Wellenlänge

5. Kapitel Die De-Broglie-Wellenlänge 5. Kapitel Die De-Broglie-Wellenlänge 5.1 Lernziele Sie können die De-Broglie-Wellenlänge nachvollziehen und anwenden. Sie kennen den experimentellen Nachweis einer Materiewelle. Sie wissen, dass das Experiment

Mehr

Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt

Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Andreas Kellerer (BSG Memmingen) Prof. Dr. Reinhold Rückl (Universität Würzburg) Die Rahmenbedingungen: Unterrichtsprojekt für den Kurs

Mehr

Übungen zur Physik der Materie 1 Musterlösung Blatt 3 - Quantenmechanik

Übungen zur Physik der Materie 1 Musterlösung Blatt 3 - Quantenmechanik Übungen zur Physik der Materie 1 Musterlösung Blatt 3 - Quantenmechanik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 26.04.2018 Übung: Nils Haag ([email protected]) besprochen am 02.05.2018

Mehr

3. Klausur in K2 am

3. Klausur in K2 am Name: Punkte: Note: Ø: Profilfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am 4.3. 05 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h =

Mehr

7. Klausur am

7. Klausur am Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34

Mehr

Die Macht und Ohnmacht der Quantenwelt

Die Macht und Ohnmacht der Quantenwelt Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik

Mehr

Wo sind die Grenzen der geometrischen Optik??

Wo sind die Grenzen der geometrischen Optik?? In der Strahlen- oder geometrischen Optik wird die Lichtausbreitung in guter Näherung durch Lichtstrahlen beschrieben. Wo sind die Grenzen der geometrischen Optik?? Lichtbündel Lichtstrahl Lichtstrahl=

Mehr

Physik-Abitur 2006 Aufgabe II d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA

Physik-Abitur 2006 Aufgabe II d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA Physik-Abitur 2006 Aufgabe II d Photonen einer monochromatischen Lichtquelle stehen zwei Wege zur Verfügung, die über einen Strahlteiler, je einen Spiegel und einen halbdurchlässigen Spiegel auf den gleichen

Mehr

Einführung in die Quantenphysik

Einführung in die Quantenphysik Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische

Mehr

Experimentalphysikalisches Seminar II. Präsentationsversuch: Elektronenbeugungsröhre

Experimentalphysikalisches Seminar II. Präsentationsversuch: Elektronenbeugungsröhre Experimentalphysikalisches Seminar II Präsentationsversuch: Elektronenbeugungsröhre Beugungsmuster in der EBR Einleitung Nachdem Einstein 1905 mit der Einführung des Photons erstmals eine Dualität von

Mehr

Ein schwarzer Körper und seine Strahlung

Ein schwarzer Körper und seine Strahlung Quantenphysik 1. Hohlraumstrahlung und Lichtquanten 2. Max Planck Leben und Persönlichkeit 3. Das Bohrsche Atommodell 4. Niels Bohr Leben und Persönlichkeit 5. Wellenmechanik 6. Doppelspaltexperiment mit

Mehr

Fazit: Wellen haben Teilchencharakter

Fazit: Wellen haben Teilchencharakter Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch

Mehr

Einführung in Quantenphysik und Doppelspalt-Experiment

Einführung in Quantenphysik und Doppelspalt-Experiment Der folgende Artikel ist eine Zusammenfassung eines Vortrags des Physikers Thomas Campbell Quelle: www.matrixwissen.de Link: https://www.matrixwissen.de/index.php?option=com_content&view=article&id=129:quantumphysics-and-the-double-slit-experiment&catid=125:quantenphysik&lang=de&itemid=105

Mehr

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Photoeffekt) Licht besteht aus Teilchen (Quanten) Exakt: Quantenfeldtheorie Wellenoptik Annäherungsmöglichkeiten (Modelle):

Mehr

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 17: Lichtbeugung Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 Versuch 17: Lichtbeugung Im Modell

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 7 Abiturprüfung 2011 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Der Doppelspalt 1.1 Interferenzen bei Licht In einem ersten Experiment untersucht man Interferenzen von sichtbarem Licht,

Mehr

Entwicklung der Atommodelle

Entwicklung der Atommodelle Entwicklung der Atommodelle Entwicklung der Atommodelle Demokrit 460 v Chr. Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.

Mehr

Festkörperelektronik 2008 Übungsblatt 1

Festkörperelektronik 2008 Übungsblatt 1 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 1. Übungsblatt 17. April 2008 Dozent:

Mehr

Teil II: Quantenmechanik

Teil II: Quantenmechanik Teil II: Quantenmechanik Historisches [Weinberg 1] Den ersten Hinweis auf die Unmöglichkeit der klassischen Physik fand man in der Thermodynamik des elektromagnetischen Feldes: Das klassische Strahulungsfeld

Mehr

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c

Mehr

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 04.Mai 2005 Mathias Arbeiter Betreuer: Dr. Enenkel Physikalisches Praktikum 4. Semester - Beugung an Spalten - 1 Ziel: Kennen lernen von Beugungsphänomenen. Aufgaben: 1. Bestimmen Sie die

Mehr

Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation. eine Einführung in die Quantenmechanik

Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation. eine Einführung in die Quantenmechanik Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation eine Einführung in die Quantenmechanik 1) Die Hohlraumstrahlung: Geburt der Quantenmechanik Die kosmische Hintergrundstrahlung

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

Die statistischen Aussagen der Quantentheorie

Die statistischen Aussagen der Quantentheorie Kapitel 4 Die statistischen Aussagen der Quantentheorie 4.1 Doppelspaltexperiment mit Licht Ein Experiment, das in den nachfolgenden Kapiteln immer wieder betrachtet werden wird, ist das aus der Optik

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

Vom Doppelspalt zum Quantencomputer

Vom Doppelspalt zum Quantencomputer Vom Doppelspalt zum Quantencomputer Aktuelle Physik in der Schule Herbert Rubin Aufbau der Lerneinheit Vorstellungen von Licht Huygens Newton Young 1704 1678 1804 Linienspektren Äusserer Photoeffekt Hallwachs-Effekt

Mehr

Welle-Teilchen-Dualismus

Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus Andreas Pfeifer Proseminar, 2013 Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April 2013 1 / 10 Gliederung 1 Lichttheorie, -definition Newtons Korpuskulatortheorie

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Die Teilchenstrahlung

Die Teilchenstrahlung GoBack Die Teilchenstrahlung c Markus Baur October 19, 2010 1 / 14 bisher bekannt: Das Licht ist eine Teilchenwelle, deren Bestandteil Photonen sind. 2 2 / 14 bisher bekannt: Das Licht ist eine Teilchenwelle,

Mehr

Theoretische Physik mit Maple, WS 2010/ Übungsblatt (Besprechung am ) R( ) ( ( ( ) ( ))) ( ) u ( x)

Theoretische Physik mit Maple, WS 2010/ Übungsblatt (Besprechung am ) R( ) ( ( ( ) ( ))) ( ) u ( x) Theoretische Physik mit Maple, WS 2010/2011 9. Übungsblatt (Besprechung am 24.1.2011) Quantenmechanische Streuung am Kastenpotential Wir betrachten die zeitunabhängige Schrödinger-Gleichung (ZuSG) und

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Übungen zur Physik der Materie 1 Musterlösung Blatt 2 - Quantenmechanik

Übungen zur Physik der Materie 1 Musterlösung Blatt 2 - Quantenmechanik Übungen zur Physik der Materie 1 Musterlösung Blatt 2 - Quantenmechanik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 19.04.2018 Übung: Nils Haag ([email protected]) besprochen am 24.04.2017

Mehr

4. Klausur ( )

4. Klausur ( ) EI PH J2 2011-12 PHYSIK 4. Klausur (10.05.2012) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit:

Mehr

Sicherheit durch Selber Lösen

Sicherheit durch Selber Lösen Sicherheit durch Selber Lösen Dieses Übungsblatt soll Ihnen zeigen, dass Sie Kompetenzen in der Quantenphysik haben, Ihnen also Sicherheit geben. Ihre Antwort wird natürlich nicht eingesammelt. Sie bekommen

Mehr

Sicherheit durch Selber Lösen

Sicherheit durch Selber Lösen Sicherheit durch Selber Lösen Dieses Übungsblatt soll Ihnen zeigen, dass Sie Kompetenzen in der Quantenphysik haben, Ihnen also Sicherheit geben. Ihre Antwort wird natürlich nicht eingesammelt. Sie bekommen

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz

Mehr

Im folgenden Kapitel soll nun die Teilcheneigenschaften des Lichts untersucht werden.

Im folgenden Kapitel soll nun die Teilcheneigenschaften des Lichts untersucht werden. 9. Quantenphysik Albert Einstein entwickelte Anfang des 20. Jahrhunderts seine spezielle und allgemeine Relativitätstheorie für die er bis heute bekannt ist. Zur gleichen Zeit leistete Einstein jedoch

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

Gott und die Quantenphysik

Gott und die Quantenphysik Gott und die Quantenphysik Andreas Neyer [email protected] Übersicht 1. Gott und die Quantenphysik: Begriffsbestimmungen 2. Prinzipien der klassischen Physik und der Quantenphysik 3. Die Quantenphysik

Mehr

Inhalt. Didaktische und Methodische Hinweise. Kompetenzen. Kontext: Erforschung des Lichts

Inhalt. Didaktische und Methodische Hinweise. Kompetenzen. Kontext: Erforschung des Lichts Kontext: Erforschung des Lichts Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden? liche Schwerpunkte: Die Erforschung des Lichts als Grundlage zur Beschreibung mittels Modellvorstellungen

Mehr

Lichtteilchen, Quantensprünge und Materiewellen

Lichtteilchen, Quantensprünge und Materiewellen Lichtteilchen, Quantensprünge und Materiewellen - eine experimentelle Reise in die Quantenwelt - Prof. Dr. Lutz Feld 1. Physikalisches Institut, RWTH Aachen Novembervorlesung am 24. 11. 2007 1 Worum geht

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer

Mehr

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13

Mehr

Einleitung: Experimentelle Hinweise auf die Quantentheorie

Einleitung: Experimentelle Hinweise auf die Quantentheorie Kapitel 1 Einleitung: Experimentelle Hinweise auf die Quantentheorie c Copyright 2012 Friederike Schmid 1 1.1 Historische Experimente ( historisch : Aus der Zeit, in der die Quantentheorie entwickelt wurde)

Mehr

Die statistischen Aussagen der Quantentheorie

Die statistischen Aussagen der Quantentheorie Kapitel 4 Die statistischen Aussagen der Quantentheorie 4.1 Doppelspaltexperiment mit einzelnen Photonen Ein Experiment, das in den nachfolgenden Kapiteln immer wieder betrachtet werden wird, ist das aus

Mehr

Quantenphysik II. Quantenphysik in Beispielen

Quantenphysik II. Quantenphysik in Beispielen inhalt file:///i /fernlehre skriptum/studienbrief5/inhalt.htm Quantenphysik in Beispielen Quantenphysik II Die Quantenphysik findet bereits in sehr vielen Gebieten moderner Technologie Anwendung. So etwa

Mehr

1 Physikalische Hintergrunde: Teilchen oder Welle?

1 Physikalische Hintergrunde: Teilchen oder Welle? Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche

Mehr

Wellen Aufgaben. Lsg.: a) t = 0,4031s

Wellen Aufgaben. Lsg.: a) t = 0,4031s Wellen Aufgaben Aufgabe 1 Ein Seil der Masse m = 0,65kg ist auf die Länge l = 30m festgespannt. a. Wie lang wird ein Wellenpaket für die Distanz l benötigen, wenn die Zugspannung F = 120N beträgt? Lsg.:

Mehr

Zum Bahnbegriff eines Teilchens in der Physik

Zum Bahnbegriff eines Teilchens in der Physik 11. Februar 2009 Abschlussvorlesung Mathematik I für Physiker Kann man auch in der Quantenmechanik von der Bahn eines Teilchens sprechen? Zitate zum Bahnbegriff in der Quantenmechanik Das Wort Bahn hat

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

Die seltsame Welt der Quanten

Die seltsame Welt der Quanten Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt [email protected]

Mehr

Physik auf grundlegendem Niveau. Kurs Ph

Physik auf grundlegendem Niveau. Kurs Ph Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden

Mehr

9.3 Der Compton Effekt

9.3 Der Compton Effekt 9.3 Der Compton Effekt Im Kapitel Photoelektrischer Effekt wurde die Wechselwirkung von Licht mit Materie untersucht. Dabei wird Licht einer bestimmten Wellenlänge beim Auftreffen auf eine lichtempfindliche

Mehr

Gruppe: Arbnor, Clemens, Dustin & Henrik

Gruppe: Arbnor, Clemens, Dustin & Henrik PHYSIK Musterlösung [Wellen] Gruppe: Arbnor, Clemens, Dustin & Henrik 02.03.2015 INHALTSVERZEICHNIS 1. Abituraufgabe: Gitter... 2 Aufgabe 1.1... 2 Aufgabe 1.2... 3 Aufgabe 2.1... 4 Aufgabe 2.2... 6 Aufgabe

Mehr

emittierte Strahlung Abb. 1.1: Skizze eines Hohlraumstrahlers

emittierte Strahlung Abb. 1.1: Skizze eines Hohlraumstrahlers Kapitel 1 Einleitung Ausgearbeitet von Alfred Dandyk Nach der Entdeckung der Maxwell-Gleichungen (1864) schienen alle grundsätzlichen Probleme der Physik gelöst zu sein. Man war sicher, Theorien zu besitzen,

Mehr

Das Meßproblem in der Kopenhagener Deutung

Das Meßproblem in der Kopenhagener Deutung Das Meßproblem in der Kopenhagener Deutung Angenommen, ein quantenmechanisches System kann nur zwei Werte annehmen, z.b. Spin oben oder Spin unten... Dieses Teilchen wird in Bezug auf den Spin durch eine

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

Schulinternes Curriculum für das Unterrichtsfach Physik

Schulinternes Curriculum für das Unterrichtsfach Physik Schulinternes Curriculum für das Unterrichtsfach Physik Übersicht (Stand: Mai 2017) Klasse Themen Handlungsfeld / Inhalt Methoden / Materialien Fachspezifische Inhalte Übergeordnetes Thema S1/S2: Feldkonzept

Mehr

Von der Kerze zum Laser: Die Physik der Lichtquanten

Von der Kerze zum Laser: Die Physik der Lichtquanten Von der Kerze zum Laser: Die Physik der Lichtquanten Jörg Weber Institut für Angewandte Physik/Halbleiterphysik Technische Universität Dresden Was ist Licht? Wie entsteht Licht? Anwendungen und offene

Mehr

Vorlesung 5: 5.1. Beugung und Interferenz von Elektronen 5.2. Materiewellen und Wellenpakete 5.3. Heisenbergsche Unschärferelation

Vorlesung 5: 5.1. Beugung und Interferenz von Elektronen 5.2. Materiewellen und Wellenpakete 5.3. Heisenbergsche Unschärferelation Vorlesung 5: Roter Faden: 5.1. Beugung und Interferenz von Elektronen 5.2. Materiewellen und Wellenpakete 5.3. Heisenbergsche Unschärferelation (Elektron: griechisch für Bernstein, der durch Reibung elektrostatisch

Mehr

Physik I Übung 13 - Lösungshinweise

Physik I Übung 13 - Lösungshinweise Physik I Übung 13 - Lösungshinweise Stefan Reutter WS 011/1 Moritz Kütt Stand: 7. Februar 01 Franz Fujara Aufgabe 1 Verstimmte Stimmgabel In der Vorlesung wurde ein Versuch mit zwei sehr ähnlichen Stimmgabeln

Mehr