STETIGKEITS- UND KONVERGENZMODI FÜR FUNKTIONEN UND FUNKTIONENFOLGEN

Größe: px
Ab Seite anzeigen:

Download "STETIGKEITS- UND KONVERGENZMODI FÜR FUNKTIONEN UND FUNKTIONENFOLGEN"

Transkript

1 STETIGKEITS- UN KONVERGENZMOI FÜR FUNKTIONEN UN FUNKTIONENFOLGEN. Vorbemerungen Im folgenden seien stets: (M, d), (K, ρ) metrische Räume, (V, V ) ein Banach-Raum (nicht notwendigerweise endlichdimensional!), A eine beliebige Indexmenge (insbes. möglicherweise auch überabzählbar) M eine zunächst beliebige Teilmenge von M f, g : K, f : K für N, g α : K für α A zunächst beliebige Funtionen Φ, Ψ : V, Φ : V für N Ψ α : R für α A zunächst beliebige Funtionen. Man beachte, daÿ hierdurch der Fall reellwertiger Funtionen bereits erfaÿt ist, nämlich für (V, V ) = (R, ) ies sind unsere Standardvoraussetzungen. Sollen die Räume, Mengen und Funtionen zusätzliche Voraussetzungen erfüllen, so wird dies an der entsprechenden Stelle angegeben. Bemerung. Wer möchte, ann sich M als R n mit Standardmetri vorstellen. Aus d(x, y) wird dann x y, wobei die Norm ohne Index stets die Eulidische Standardnorm auf dem R n bezeichne. 2. Stetigeit Wir rufen uns zunächst einmal in Erinnerung, daÿ Stetigeit im Gegensatz zu ierenzierbareit ein rein topologisches Konzept ist, das weder eine Metri noch eine lineare Strutur benötigt. Sie ann folgendermaÿen deniert werden. enition. Eine Abbildung a : M K heiÿt stetig, falls für jede oene Menge O K das Urbild a (O) M oen ist. Es ist zu beachten, daÿ diese enition eine Aussagen über Stetigeit in einzelnen Punten erlaubt, sondern nur die Stetigeit der Abbildung a als Ganzes erlärt. ies tut folgende enition: enition 2. Eine Abbildung a : M K heiÿt stetig im Punt x 0 M, falls eine oene Menge A M mit x 0 A existiert, sodaÿ die Einschränung a A : A K von a auf A stetig im Sinne von ef. ist. abei ist wegen der Oenheit von A M eine Menge U A oen in A, falls sie in M oen ist. Nun ann man die Stetigeitsbegrie für Abbildungen zwischen metrischen Räumen auf diese topologischen enitionen zurücführen. Proposition. (i) f ist stetig im Punt x 0 genau dann, wenn zu jedem ε > 0 ein δ > 0 existiert, sodaÿ für alle x U δ (x 0 ) gilt: f(x) U ε (f(x 0 )) ( K), oder in den Metrien ausgedrüct:... genau dann, wenn zu jedem ε > 0 ein δ > 0 existiert, sodaÿ für alle x mit d(x, x 0 ) < δ gilt: ρ(f(x), f(x 0 )) < ε. (ii) f ist genau dann stetig auf, wenn f in jedem Punt x 0 stetig im Sinne von (i) ist, also genau dann, wenn zu jedem x 0 und jedem ε > 0 ein δ > 0 existiert, sodaÿ für alle x U δ (x 0 ) gilt: a(x) U ε (a(x 0 )). ies ist nun die beannte enition von Stetigeit aus der Analysis. Man beachte, daÿ im zweiten Teil des Satzes das zu ndende δ sowohl von ε als auch vom Punt x 0 abhängen darf. Es handelt sich also um puntweise Stetigeit. Eine viel stärere Eigenschaft ist die gleichmäÿige Stetigeit. Sie liegt vor, wenn man zu gegebenem ε ein universelles δ ndet, das nicht von x 0 abhängt: enition 3. f heiÿt gleichmäÿig stetig (auf ), falls zu jedem ε > 0 ein δ > 0 existiert, sodaÿ für alle x, y mit d(x, y) < δ gilt: ρ(f(x), f(y)) < ε. Noch einmal der Unterschied zum Meren: Um Stetigeit auf zu überprüfen gebe man ε > 0 und x 0 beliebig vor und nde dann ein δ > 0, sodaÿ für alle x mit d(x, x 0 ) < δ gilt: ρ(f(x), f(x 0 )) < ε. Um gleichmäÿige Stetigeit zu prüfen gebe man nur ε > 0 vor und nde dann bereits ein δ > 0, welches für alle x 0 im obigen Sinne ausreicht.

2 STETIGKEITS- UN KONVERGENZMOI FÜR FUNKTIONEN UN FUNKTIONENFOLGEN 2 as Attribut gleichmäÿig beschreibt also die Unabhängigeit einer Eigenschaft von den Punten im enitionsbereich, an denen die Eigenschaft betrachtet wird. Man beachte insbesondere, daÿ der Begri der gleichmäÿigen Stetigeit erst durch die Metri einen Sinn ergibt, da Aussagen über die Gröÿe (ε, δ) von Umgebungen bzw. den Abstand zweier Punte gemacht werden. Wir erinnern uns noch an folgende wichtige Feststellung aus der Analysis : Theorem. Sei M ompat. ann ist die Funtion f genau dann stetig, wenn sie gleichmäÿig stetig ist. ie eigentliche Aussage ist hierbei, daÿ stetige Funtionen auf Kompata gleichmäÿig stetig sind, die andere Richtung ist trivial. Falls nicht ompat ist, so gilt dieser Satz im allgemeinen nicht, wie folgendes Gegenbeispiel zeigt. Beispiel. Wähle M = R, = (0, ) und f : x x R. ann ist f stetig auf, jedoch nicht gleichmäÿig stetig. Man beachte, daÿ f auch nicht zu einer auf dem ompate Intervall [0, ] stetigen Funtion fortgesetzt werden ann. 3. Konvergenz Nachdem wir die grundlegenden Begrie der (puntweisen) und gleichmäÿigen Stetigeit von Funtionen wiederholt haben, ommen wir nun zur Konvergenz von Funtionenfolgen. azu erinnern wir uns noch einmal an den Konvergenzbegris in metrischen Räumen. enition 4. Sei x M. ann heiÿt eine Folge (x ) N M onvergent gegen x, falls für jede Umgebung U M mit x U ein 0 N existiert, sodaÿ x U 0. Man schreibt lim x = x oder x xfür. Bemerung. iese enition gilt auch in allgemeinen topologischen Räumen (die wir hier nicht betrachten). In metrischen Räumen ann man das auch wie folgt formulieren: Proposition 2. Sei x M. Eine Folge (x ) N M onvergiert genau dann gegen x, wenn zu jedem ε > 0 ein 0 N existiert, sodaÿ d(x, x ) < ε 0 (wenn also in jeder ε Kugel um x alle x ab einem gewissen Index 0 liegen; vgl. die topologische ef.). esweiteren gibt es in metrischen Räumen den Begri der Cauchy-Folge: enition 5. Eine Folge (x ) N M heiÿt Cauchy-Folge, falls zu jedem ε > 0 ein 0 N existiert, sodaÿ für alle, l 0 gilt: d(x, x l ) < ε. Anschaulich gesprochen bedeutet das, daÿ die Abstände der Folgeglieder für groÿe sehr lein werden. Es gilt: Proposition 3. Sei (x ) N M onvergent, d.h., es existiere x M, sodaÿ lim x = x. ann ist (x ) N eine Cauchy-Folge. Es ist beannt, daÿ die Umehrung im allgemeinen falsch ist. Sie gilt jedoch in vollständigen Räumen: enition 6. Ein metrischer Raum M heiÿt vollständig, wenn jede Cauchy-Folge (x ) N M einen Grenzwert x hat, der in M liegt. Ein vollständiger normierter linearer Raum heiÿt Banach-Raum (man erinnere sich, daÿ jeder normierte Raum (X, X) mit der Metri d X(x, y) = x y X zu einem metrischen Raum wird, auf den die obigen Aussagen angewandt werden önnen). Bemerung. ie meisten in der Vorlesung explizit auftretenden Räume sind vollständig. Es gibt jedoch Ausnahmen, z.b. den Raum der reellwertigen Regelfuntionen auf einem ompaten Intervall, versehen mit der Integralnorm f = b a f(x) dx. N.B.: Man beachte, daÿ das Konzept des normierten Raums im Gegensatz zu dem des metrischen Raums eine lineare Strutur voraussetzt. Ohne Addition und Multipliation mit Salaren wären die reiecsungleichung für die Norm und die Homogenität ( αx = α x ) nicht zu erlären. Eine Metri ann man hingegen auf jeder beliebigen Menge erlären (siehe ÜA zur disreten Metri aus Analysis ). Nun önnen wir uns dem eigentlichen Thema, nämlich der Konvergenz von Funtionenfolgen widmen. Wir beginnen wieder mit dem puntweisen Fall:

3 STETIGKEITS- UN KONVERGENZMOI FÜR FUNKTIONEN UN FUNKTIONENFOLGEN 3 enition 7. ie Folge (f ) N heiÿt puntweise onvergent gegen f, falls für alle x die Folge (f (x)) N (in K!) gegen f(x) onvergiert, wenn also zu jedem ε > 0 und jedem x ein 0 N existiert, sodaÿ ρ(f(x), f (x)) < ε 0. Man vergleiche diese enition mit der enition der Stetigeit einer einzelnen Funtion und beachte dabei folgendes: () An die Funtionen selbst werden überhaupt eine Anforderungen gestellt. Sie müssen nicht stetig sein und auch sonst einerlei Regularität aufweisen. (2) Es soll nun nicht der Abstand zwischen Funtionswerten an benachbarten Punten lein werden, sondern der zwischen den Werten verschiedener Funtionen am jeweils gleichen Punt (dies aber an jedem Punt in ). Ähnlich wie bei der Stetigeit ann man hier auch wieder ein universelles 0 zu gegebenem ε > 0 fordern, sodaÿ die obige Aussage mit diesem 0 für alle x gilt. Man beachte, daÿ die Funtionen immer noch weder stetig noch dierenzierbar noch beschränt oder ähnliches sein müssen. enition 8. ie Folge (f ) N heiÿt gleichmäÿig onvergent gegen f, falls zu jedem ε > 0 ein 0 N existiert, sodaÿ ρ(f(x), f (x)) < ε 0, x. Mit der Supremumsnorm f = f := sup f(x) V x läÿt sich gleichmäÿige Konvergenz f f auch als lim f f = 0 schreiben. Gleichmäÿige Konvergenz ist eine sehr stare Forderung und führt dementsprechend auch zu staren Aussagen: Proposition 4. Es onvergiere die Folge f auf gleichmäÿig gegen f. ann gelten: (i) f stetig für alle N = f stetig. (ii) f Regelfuntion für alle N = f Regelfuntion und es ist lim f dx = fdx ( = ) lim f dx. ie Grenzfuntion f erbt also gewisse Eigenschaften der f. Nun ann man mittels des Integralbegris noch einen weiteren Konvergenzmodus einführen. Wir erinnern uns dazu an die Integralnorm,,V auf dem Raum der Regelfuntionen, wobei nun ein Quader im R n sei: Φ,,V = Φ(x) V dx. enition 9. Seien Φ, Φ ( =, 2,... ) Regelfuntionen. ann sagt man, Φ onvergiere im Maÿ (oder bezüglich der L Norm bzw. in L ) gegen f falls lim Φ Φ,,V lim f (x) f(x) V dx = 0. N.B.: Wir hatten eine Integrale für Funtionen mit Werten in metrischen Räumen (wie sollte auch die Linearität des Integrals beschrieben werden), daher müssen wir hier mit den Banach-Raum-wertigen Funtionen Φ arbeiten. Bemerung. ieses Konzept ist dem der L 2 -Konvergenz aus Abschnitt 6.7 der Analysis sehr ähnlich. ort wurde die Konvergenz in der Norm ( Φ 2,,V = Φ(x) 2 V dx betrachtet. Analog ann man für beliebiges p [, ) die sogenannte L p -Norm ( Φ p,,v = ) 2 ) Φ(x) p V dx p und diesbezügliche L p -Konvergenz denieren. Man beachte jedoch, daÿ die Ähnlicheit dieser Normen nicht bedeutet, daÿ die Konvergenzmodi identisch sind. as Konzept der L -Konvergenz ist sehr viel schwächer als das der gleichmäÿigen Konvergenz, wie man sich schnell am Beispiel = [0, ] R = M, V = R und Φ (x) := { x für x [0, ) 0 für x [, ] { für x = 0, Φ(x) = 0 für x (0, ]

4 STETIGKEITS- UN KONVERGENZMOI FÜR FUNKTIONEN UN FUNKTIONENFOLGEN 4 larmachen ann. Umgeehrt impliziert gleichmäÿige Konvergenz stets die Konvergenz bezüglich der Integralnorm. Noch schlimmer verhält es sich mit der puntweisen Konvergenz und der Konvergenz in L. a beobachtet man nämlich folgende Beispiele: Beispiel.: = (0, ) R = M, V = R, Φ (x) := ann gilt zwar Φ Φ puntweise, jedoch lim Φ (x) Φ(x) dx = lim { 2 x für x (0, ) 0 für x [, ) die Folge Φ onvergiert also nicht bezüglich gegen Φ. Es geht jedoch auch umgeehrt: Beispiel 2. = (, ) R = M, V = R, { x für x ( Φ (x) :=, ) 0 sonst ann onvergiert Φ in L gegen Φ: lim Φ (x) Φ(x) dx = lim 0, Φ(x) 0. 2 xdx = lim ( 2 ) = 2 0,, Φ(x) 0. x dx = lim 2 xdx = 2 lim ( 0 2 ) = 0. Allerdings gilt lim Φ (0) = 0 = Φ(0), also onvergiert Φ nicht puntweise gegen Φ. Eine weitere Eigenschaft von Funtionenfamilien ist die gleichgradige Stetigeit: enition 0. ie Familie {g α α A heiÿt gleichgradig stetig im Punt x 0, falls zu beliebigem ε > 0 ein δ > 0 existiert, sodaÿ für alle x mit d(x, y) < δ und alle α A gilt: ρ(g α (x), g α (x 0 )) < ε. Sie heiÿt gleichgradig stetis in, falls sie in jedem Punt x 0 gleichgradig stetig ist. Man beachte, daÿ dieses δ sehr wohl von x 0 abhängen darf. as Ganze hat also zunächst einmal nichts mit gleichmäÿiger Stetigeit der einzelnen Funtionen zu tun. Wir hatten ja festgestellt, daÿ Gleichmäÿigeit eine Universalität des δ für den gesamten enitionsbereich bezeichnete. Hier soll das gefundene δ aber für alle g α anwendbar sein. (ie einzelnen Funtionen g α sind aber natürlich jede für sich stetig.) Hat man eine Familie gleichmäÿig stetiger Funtionen, so ann man aber auch denieren: enition. ie Familie {g α α A heiÿt gleichgradig gleichmäÿig stetig in, falls zu beliebigem ε > 0 ein δ > 0 existiert, sodaÿ für alle x, y mit d(x, y) < δ und alle α A gilt: ρ(g α (x), g α (y)) < ε. Auch hier gibt es wieder einige wichtige Beobachtungen: Proposition 5. Sei ompat, (f ) N eine gleichmäÿig onvergente Folge auf stetiger Funtionen. ann ist die Familie {f N gleichgradig stetig. ie Umehrung dieses Satzes ist im allgemeinen falsch (gleichgradig stetige Familien müssen gar eine onvergenten Teilfolgen enthalten), aber es gelten die folgenden Sätze: Proposition 6. Sei ompat, {f N eine auf gleichgradig stetige Familie, und es gelte puntweise f f. ann gilt auch f f glm. Theorem 2. ( Arzela, Ascoli) Sei ompat, {g α α A C 0 (; K) eine Familie auf stetiger Funtionen, die zudem gleichgradig stetig und puntweise beschränt ist (d.h., x ist {g α (x) α A eine in K beschränte Menge). ann besitzt jede Folge (g α ) {g α α A eine auf gleichmäÿig onvergente Teilfolge. ie Konvergenz von Funtionenfolgen önnen wir natürlich ganz analog zur Konvergenz von Zahlenfolgen auf Reihen von Funtionen übertragen: enition 2. Eine Reihe Φ von Funtionen heiÿt puntweise/gleichmäÿig onvergent gegen φ : V, falls die Folge (F n : V ) n N der Partialsummen (gegeben durch F n (x) = n Φ (x)) puntweise/gleichmäÿig gegen φ onvergiert.

5 STETIGKEITS- UN KONVERGENZMOI FÜR FUNKTIONEN UN FUNKTIONENFOLGEN 5 Man beachte, daÿ wir schon allein wegen der Summe nicht mehr in allgemeinen metrischen Räumen arbeiten önnen, sondern die lineare Strutur unseres Banach-Raums V benötigen. Wir erinnern uns, daÿ wir für Reihen im Gegensatz zu Zahlenfolgen noch den Begri der absoluten Konvergenz eingeführt hatten. afür benötigten wir die Norm. Ebenso önnen wir jetzt hier für Reihen von Funtionen denieren: enition 3. ie Reihe Φ heiÿt absolut (gleichmäÿig) onvergent, falls die Reihe Φ V eine (gleichmäÿig) onvergente Reihe von Funtionen Φ V : x Φ (x) V R ist. Zur besseren Anschauung wollen wir nochmal in Symbolen ausdrücen, was das bedeutet: Bemerung. (i) Φ ist absolut onvergent gegen φ : V, falls eine Funtion s : R und für alle x, ε > 0 ein N N existieren, sodaÿ für alle n N: n n Φ (x) φ(x) < ε und Φ (x) V s(x) < ε. V (ii) Φ ist absolut gleichmäÿig onvergent gegen φ : V, falls eine Funtion s : R und für alle ε > 0 ein N N existieren, sodaÿ für alle n N, x : n N Φ (x) φ(x) V < ε und Φ (x) V s(x) < ε.

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Wesentliche Sätze (Analysis 1 für Lehramt)

Wesentliche Sätze (Analysis 1 für Lehramt) Wesentliche Sätze (Analysis für Lehramt) Inhaltsverzeichnis Alexander Schmalstieg TU Dortmund, Wintersemester 203/204 Wichtige Formeln 2 Folgen 2 3 Maxima und Suprema 3 4 Gleichmäßige Konvergenz 3 5 Funtionen

Mehr

Vorlesung Mathematik WS 08/09. Friedel Bolle. Vorbemerkung

Vorlesung Mathematik WS 08/09. Friedel Bolle. Vorbemerkung Vorlesung Mathemati WS 08/09 Vorbemerung Weshalb Mathemati für Öonomen? Das werden Sie selbst sehen im Grundstudium in - Miroöonomie - Statisti - Maroöonomie - BWL: Prodution und dazu in einer Reihe von

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Ferienurs Analysis 1 Potenzreihen, Exponentialfuntion, Stetigeit, Konvergenz, Grenzwert Henri Thoma 1.03.014 Inhaltsverzeichnis 1. Potenzreihen:... 1. Exponentialfuntion...

Mehr

i 3 =. 2 [ ] 2 (k + 1) { + (k + 1) 3 k 2 + 4(k + 1) } (k + 2) 2 = x n = 1 + n 1 n?

i 3 =. 2 [ ] 2 (k + 1) { + (k + 1) 3 k 2 + 4(k + 1) } (k + 2) 2 = x n = 1 + n 1 n? Musterlösungen zur Klausur Analysis I Vollständige Indution Man beweise durch vollständige Indution: Für alle n N ist [ ] nn + ) i 3 i Beweis: Wir führen den Beweis mit vollständiger Indution Die Aussage

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt Definition Ist (a ) eine Folge reeller (bzw omplexer) Zahlen und x 0 R (bzw z 0 C), dann heißt die Reihe a (x x 0 ) (bzw a (z

Mehr

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2)

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2) Prof. D. Salamon Analysis I MATH, PHYS, CHAB HS 204 Musterlösung Serie 7. Der Vollständigeit wegen, zeigen wir zunächst die Konvergenz der Reihendarstellung der ζ-funtion für s >. ζs : n n s 2 + n s 0

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

Punktweise Grenzwerte Analytischer Funktionen

Punktweise Grenzwerte Analytischer Funktionen Seminararbeit Puntweise Grenzwerte Analytischer Funtionen Marus Tempelmayr 1. Februar 2017 1 1 Einleitung 1.1 Definition. Sei G C offen. Eine Funtion f : G C heißt analytisch auf G, falls sie an jedem

Mehr

Differentialrechnung im R n

Differentialrechnung im R n Kapitel 9 Differentialrechnung im R n Bisher haben wir uns mit Funtionen beschäftigt, deren Verhalten durch eine einzelne Variable beschrieben wird. In der Praxis reichen solche Funtionen in der Regel

Mehr

Probeklausur zur Analysis für Informatiker

Probeklausur zur Analysis für Informatiker Lehrstuhl A für Mathemati Prof. Dr. R. Stens Aachen, den 28. Januar 20 Probelausur zur Analysis für Informatier Musterlösung Aufgabe Zeigen Sie, dass für alle n N gilt. 2n+ ( ) + Beweis durch vollständige

Mehr

1 k k konvergent? und

1 k k konvergent? und 28 Reihen 27 28 Reihen Aufgabe: Sind die Reihen ( + und onvergent? 28. Komplexe Reihen. a Für eine Folge (a in C heißt die Reihe a onvergent, falls die Folge der Partialsummen (s n := n a onvergiert. In

Mehr

Klausur zur Vorlesung Analysis 1 (240003) 1. Termin: Aufgaben und Lösungen

Klausur zur Vorlesung Analysis 1 (240003) 1. Termin: Aufgaben und Lösungen Prof Dr M Kaßmann Wintersemester 9/ Faultät für Mathemati Universität Bielefeld Klausur zur Vorlesung Analysis () Termin: 5 Aufgaben Lösungen Aufgaben: Die omplexen Lösungen der Gleichung z = i sind (

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k.

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k. 3. Potenzreihen Definition 7.5. Eine unendliche Reihe der Form a x mit x R (veranderlich und a R (onstant heit Potenzreihe, die Zahlen a ( heien Koezienten der Potenzreihe. Es handelt sich also um eine

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

TU-München, Dienstag, der Übungsblatt. Analysis I - Ferienkurs Andreas Schindewolf. a n =

TU-München, Dienstag, der Übungsblatt. Analysis I - Ferienkurs Andreas Schindewolf. a n = TU-München, Dienstag, der 6.0.00 Übungsblatt Analysis I - Ferienurs Andreas Schindewolf Folgen Untersuchen Sie die Folgen (a n ) n N gegebenenfalls den Grenzwert. a) auf Konvergenz bzw. Divergenz und berechnen

Mehr

Vorlesung Mathematik WS 10/11. Friedel Bolle. Vorbemerkung

Vorlesung Mathematik WS 10/11. Friedel Bolle. Vorbemerkung Prof Dr Friedel Bolle Vorlesung Mathemati WS 0/ Friedel Bolle Prof Dr Friedel Bolle Vorbemerung Weshalb Mathemati für Öonomen? Das werden Sie selbst im Studium erfahren! Viele Probleme werden in der Sprache

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Spektraltheorie. 1. Übungsblatt - Lösungsvorschlag PD Dr. Peer Kunstmann M.Sc. Michael Ullmann

Spektraltheorie. 1. Übungsblatt - Lösungsvorschlag PD Dr. Peer Kunstmann M.Sc. Michael Ullmann 804208 PD Dr Peer Kunstmann MSc Michael Ullmann Spetraltheorie Übungsblatt - Lösungsvorschlag Aufgabe Gegenbeispiele Finden Sie Gegenbeispiele zum Satz vom abgeschlossenen Graphen, falls wir i nur, als

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Topologie metrischer Räume

Topologie metrischer Räume Technische Universität München Christoph Niehoff Ferienkurs Analysis für Physiker Vorlesung Montag SS 11 In diesem Teil des Ferienkurses beschäftigen wir uns mit drei Themengebieten. Zuerst wird die Topologie

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

0.1 Formale Potenzreihen und Konvergenz

0.1 Formale Potenzreihen und Konvergenz 0. Formale Potenzreihen und Konvergenz Erinnerung: Ein Ausdruc der Form a x oder a (x a) mit a R heißt formale Potenzreihe oder unendlich langes Polynom. Seien a = a x und b = b x zwei Potenzreihen. Wir

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR 0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathemati für Physier, Informatier und Ingenieure (Kapitel III) Dr. Gunther Dirr Institut für Mathemati Universität Würzburg Sript vom 4. April 04 Inhaltsverzeichnis Wintersemester III Folgen und Reihen

Mehr

Der Satz von Stone-Weierstraÿ

Der Satz von Stone-Weierstraÿ Der Satz von Stone-Weierstraÿ Bachelorarbeit vorgelegt von Ulf Biallas Matrielnummer 1830830 3. April 010 Angefertigt im Rahmen des Seminars Numerische Mathemati Faultät für Mathemati, Universität Bielefeld

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Reihenentwicklung II. 1 Potenzreihenentwicklung von Lösungen

Reihenentwicklung II. 1 Potenzreihenentwicklung von Lösungen Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 29.11.2011 Julia Rittich In dem vorherigen Vortrag haben wir erfahren, dass in vielen Anwendungsproblemen eine Differentialgleichung nicht in geschlossener

Mehr

Der Satz von Poincaré-Bendixson

Der Satz von Poincaré-Bendixson Der Satz von Poincaré-Bendixson Benjamin Menüc benjamin@menuec.de 5. März 2005 Wir haben ein autonomes System ẋ = f(x) (1) E ist eine oene Teilmenge von R n und f C 1 (E). E wird auch Phasenraum von (1)

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

x 11 x 31. x 3n x 21. x 1n x 2n ( 1 k 2 und (x k k2) k = ( 1 x k1 des R n ist konvergent, wenn alle Komponentenfolgen x kn = 0

x 11 x 31. x 3n x 21. x 1n x 2n ( 1 k 2 und (x k k2) k = ( 1 x k1 des R n ist konvergent, wenn alle Komponentenfolgen x kn = 0 Mathemati für Naturwissenschaftler II 33 32 Folgen Seien (x = x,x 2, und (y = y,y 2, zwei Folgen in den reellen Zahlen ( x ( y = x ( y, x2 y 2, bildet dann eine Folge im R 2 und dies lässt sich natürlich

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R.

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R. 8.2 Potenzreihen Definition: Eine Reihe der Form f(z) = a ( ) mit a,z 0,z C heißt (omplexe) Potenzreihe zum Entwiclungspunt z 0 C. Beispiel: Die (omplexe) Exponentialfuntion ist definiert durch die Potenzreihe

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen...

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen... KAPITEL 9 Funtionenreihen 9. Taylor-Reihen.................................... 74 9.2 Potenzreihen..................................... 77 9.3 Methoden der Reihenentwiclung.......................... 90

Mehr

Topologische Grundbegriffe II. 1 Begriffe auf Mengen

Topologische Grundbegriffe II. 1 Begriffe auf Mengen Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten der Vorlesung Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr Übungen zur Topologie, G. Favi 20. März 2009 Blatt 4 Abgabe: 27. März 2008, 12:00 Uhr Aufgabe 1. (a) Auf der 2-Sphäre S 2 := {(x, y, z) R 3 x 2 + y 2 + z 2 = 1} R 3 betrachten wir folgende Äquivalenzrelation:

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2018 Lineare Algebra und analytische Geometrie II Vorlesung 52 Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die

Mehr

Der Satz von Arzelà-Ascoli und der Satz von Peano

Der Satz von Arzelà-Ascoli und der Satz von Peano Der Satz von Arzelà-Ascoli und der Satz von Peano Judith Vorwerk 13.05.2013 Inhaltsverzeichnis 1 Der Satz von Arzelà-Ascoli 5 2 Der Satz von Peano 10 2 Einleitung Diese Ausarbeitung beschäftigt sich mit

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Analysis I. Def. Äquivalenzrelation: Eine Relation mit den Eigenschaften: Reflexivität, Symmetrie, Transitivität

Analysis I. Def. Äquivalenzrelation: Eine Relation mit den Eigenschaften: Reflexivität, Symmetrie, Transitivität www.schlurcher.de.vu 1 Analysis I Grundlagen der Logi und Mengenlehre Symbole: Nicht a b= ( a b) Und a ( b c) = ( a b) ( a c) Oder => wenn, dann genau dann, äquivalent Quantoren: für alle a a es existiert

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

1 + t dt = ( t) k dt. ( 1) k. k + 1 tk+1

1 + t dt = ( t) k dt. ( 1) k. k + 1 tk+1 6 POTENZREIHEN 161 Wir wollen diese Gleichung für x < 1 noch auf andere Weise herleiten. Es ist ln(1 + x) = x 1 x 1 + t dt = ( t) dt. Die geometrische Reihe = ( t) ist nach dem Majorantenriterium für t

Mehr

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume Inhaltsverzeichnis 6 Topologische Grundlagen 1 6.1 Normierte Räume................................ 1 6.2 Skalarprodukte................................. 2 6.3 Metrische Räume................................

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Unendliche Reihen - I

Unendliche Reihen - I Unendliche Reihen - I Zur Wiederholung. Sei eine Folge ( ) N aus R (bzw. C) gegeben (die Folge der Summanden). Die Folge (s n ) n N in der Form Die Reihe mit s n = n heißt unendliche Reihe und wird geschrieben.

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag, 8.6.9 Jun.-Prof. Dr. D. Mugnolo Manfred Sauter Sommersemester 29 Gesamtpuntzahl: 3+ Lösungen Elemente der Funtionalanalysis: Blatt 6 As for everything else, so for a

Mehr

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $ $Id: masse.tex,v 1.8 2011/10/31 15:48:07 hk Exp $ 2 Maßräume 2.2 Meßbare Abbildungen Der nächste Grundbegriff sind die meßbaren Abbildungen. Erinnern Sie sich daran das wir eigentlich einen Integralbegriff

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Anlysis Vorlesungssript Enno Lenzmnn, Universität Bsel 7. November 213 5 Konvergenz- und Approximtionssätze 5.1 Monotone und Dominierte Konvergenz Wir strten mit einem grundlegenden Stz der Integrtionstheorie,

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

8 KAPITEL 1. GRUNDLAGEN

8 KAPITEL 1. GRUNDLAGEN 8 KAPITEL 1. GRUNDLAGEN Beweis. 1. Sei A X abgeschlossen, dann ist X \ A offen und jede offene Überdeckung von A lässt sich durch Hinzunahme von X \ A auf ganz X fortsetzen. Die Kompaktheit von X erlaubt

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

5. Übung zur Analysis II

5. Übung zur Analysis II Julius-Maximilians-Universität Würzburg Institut für Mathemati Prof. Dr. H. Pabel Christian Lageman, Martin Lamprecht, Ralf Winler Würzburg, den. Juni 006 5. Übung zur Analysis II Sommersemester 006 Lösungshinweise.)

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Aufgabe 13 Wie üblich sei l 1 = {x : N K x n < } mit Norm x l 1 = x n und l = {x : N K sup n N x n < } mit x l = sup n N x n Für die Unterräume d

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen.

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen. Ergänzungen zu offenen und abgeschlossenen Mengen Definition Ist L Teilmenge eines topologischen Raums M, so heißt x L innerer Punkt von L, wenn es eine offene Umgebung von x gibt, die ganz in L liegt.

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Eigenschaften kompakter Operatoren

Eigenschaften kompakter Operatoren Eigenschaften kompakter Operatoren Denition Seien X, Y normierte Räume und sei A : X Y linear. Dann heiÿt A kompakt (vollstetig), wenn für jede beschränkte Menge B X die Menge A(B) kompakt ist. Eigenschaften

Mehr

Vektorwertige Integrale vektorwertiger Funktionen

Vektorwertige Integrale vektorwertiger Funktionen Vektorwertige Integrale vektorwertiger Funktionen 8.1 Prinzip der Integralerweiterung In den vorangehenden Kapiteln haben wir uns auf klassische Inhalte und Maße, d. h. mit nicht-negativen Werten, beschränkt.

Mehr

34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen

34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen 34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen R-Vektorräumen 34.1 Äquivalenz von Normen 34.3 Stetigkeit und Normen linearer Abbildungen 34.4 Äquivalente Normen sind gegeneinander

Mehr

Serie 2 Lösungsvorschläge

Serie 2 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 2 Lösungsvorschläge 1. Seien folgende Mengen gegeben: und für a, b R R := [, ] := R {, }, (a, ] := (a, ) { }, [, b) := (, b) { }. Wir nennen

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr.

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr. Die Binomialreihe Sebastian Schulz Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 008/09, Leitung Prof. Dr. Eberhard Freitag Zusammenfassung: Diese Ausarbeitung beschäftigt sich mit der

Mehr

Lösungsskizzen zur Präsenzübung 04

Lösungsskizzen zur Präsenzübung 04 Lösungsskizzen zur Präsenzübung 04 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 09. Mai 204 Keine Gewähr auf vollständige Richtigkeit und Präzision aller (mathematischen) Aussagen. Das Dokument

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Funktionalanalysis, WS 2005/06, by HGFei

Funktionalanalysis, WS 2005/06, by HGFei Funktionalanalysis, WS 2005/06, by HGFei Hinweise zum Inhalt (laufende Chronologie) Version vom 15. Oktober 2005 (HGFei) 1. Stunde 1: TEST: l, (l, ), l 1, (l 1, 1 ), l 2, (l 2, 2 ) QUESTION: Was ist Funktionalanalysis?

Mehr

12 Aufgaben zu linearen Funktionalen

12 Aufgaben zu linearen Funktionalen 266 12. Aufgaben zu linearen Funktionalen A B C 12 Aufgaben zu linearen Funktionalen 12.1 Stetige Funktionale (siehe auch 11.6.E, 12.2, 13.4.A) Sei E ein topologischer Vektorraum und ϕ: E K (ϕ ) linear.

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n

Mehr

Unterricht 13: Wiederholung.

Unterricht 13: Wiederholung. , 1 I Unterricht 13: Wiederholung. Erinnerungen: Die kleinen Übungen nden diese Woche statt. Zur Prüfung müssen Sie Lichtbildausweis (Personalausweis oder Reisepass) Studierendenausweis mitbringen. I.1

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

3 Überlagerungen und Quotienten

3 Überlagerungen und Quotienten $Id: quotient.tex,v 1.12 2017/01/25 18:36:36 h Exp $ 3 Überlagerungen und Quotienten 3.3 Der Riemannsche Existenzsatz Wie in der letzten Sitzung angeündigt wollen wir nun den Riemannschen Existenzsatz

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr