Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2)

Größe: px
Ab Seite anzeigen:

Download "Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2)"

Transkript

1 Prof. D. Salamon Analysis I MATH, PHYS, CHAB HS 204 Musterlösung Serie 7. Der Vollständigeit wegen, zeigen wir zunächst die Konvergenz der Reihendarstellung der ζ-funtion für s >. ζs : n n s 2 + n s 0 n s 0 2 s 0 2 s 2 s a Da die Reihen absolut onvergieren, önnen wir die Summationsreihenfolge beliebig verändern. Es folgt n 2n 2 2n 2 + n n 2n 2 + 2n 2 n n n 2 4 n n 2 ζ2 4 ζ2 3 4 ζ2 2n 2 n n 2n 2 2n 2 b Wir berechnen zunächst die Partialbruchzerlegung der Summanden und machen den Ansatz: nn + n + 2 a n + b n + + c n +. Indem wir mit allen Nennern durchmultiplizieren erhalten wir a + b + cn 2 + 3a + 2b + cn + 2a nn + n + 2 nn + n + 2. Somit sind die Koezienten a, b, c durch das lineare Gleichungssystem a + b + c 0, 3a + 2b + c 0, 2a bestimmt und wir erhalten a 2, b sowie c 2. Mit dieser PBZ berechnen wir N n N nn + n + 2 /2 n n + + /2 /2 n + 2 /2 2 /2 N + + /2 N + 2. n n Dies folgt leicht mit vollständiger Indution, da sich aufeinander folgende Terme suzessiv aufheben. Wir erhalten damit nn + n + 2 lim N 4 2N + + 2N + 2 4

2 c Wir bemeren zunächst: Damit folgt und somit f n f n+2 N n0 f n f n+2 f n+ f n f n+ f n+2 n0 N n0 f n f n+ f n+2 f n f n f n+ f n+2 lim f n f n+2 N f n f n+ f n+ f n+2 f n+ f n+2 f N+ f N+2. f N+ f N+2 2. a Der Konvergenzradius ist mit dem Quotientenriterium gegeben durch den Grenzwert f n f n+ ρ lim lim n f n+ n f n Wir haben in Serie 6, Aufgabe 3 c gesehen, dass f n+ /f n gegen den goldene Schnitt φ onvergiert, d.h. 5 ρ φ φ. 2 Da die Potenzreihe für z < ρ absolut onvergiert, önnen also die Reihenfolge der Summation beliebig vertauschen und erhalten: z z 2 fz f n z n f n z n+ f n z n+2 n0 n0 n0 n n0 f n z n f n z n f n 2 z n f 0 + f z f 0 z + + z z + 0 n2 f n f n f n 2 z n b Mit dem goldenen Schnitt φ 2 + 5, önnen wir die Fibonacci Zahlen explizit schreiben als f n φ n+ φ n+. 5 Für z < ρ φ onvergiert die Reihe absolut und wir berechnen mit der Formel für die geometrische Reihe f n z n φ n+ φ n+ z n 5 n0 n0 n2 φ φz n + φ 5 5 n0 n0 φ z n φ 5 φz + φ 5 + φ z 5 φ z + φ + z φ + φ 5 z2 + φ φz + z 2 z 2

3 3. a Durch Vertauschen der Summationsreihenfolge erhalten wir: a + b + b a + b + a + b a n+ b n+ a b + a n+ b n+ a b a b a + b a + a b b Der Konvergenzradius ρ ist nach dem Quotientenriterium gegeben durch n + ρ lim. n n Folglich onvergiert die Potenzreihe absolut in dem Einheitsreis { z < } und divergiert auf { z > }. Über das Konvergenzverhalten auf der Kreislinie { z } trit das Quotientenriterium eine Aussage. Sei nun z. Für z erhalten wir die harmonische Reihe, die beanntlich divergiert. Für z erhalten wir die alternierende harmonische Reihe, welche nach dem Leibniz-Kriterium onvergiert. Wir wollen zeigen, dass die Reihe für alle z mit z onvergiert. Dazu verwenden wir die partielle Summationsregel aus a mit b, a + z + z z z z Dann gilt a + a z und wir erhalten z n + z+ z + z z. Wir müssen zeigen, dass die rechte Seite für n onvergiert. Die Terme vor der Summe onvergieren oenbar gegen, da lim n n + z+ z 2 lim z n n + 0. Hierbei haben wir z z und z benutzt. Die Reihe auf der rechten Seite onvergiert sogar absolut, denn es gilt + z z 2 z 2 + z Insbesondere onvergiert die rechte Seite in mit z, z für n und das zeigt die Behauptung. 4. Wir beginnen mit ein paar Vorbemerungen zur Exponentialfuntion. Diese ist für x R deniert durch die absolut onvergente Reihe expx : n0 x n n! + x + x 2 + x2 6 + Aus dieser Darstellung folgt für x 0 diret die Abschätzung expx + x. 2 3

4 In der Vorlesung haben wir für alle x, y R die grundlegende Identität expx + y expx expy gesehen. Zunächst folgt aus dem Spezialfall expx exp x exp0, zusammen mit der Abschätzung 2 für positive x, dass die Werte der Exponentialfuntion in 0, liegen. Zusätzlich erhalten wir für y x expy expx expx expy x exp0 expx expy x 0 und somit ist die die Exponentialfuntion monoton wachsend. Deniere s n : a, p n : + a. Beachte, dass s n und p n monoton wachsende Folgen sind, da a 0 gilt. Die Grenzwerte S : lim s n sup s n, n n P : lim p n sup n n p n sind also wohldeniert in R + 0 {} und wir wollen zeigen, dass entweder beide endlich oder beide unendlich sind. Wir nehmen zunächst S < an. Dann folgt mit 2 n p n + a expa exp a exps n exps Folglich ist die Folge der p n beschränt und es gilt P exps <. Sein nun umgeehrt P <. Ausmultiplizieren des Produtes p n liefert p n + a n r r i <...<i r j a ij a s n. In Worten: Wenn wir beim ausmultiplizieren aus n Fatoren stets wählen und aus dem verbleibenden Fator a, dann erhalten wir genau die Summanden von s n. Die weiteren Fatoren, die wir beim ausmultiplizieren erhalten, sind alle positiv und das liefert p n s n. Insbesondere also S P <. 5. Jede natürliche Zahl besitzt eine eindeutige Primfatorzerlegung n wobei α N 0 angibt wie oft n durch p teilbar ist. Insbesondere sind fast alle α 0 in obiger Darstellung und jede natürlich Zahl ist ein endliches Produt von Primzahlen. Wir betrachten { } N J N : n p α : α,..., α N N 0. Da die ζ-reihe für s > absolut onvergiert, önnen wir die Summanden beliebig permutieren und erhalten: N s N n s p α p s α n J N α,,α N N 0 α,,α N N 0 N N p s α p s α p α 4

5 Die Vertauschung von Summe und Produt im vorletzten Schritt ist intuitiv lar. Formal rechtfertigt man diese Rechnung mit Indution über N aus dem Doppelsummensatz für summierbare Familien. Dafür zerlegen wir die Indexmenge N N 0 N N 0 N 0 und erhalten den Indutionsschritt N N p s α α,,α N N N 0 Da {,, N} J N, erhalten wir α,,α N ;α N N N 0 N 0 N p s α α,,α N N N 0 N n s n n J N n s ζs. p s α p s N α N p s N α N α N 0 Für N onvergiert die line Seite per denitionem gegen ζs und wir folgern: ζs lim N n J N n s lim N N p s : p s. 6. a Sei x X und ɛ > 0 gegeben. Dann gilt d Y fx, fy L d X x, y < ɛ b falls d X x, y < Lɛ : δx, ɛ erfüllt ist. Also ist f stetig. i. Die Funtion fx x 2 ist für x [0, ] Lipschitz-stetig mit L 2, denn es gilt x 2 y 2 x yx + y x + y x y 2 x y. Insbesondere ist f nach Teil a stetig. ii. Die Funtion fx x ist stetig, aber nicht Lipschitz-stetig. Betrachte x und y 0, dann gilt fx fy x y f/ f0 /. Da die rechte Seite gegen + strebt für, ann die Funtion nicht Lipschitzstetig sein. Sei nun x 0, ] und ɛ > 0 gegeben. Dann folgt mit der dritten binomischen Formel fx fy x x y y. x + y Mit δx, ɛ : ɛ x gilt dann y x < δx, ɛ fx fy und folglich ist f stetig in x. Sei schliesslich x 0. Dann gilt fy 0 y < ɛ falls y < ɛ 2 : δ0, ɛ und somit ist f auch in 0 stetig. x y x y < ɛ x + y x 5

6 iii. Die Funtion fx : gilt { x x 0, ] 0 x 0 ist nicht stetig in dem Punt x 0, denn es f0 fx x für alle x 0. Folglich ann es ein δ0, ɛ > 0 geben, für das die Stetigeitsbedingung erfüllt ist. 6

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k.

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k. 3. Potenzreihen Definition 7.5. Eine unendliche Reihe der Form a x mit x R (veranderlich und a R (onstant heit Potenzreihe, die Zahlen a ( heien Koezienten der Potenzreihe. Es handelt sich also um eine

Mehr

k + k + 1 ( 1) k( k 2 + 2k + 1 k ) f)

k + k + 1 ( 1) k( k 2 + 2k + 1 k ) f) Prof. Dr. L. Schwachhöfer Dr. J. Horst Faultät Mathemati TU Dortmund Musterlösung zum 5. Übungsblatt zur Höheren Mathemati I (P/ET/AI/IT/IKT/MP WS 0/ Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz:

Mehr

Klausur: Höhere Mathematik I

Klausur: Höhere Mathematik I Prof. Dr. Rudolf Stens Kármánstraße 52062 Aachen. Etage Klausur: Höhere Mathemati I Tel.: +49 24 80 9452 Ser.: +49 24 80 9222 Fax: +49 24 80 9252 stens@matha.rwth-aachen.de http://www.matha.rwth-aachen.de

Mehr

i 3 =. 2 [ ] 2 (k + 1) { + (k + 1) 3 k 2 + 4(k + 1) } (k + 2) 2 = x n = 1 + n 1 n?

i 3 =. 2 [ ] 2 (k + 1) { + (k + 1) 3 k 2 + 4(k + 1) } (k + 2) 2 = x n = 1 + n 1 n? Musterlösungen zur Klausur Analysis I Vollständige Indution Man beweise durch vollständige Indution: Für alle n N ist [ ] nn + ) i 3 i Beweis: Wir führen den Beweis mit vollständiger Indution Die Aussage

Mehr

TU-München, Dienstag, der Übungsblatt. Analysis I - Ferienkurs Andreas Schindewolf. a n =

TU-München, Dienstag, der Übungsblatt. Analysis I - Ferienkurs Andreas Schindewolf. a n = TU-München, Dienstag, der 6.0.00 Übungsblatt Analysis I - Ferienurs Andreas Schindewolf Folgen Untersuchen Sie die Folgen (a n ) n N gegebenenfalls den Grenzwert. a) auf Konvergenz bzw. Divergenz und berechnen

Mehr

Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 013/14, 04.0.014 (Ise 1 Aufgabe 1. Version A Multiple Choice (4 Punte. Kreuzen Sie die richtige(n Antwort(en an. a Welche der folgenden Aussagen über Folgen sind sinnvoll und wahr? jede

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr.

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr. Die Binomialreihe Sebastian Schulz Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 008/09, Leitung Prof. Dr. Eberhard Freitag Zusammenfassung: Diese Ausarbeitung beschäftigt sich mit der

Mehr

Wesentliche Sätze (Analysis 1 für Lehramt)

Wesentliche Sätze (Analysis 1 für Lehramt) Wesentliche Sätze (Analysis für Lehramt) Inhaltsverzeichnis Alexander Schmalstieg TU Dortmund, Wintersemester 203/204 Wichtige Formeln 2 Folgen 2 3 Maxima und Suprema 3 4 Gleichmäßige Konvergenz 3 5 Funtionen

Mehr

1 k k konvergent? und

1 k k konvergent? und 28 Reihen 27 28 Reihen Aufgabe: Sind die Reihen ( + und onvergent? 28. Komplexe Reihen. a Für eine Folge (a in C heißt die Reihe a onvergent, falls die Folge der Partialsummen (s n := n a onvergiert. In

Mehr

Probeklausur zur Analysis für Informatiker

Probeklausur zur Analysis für Informatiker Lehrstuhl A für Mathemati Prof. Dr. R. Stens Aachen, den 28. Januar 20 Probelausur zur Analysis für Informatier Musterlösung Aufgabe Zeigen Sie, dass für alle n N gilt. 2n+ ( ) + Beweis durch vollständige

Mehr

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R.

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R. 8.2 Potenzreihen Definition: Eine Reihe der Form f(z) = a ( ) mit a,z 0,z C heißt (omplexe) Potenzreihe zum Entwiclungspunt z 0 C. Beispiel: Die (omplexe) Exponentialfuntion ist definiert durch die Potenzreihe

Mehr

Klausur zur Vorlesung Analysis 1 (240003) 1. Termin: Aufgaben und Lösungen

Klausur zur Vorlesung Analysis 1 (240003) 1. Termin: Aufgaben und Lösungen Prof Dr M Kaßmann Wintersemester 9/ Faultät für Mathemati Universität Bielefeld Klausur zur Vorlesung Analysis () Termin: 5 Aufgaben Lösungen Aufgaben: Die omplexen Lösungen der Gleichung z = i sind (

Mehr

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1 Aufgabe Die strenge Monotonie zeigen wir mittels vollständiger Indution. Indutionsanfang: Trivialerweise ist f streng monoton wachsend. Indutionsschritt: Wir nehmen an, es sei gezeigt, dass für ein gewisses

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Probeklausur: HM I. Prof. Dr. Rudolf Stens Aachen 3. Etage

Probeklausur: HM I. Prof. Dr. Rudolf Stens Aachen 3. Etage Prof. Dr. Rudolf Stens Kármánstraße 506 Aachen 3. Etage Probelausur: HM I Tel.: +49 4 80 9453 Ser.: +49 4 80 9 Fax: +49 4 80 953 stens@matha.rwth-aachen.de http://www.matha.rwth-aachen.de B. Sc./Vordiplom

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VIII vom

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VIII vom Prof. Dr. Moritz Kaßmann Faultät für Mathemati Wintersemester 04/05 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt VIII vom 04..4 Aufgabe VIII. (8 Punte) a) Untersuchen Sie die folgenden

Mehr

Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Reihen gibt es spezielle Konvergenzkriterien. n k=1

Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Reihen gibt es spezielle Konvergenzkriterien. n k=1 Kapitel 3 Reihen Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Für diese Reihen gibt es spezielle Konvergenzriterien. 3. Definitionen, Beispiele, Sätze Definition 3.: (Reihen)

Mehr

0.1 Formale Potenzreihen und Konvergenz

0.1 Formale Potenzreihen und Konvergenz 0. Formale Potenzreihen und Konvergenz Erinnerung: Ein Ausdruc der Form a x oder a (x a) mit a R heißt formale Potenzreihe oder unendlich langes Polynom. Seien a = a x und b = b x zwei Potenzreihen. Wir

Mehr

Kapitel 3. Reihen und ihre Konvergenz

Kapitel 3. Reihen und ihre Konvergenz Kapitel 3 Reihen und ihre Konvergenz Abschnitt 3.1 Der Reihenbegri und erste Beispiele Denitionen zu Reihen, 1 Denition. Sei (a n ) n N0 eine Folge reeller Zahlen. Für n N 0 heiÿt dann die Zahl s n :=

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Ferienurs Analysis 1 Potenzreihen, Exponentialfuntion, Stetigeit, Konvergenz, Grenzwert Henri Thoma 1.03.014 Inhaltsverzeichnis 1. Potenzreihen:... 1. Exponentialfuntion...

Mehr

ANALYSIS I. Lösung der Klausur vom 25/02/14. Aufgabe 1

ANALYSIS I. Lösung der Klausur vom 25/02/14. Aufgabe 1 ANALYSIS I Lösung der Klausur vom 5//4 Aufgabe (a) Das Monotonieriterium für Folgen besagt, dass monoton wachsende nach oben beschränte Folgen (a n ) R onvergent sind. Entsprechendes gilt für monoton fallende

Mehr

Unendliche Reihen - I

Unendliche Reihen - I Unendliche Reihen - I Zur Wiederholung. Sei eine Folge ( ) N aus R (bzw. C) gegeben (die Folge der Summanden). Die Folge (s n ) n N in der Form Die Reihe mit s n = n heißt unendliche Reihe und wird geschrieben.

Mehr

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Department Mathemati der Universität Hamburg WiSe 20/202 Dr. Hanna Peywand Kiani Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenreihen 6.2.20 Die ins Netz gestellten

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt Definition Ist (a ) eine Folge reeller (bzw omplexer) Zahlen und x 0 R (bzw z 0 C), dann heißt die Reihe a (x x 0 ) (bzw a (z

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Reihen, Exponentialfunktion Vorlesung

Reihen, Exponentialfunktion Vorlesung Reihen, Exponentialfunktion Vorlesung Marcus Jung 5.03.20 Inhaltsverzeichnis Inhaltsverzeichnis Reihen 3. Denition.................................... 3.2 Konvergenzkriterien für Reihen........................

Mehr

5 Reihen. s n := a k. k=0

5 Reihen. s n := a k. k=0 5 Reihen 5. Folgen von Partialsummen Definitionen und Beispiele Ist a. eine beliebige Folge von Zahlen oder Vetoren, so heisst der formale Ausdruc a = a 0 + a + a 2 +... () eine Reihe, die einzelnen a

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

Reihenentwicklung II. 1 Potenzreihenentwicklung von Lösungen

Reihenentwicklung II. 1 Potenzreihenentwicklung von Lösungen Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 29.11.2011 Julia Rittich In dem vorherigen Vortrag haben wir erfahren, dass in vielen Anwendungsproblemen eine Differentialgleichung nicht in geschlossener

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 08.0.06 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum 9. Übungsblatt

Mehr

5. Übung zur Analysis II

5. Übung zur Analysis II Julius-Maximilians-Universität Würzburg Institut für Mathemati Prof. Dr. H. Pabel Christian Lageman, Martin Lamprecht, Ralf Winler Würzburg, den. Juni 006 5. Übung zur Analysis II Sommersemester 006 Lösungshinweise.)

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

Unendliche Reihen. . n

Unendliche Reihen. . n Unendliche Reihen Gegeben sei eine Folge (a ) reeller Zahlen. Aus den Gliedern dieser Folge bilden wir eine neue Folge (s n ) von Partialsummen, das bedeutet, s n berechnet sich durch Aufsummieren der

Mehr

LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38

LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38 3. Folgen und Reihen Buchholz / Rudolph: MafI 2 38 Kapitelgliederung 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt.

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 018/019 5.10.018 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

Mathematik I - Woche 10

Mathematik I - Woche 10 Mathematik I - Woche 0 Philip Müller Reihen. Was ist eine Reihe Wir hatten bis jetzt Folgen. Eine Folge (a n ) n N ist eine Vorschrift, die von den natürlichen Zahlen, in die reellen Zahlen abbildet. Ein

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe 7 Reihen sind spezielle Folgen, die durch Summation entstehen. Definition 7. : {a n } n N sei Folge in C; S n := n Folge {S n } n N unendliche Reihe. Falls a k statt lim S n. a k heißt {S n } n N konvergiert,

Mehr

), wobei. ) bezeichnete. Wir schreiben. s n. , falls dieser existiert.

), wobei. ) bezeichnete. Wir schreiben. s n. , falls dieser existiert. 7.7. Potenzreihen Unendliche Reihen waren reelle oder omplexe Folgen der Form (s n ), wobei n s n f f 0 + f +... f n die n-te Partialsumme zur Folge (f n ) bezeichnete. Wir schreiben Konvergenzriterien

Mehr

REIHEN. 1. Definition und Konvergenz. Definition (unendliche) Reihe

REIHEN. 1. Definition und Konvergenz. Definition (unendliche) Reihe REIHEN 1. Definition und Konvergenz Definition (unendliche) Reihe 1 2 3, s = a + a + a + + a + = a a Beispiele 1) = 1+ 2+ 3+ 4 +... 2) 1 1 1 = 1 + + +... 2 3 3) 1 1 1 1 = 1 + + + +... 10 2 3 10 10 10 4)

Mehr

Klausuren zur Vorlesung ANALYSIS I

Klausuren zur Vorlesung ANALYSIS I Fachbereich Mathemati und Informati der Philipps-Universität Marburg Klausuren zur Vorlesung ANALYSIS I Prof. Dr. C. Portenier unter Mitarbeit von A. Alldridge und R. Jäger Marburg, Wintersemester 00/0

Mehr

1 Häufungswerte von Folgen

1 Häufungswerte von Folgen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 0/..0 Höhere Mathemati I für die Fachrichtung Informati. Saalübung (..0) Häufungswerte von Folgen Oft

Mehr

ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK

ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK Dr. J. Giannoulis, M.Sc. S. Metzler, Dipl. Math. K. Tichmann WS 00/ Trainingseinheit 0 Sript Kartieren Sie grob die Inhalte des Sripts. Welche Werzeuge,

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Analysis I - Ferienkurs

Analysis I - Ferienkurs TU-München, Dienstag, der 6.03.200 Analysis I - Ferienkurs Andreas Schindewolf 5. März 200 Inhaltsverzeichnis. Folgen 3.. Konvergenz und Cauchy-Folgen..................... 3.2. Konvergenz-Kriterien für

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathemati für Physier, Informatier und Ingenieure (Kapitel III) Dr. Gunther Dirr Institut für Mathemati Universität Würzburg Sript vom 4. April 04 Inhaltsverzeichnis Wintersemester III Folgen und Reihen

Mehr

STETIGKEITS- UND KONVERGENZMODI FÜR FUNKTIONEN UND FUNKTIONENFOLGEN

STETIGKEITS- UND KONVERGENZMODI FÜR FUNKTIONEN UND FUNKTIONENFOLGEN STETIGKEITS- UN KONVERGENZMOI FÜR FUNKTIONEN UN FUNKTIONENFOLGEN. Vorbemerungen Im folgenden seien stets: (M, d), (K, ρ) metrische Räume, (V, V ) ein Banach-Raum (nicht notwendigerweise endlichdimensional!),

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Man schreibt dann lim. = bzw. lim

Man schreibt dann lim. = bzw. lim Die Funktion f : R R geht für x nach (bzw. ), fallses für allem R + ein t(ε) R + gibt, so dass gilt ist x > t(ε), dann folgt f(x) > M bzw. ist x > t(ε), dann folgt f(x) < M. Man schreibt dann lim x = bzw.

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Susanna Pohl Vorkurs Mathematik TU Dortmund 12.03.2015 Folgen und Reihen Folgen und Grenzwerte Rechenregeln für konvergente Folgen

Mehr

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen...

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen... KAPITEL 9 Funtionenreihen 9. Taylor-Reihen.................................... 74 9.2 Potenzreihen..................................... 77 9.3 Methoden der Reihenentwiclung.......................... 90

Mehr

Funktionenfolgen, Potenzreihen, Exponentialfunktion

Funktionenfolgen, Potenzreihen, Exponentialfunktion Kapitel 8 Funktionenfolgen, Potenzreihen, Exponentialfunktion Der in Definition 7. eingeführte Begriff einer Folge ist nicht auf die Betrachtung reeller Zahlen eingeschränkt und das Beispiel {a n } = {x

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

HM I Tutorium 5. Lucas Kunz. 21. November 2018

HM I Tutorium 5. Lucas Kunz. 21. November 2018 HM I Tutorium 5 Lucas Kunz 2. November 208 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Wichtige Reihen................................. 2.3 Absolute Konvergenz..............................

Mehr

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Department Mathemati der Universität Hamburg WiSe 2009/200 Dr. Hanna Peywand Kiani Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenreihen 5.2.2009 Die ins Netz

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Mehrfach und unendlich oft differenzierbare Funktionen, Potenzreihen

Mehrfach und unendlich oft differenzierbare Funktionen, Potenzreihen Kapitel V Mehrfach und unendlich oft differenzierbare Funtionen, Potenzreihen 21 Mehrfache Differenzierbareit und Potenzreihen 22 Die trigonometrischen und die Hyperbelfuntionen 23 Konvexe Funtionen und

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent.

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent. Definition 3.8 Eine Reihe n=1 a n heißt absolut konvergent, wenn die Reihe konvergent ist. a n n=1 Beispiel 3.9 Die alternierende harmonische Reihe aber nicht absolut konvergent. n=1 ( 1)n 1 n ist zwar

Mehr

HM I Tutorium 6. Lucas Kunz. 28. November 2018

HM I Tutorium 6. Lucas Kunz. 28. November 2018 HM I Tutorium 6 Lucas Kunz 28. November 208 Inhaltsverzeichnis Theorie 2. Exponentialfunktion.............................. 2.2 Trigonometrische Funktionen......................... 2.3 Potenzreihen...................................

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

1 k = = Sie ist also gerade der Grenzwert der zur Folge (r k 10 k ) k N0 gehörenden Reihe( n

1 k = = Sie ist also gerade der Grenzwert der zur Folge (r k 10 k ) k N0 gehörenden Reihe( n Die zur Folge ( k ) k N gehörende Reihe ( n k ) n N ist divergent, genauer k =. 2. Dezimalzahlen: Eine Zahl r = r 0,r r 2 r 3 mit r 0 N 0 und r n {0,...,9} für n hat den Wert r = r 0 +r 0 +r 2 00 +...

Mehr

3. Musterlösung zu Mathematik für Informatiker II, SS 2004

3. Musterlösung zu Mathematik für Informatiker II, SS 2004 . Musterlösung zu Mathemati für Informatier II, SS 004 PETER SCHEIBLECHNER &MICHAEL NÜSKEN Aufgabe. (Differenzen). Bestimme die Differenz f für f : Z! R mit (4 Punte) (i) f (n) n(n ) n. ( f )(n) (n +)n

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

5. Unendliche Reihen [Kö 6]

5. Unendliche Reihen [Kö 6] 25 5. Unendliche Reihen [Kö 6] 5.1 Grundbegriffe Definition 1. Es sei k Z und (a i ) i k eine (komplexe) Folge. Unter der unendlichen Reihe a i versteht man die Folge (s n ) n k der Partialsummen s n :=

Mehr

Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz

Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz Klausur zur Vorlesung Analysis I für Lehramtskandidaten (Sommersemester 008) Dr. C. Lange, J. Schütz Beginn: 17. Juli 008, 10:00 Uhr Ende: 17. Juli 008, 11:30 Uhr Name: Matrikelnummer: Ich studiere: Bachelor

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Singuläre Integrale 1 Grundideen der harmonischen Analysis

Singuläre Integrale 1 Grundideen der harmonischen Analysis Singuläre Integrale Grundideen der harmonischen Analsis Jens Hinrichsen und Annina Saluz November 2007 Motivation Ein tpisches Beispiel für ein singuläres Integral ist die Hilbert-Transformation, welche

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt

(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt 6 Der Stz von Tylor Gleichmäßige Konvergenz Potenzreihen Der Stz von Tylor Es sei D ein Intervll, X ein Bnchrum und f : D X eine Funtion Stz Tylorsche Formel Ist f (n +)-ml stetig differenzierbr, so gilt

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 20/2 R. Steuding (HS-RM) NumAna Wintersemester 20/2 / 20 2. Reihen R. Steuding (HS-RM) NumAna

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Weihnachts-Übungen zur Mathematik I für Physiker

Weihnachts-Übungen zur Mathematik I für Physiker MATHEMATISCHES INSTITUT WS 018/019 DER UNIVERSITÄT MÜNCHEN Weihnachts-Übungen zur Mathematik I für Physiker Prof. Dr. D.-A. Deckert Blatt 10 Hiermit möchten wir Ihnen ein paar Weihnachtsgeschichten mit

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Der Satz von Stone-Weierstraÿ

Der Satz von Stone-Weierstraÿ Der Satz von Stone-Weierstraÿ Bachelorarbeit vorgelegt von Ulf Biallas Matrielnummer 1830830 3. April 010 Angefertigt im Rahmen des Seminars Numerische Mathemati Faultät für Mathemati, Universität Bielefeld

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 13. es kann keine allgemein gültige Aussage getroffen werden.

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 13. es kann keine allgemein gültige Aussage getroffen werden. D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe). Wenn man zwei beliebig oft differenzierbare Funktionen addiert, dann werden ihre Taylorreihen an einem Punkt

Mehr

Vorlesung Mathematik WS 08/09. Friedel Bolle. Vorbemerkung

Vorlesung Mathematik WS 08/09. Friedel Bolle. Vorbemerkung Vorlesung Mathemati WS 08/09 Vorbemerung Weshalb Mathemati für Öonomen? Das werden Sie selbst sehen im Grundstudium in - Miroöonomie - Statisti - Maroöonomie - BWL: Prodution und dazu in einer Reihe von

Mehr

Musterlösungen zur Funktionentheorie II-Klausur vom. März

Musterlösungen zur Funktionentheorie II-Klausur vom. März K I T I A G D. U L D. F N. M Musterlösungen zur Funtionentheorie II-Klausur vom. März a) Formulieren Sie den Cauchyschen Integralsatz ür nullhomologe Wege sowie seine Umehrung. b) Seien U,V offen, ϕ :

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 11

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 11 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Übungsblatt 11 1. In der Vorlesung haben Sie gesehen, dass es verschiedene Zweige des komplexen Logarithmus gibt. Dies bedingt, dass es

Mehr

HM I Tutorien 6 und 7

HM I Tutorien 6 und 7 HM I Tutorien 6 und 7 Lucas Kunz. Dezember 207 und 8. Dezember 207 Inhaltsverzeichnis Vorwort 2 2 Theorie 2 2. Definition einer Reihe.............................. 2 2.2 Absolute Konvergenz..............................

Mehr

Stroppel Musterlösung , 180min

Stroppel Musterlösung , 180min Stroppel Musterlösung 040907, 80min Aufgabe (8 Punkte) (a) Seien A, D, T R d d für ein d N Weiter sei T invertierbar und es gelte T AT D Zeigen Sie durch vollständige Induktion, dass A n T D n T gilt für

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/01 0.11.015 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr