Klausur - Analysis 1
|
|
|
- Damian Voss
- vor 8 Jahren
- Abrufe
Transkript
1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt, so dass x n x m < ε gilt für alle m, n N mit m N, n N. ii Punt Sei f : R R stetig und x n eine Cauchyfolge in R. Man zeige: fx n ist eine Cauchyfolge. Beweis : Weil x n eine Cauchyfolge ist, gibt es ein x R mit lim n x n x. Wegen der Stetigeit von f folgt daraus lim n fx n fx, und somit ist auch fx n eine Cauchyfolge. iii Punt Sei f :], [ R stetig und x n eine Cauchyfolge in ], [. Ist fx n notwendigerweise eine Cauchyfolge? Begründen Sie Ihre Antwort! Lösung : Nein! Beispiel: Seien fx : /x, und x n : /n. Dann ist f stetig auf,, x n onvergiert und ist mithin eine Cauchyfolge. Andererseits ist lim n fx n +, also ist fxn eine Cauchyfolge. iv Punt Sei f :], [ R gleichmässig stetig und x n eine Cauchyfolge in ], [. Ist fxn notwendigerweise eine Cauchyfolge? Begründen Sie Ihre Antwort! Lösung : Sei ε > beliebig gegeben. Weil f gleichmässig stetig ist, gibt es ein δ δε >, so dass fx fx < ε gilt für alle x, x, mit x x < δ. Weiterhin, weil x n eine Cauchyfolge ist, gibt es ein N Nε N, so dass für alle m, n N, mit m N, n N gilt x m x n < δ. Für diese m, n ist dann fx m fx n < ε. Folglich ist fx n ebenfalls eine Cauchyfolge. Aufgabe 2. i Punt Formulieren Sie den Satz von Bolzano-Weierstrass. Lösung : Wir geben zwei äquivalente Formulierungen:. Jede unendliche beschränte Menge des R n besitzt einen Häufungspunt. 2. Jede beschränte Folge x n R n besitzt eine onvergente Teilfolge. ii Punt Sei f : [a, b] R eine stetige Funtion. Beweisen Sie mit Hilfe von i, dass f auf [a, b] ein Maximum besitzt. Beweis : Sei M : sup{fx : x [a, b]}. Wegen der Definition von M gibt es eine Folge x n [a, b] mit lim n fx n M. Weil x n beschränt ist, gibt es wegen i eine Teilfolge x n N, so dass lim x n x mit einem x R. Ist. Weil [a, b] abgeschlossen ist, ist sogar x [a, b]. Wegen der Stetigeit von f folgt daraus fx M max{fx : x [a, b]}. iii Punt Geben Sie ein Beispiel einer beschränten stetigen Funtion f : [, [ R an, die ein Maximum besitzt. Lösung : fx x/ + x is streng monoton wachsend und beschränt auf [, +, und es gilt lim x fx. iv Punt Sei f : R R differenzierbar, und a < b so dass f a > und f b <. Zeigen Sie, dass es ein ξ ]a, b[ existiert, so dass f ξ. Lösung : Sei M : sup{fx : x [a, b]}. Wegen ii ist fξ M für ein ξ [a, b]. Weil f a > ist, gilt fx > fa wenn x > a und x a lein ist. Ebenso folgt aus f b <, dass fx > fb ist, wenn x < b und x b lein ist. Also ist ξ a und ξ b, und somit f ξ. Aufgabe 3. Sei x R und n N. Die Punte A n auf dem Einheitsreis der omplexen Ebene seien wie folgt definiert: A n : e i x n. 5. Februar 23
2 Prof. Dr. László Széelyhidi Analysis I, WS 22 Man berechne die folgenden Grenzwerte: n i 2 Punte lim n An A n : A. Lösung : Es gilt für alle {,..., n}: A n A n 2 e i x n 2 e ix n 2 cosx/n 2 + sinx/n cosx/n. Durch zweimalige Anwendung der Regel von de l Hospital ergibt sich daraus A 2 n n2 2 2 cosx/n y 2 2 cosxy y 2 2x sinxy 2x 2 cosxy x 2, y 2y y 2 also A x. n ii 2 Punte lim n n An : B. Lösung : Sei zunächst x. Dann ist A n für alle, n N, so dass man B erhält. Ist x, so ist x/n, 2π wenn n gross genug ist, also e ix n für diese n. Wegen der Summenformel für die endliche geometrische Reihe ist also für grosse n: A n e i x n e i n+x n e i. x n Durch Anwendung der Regel von de l Hospital ergibt sich daraus: B n n e i n+x n e i x n ye ix+y y y e ixy y e ixy lim y eix+y e ix lim y ixe ixy eix. ix Aufgabe 4. i 2 Punte Berechnen Sie die Summe der Reihe : s Lösung : Sei s n : n Dann gilt s n Also folgt s n s n 3. ii 2 Punte Bestimmen Sie den Konvergenzradius von a n n z n, b n! n 3 33n +. z log n. n Lösung : a Sei a n : nn z n n!. Es gilt a n+ a n n + n+ z n! n +!n n n + n+ z n + n n n + n z n n z + n n z e für n. 5. Februar 23
3 Prof. Dr. László Széelyhidi Analysis I, WS 22 Der letzte Ausdruc ist leiner als wenn z < e ist, und grösser als für z > e. Also ist der Konvergenzradius e. b Es gilt z log n e log z log n n log z. Nach einem beannten Satz onvergiert die Reihe genau dann, wenn log z < ist, das heisst für z < e. Der Konvergenzradius ist somit e. Aufgabe 5. Es seien a, c R mit c >, und f : [, ] R definiert durch { x a sinx c für x, fx : für x. Beweisen Sie folgende Aussagen: i Punt f ist stetig auf [, ] genau dann, wenn a >. Lösung : Zunächst ist f als Komposition stetiger Funtionen stetig für alle x. Ist a, so existiert der Grenzwert lim x fx nicht. Ist a >, so folgt aus fx x a, lim x fx. Also ist f stetig in. ii Punt f existiert genau dann, wenn a >. Lösung : Es gilt für x : fx f x a sinx c. x Der rechts stehende Ausdruc hat einen Grenzwert - und dieser ist dann gleich f - genau dann, wenn a > ist. Somit ist f differenzierbar in genau dann, wenn a > ist, und es gilt in diesem Fall f. iii Punt f ist beschränt auf [, ] genau dann, wenn a + c. Lösung : Für x ist f x ax a sinx c cx a c cosx c. Dieser Ausdruc ist beschränt genau dann, wenn x a c beschränt ist, d.h. für a c. iv Punt f ist stetig auf [, ] genau dann, wenn a > + c. Lösung : Wegen ii ist f. Zusammen mit * bedeutet dies, dass f stetig in ist genau dann, wenn lim x x a c cosx c ist. Letzteres ist der Fall genau dann, wenn a c >. Aufgabe 6. i Punt Berechnen Sie das Integral Lösung : Es gilt x 2 dx. x 2 dx ii Punt Sei g : [, ] R stetig. Zeigen Sie, dass Lösung : Es gilt wegen i: 3 min g 3 [,] 2x + x 2 dx x x 2 + x3 3 gx x 2 dx 3 max [,] g gx x 2 dx max [,] g. 3. x 2 dx max [,] g, 5. Februar 23
4 Prof. Dr. László Széelyhidi Analysis I, WS 22 und 3 gx x 2 dx 3 min [,] g x 2 dx min [,] g. iii Punt Sei f : [, ] R zweimal stetig differenzierbar. Zeigen Sie, dass fx dx f + 2 f + 2 Lösung : Durch zweimalige partielle Integration erhält man: f x x 2 dx f x x 2 dx f x x 2 2 f xx dx f 2fxx + 2 fx dx f 2f + 2 woraus sich die Behauptung ergibt. iv Punt Folgern Sie aus ii und iii, dass ein ξ [, ] existiert, so dass fx dx f + 2 f + 6 f ξ. fx dx, Lösung : Sei Z : 3 f x x 2 dx. Aus ii folgt, dass min [,] f Z max [,] f ist. Weil f stetig ist, gibt es dann aufgrund des Zwischenwertsatzes ein ξ [, ], so dass f ξ Z ist. Nun folgt die Behauptung aus iii. Aufgabe 7. i Punt Definieren Sie, wann eine Funtion f : [a, b] R onvex ist. Lösung : f heisst onvex, wenn für alle x, y [a, b] und λ [, ] gilt: fλx + λy λfx + λfy. ii 2 Punte Seien f : [a, b] R onvex, n N, x,..., x n [a, b] und λ,..., λ n [, ], so dass λ + + λ n. Man zeige mittels vollständiger Indution: n f λ x λ fx. Lösung : Für n 2 folgt * aus der Definition der Konvexität. Angenommen, * gilt für ein n 2. Es seien dann x,..., x n+ [a, b], λ,..., λ n+ [, ], so dass λ + + λ n+. Ohne Beschränung der Allgemeinheit dürfen wir λ n+ < annehmen. Aus der Konvexität von f, der Indutionsvoraussetzung sowie der Identität n λ / λ n+ erhält man: f n+ λ x λ n+ f λ n+ n n+ λ fx, λ λ n+ x + λ n+ fx n+ λ λ n+ fx + λ n+ fx n+ das heisst * gilt auch für n + anstelle von n. Nun folgt die Behauptung aus dem Indutionsprinzip. 5. Februar 23
5 Prof. Dr. László Széelyhidi Analysis I, WS 22 iii Punt Man zeige, dass für alle n 2 und a,..., a n > n a a 2 a n a + + a n n Lösung : Anwendung von ii auf die onvexe Funtion fx : e x, und λ... λ n n ergibt. n ex n e n x /n n /n e x. Setzt man hier a : e x,,..., n, so folgt die Behauptung. Aufgabe 8. i Punt Es sei f : [a, b] R integrierbar. Definieren Sie was eine Stammfuntion von f ist. Lösung : F : [a, b] R heisst Stammfuntion zu f, wenn F differenzierbar ist und F x fx auf [a, b] gilt. ii Punt Es seien a >, b und I a,b : Zeigen Sie folgende Reursionsformel: Lösung : Nach partieller Integration folgt I a,b π/2 a b + sin a x cosb+ x b + π/2 woraus die Behauptung folgt. π/2 sin a x cos b x dx. I a,b a a + b I a 2,b. dx sina x cos b+ x b + π/2 + a b + sin a 2 x cos b x sin 2 x dx a b + I a 2,b a b + I a,b, iii 2 Punte Geben Sie eine Stammfuntion von log x 2 x 2 π/2 sin a 2 x cos b+2 x dx an. Lösung : Mit Hilfe der Substitution y log x erhält man dy/dx /x und nach zweimaliger partieller Integration: log x 2 x 2 dx y 2 e y dy y 2 e y dy y 2 e y + 2 ye y dy y 2 e y + 2 y e y dy y 2 e y + 2 ye y + e y dy y 2 e y 2ye y 2e y + c für eine Konstante c R. x log x2 2 log x 2 + c, 5. Februar 23
Probeklausur zur Analysis für Informatiker
Lehrstuhl A für Mathemati Prof. Dr. R. Stens Aachen, den 28. Januar 20 Probelausur zur Analysis für Informatier Musterlösung Aufgabe Zeigen Sie, dass für alle n N gilt. 2n+ ( ) + Beweis durch vollständige
Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am
Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )
1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:
Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere
Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012
Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf
Klausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche
Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.
Analysis I, WiSe 013/14, 04.0.014 (Ise 1 Aufgabe 1. Version A Multiple Choice (4 Punte. Kreuzen Sie die richtige(n Antwort(en an. a Welche der folgenden Aussagen über Folgen sind sinnvoll und wahr? jede
5 Stetigkeit und Differenzierbarkeit
5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.
Lösungen zur Klausur zur Analysis 1, WiSe 2016/17
BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:
Klausur zur Vorlesung Analysis 1 (240003) 1. Termin: Aufgaben und Lösungen
Prof Dr M Kaßmann Wintersemester 9/ Faultät für Mathemati Universität Bielefeld Klausur zur Vorlesung Analysis () Termin: 5 Aufgaben Lösungen Aufgaben: Die omplexen Lösungen der Gleichung z = i sind (
Lösungsvorschlag zur Übungsklausur zur Analysis I
Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden
Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.
Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt Definition Ist (a ) eine Folge reeller (bzw omplexer) Zahlen und x 0 R (bzw z 0 C), dann heißt die Reihe a (x x 0 ) (bzw a (z
Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.
Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )
Ferienkurs Analysis 1
TECHNISCHE UNIVERSITÄT MÜNCHEN Ferienurs Analysis 1 Potenzreihen, Exponentialfuntion, Stetigeit, Konvergenz, Grenzwert Henri Thoma 1.03.014 Inhaltsverzeichnis 1. Potenzreihen:... 1. Exponentialfuntion...
Lösungen der Übungsaufgaben von Kapitel 3
Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen
Nachklausur Analysis 2
Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,
Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching
Analysis I 7. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem
Stetigkeit. Definitionen. Beispiele
Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt
Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.
Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.
Klausur - Analysis I Lösungsskizzen
Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen
Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)
Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung
Wiederholungsklausur zur Analysis I
Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten
1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.
. Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2
0.1 Formale Potenzreihen und Konvergenz
0. Formale Potenzreihen und Konvergenz Erinnerung: Ein Ausdruc der Form a x oder a (x a) mit a R heißt formale Potenzreihe oder unendlich langes Polynom. Seien a = a x und b = b x zwei Potenzreihen. Wir
i 3 =. 2 [ ] 2 (k + 1) { + (k + 1) 3 k 2 + 4(k + 1) } (k + 2) 2 = x n = 1 + n 1 n?
Musterlösungen zur Klausur Analysis I Vollständige Indution Man beweise durch vollständige Indution: Für alle n N ist [ ] nn + ) i 3 i Beweis: Wir führen den Beweis mit vollständiger Indution Die Aussage
Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.
Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I
Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also
Aufgaben zur Analysis I aus dem Wiederholungskurs
Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden
Aufgabensammlung zur Analysis 1
Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur
Klausur - Analysis I Lösungsskizzen
Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen
Klausur Analysis II
WS 28/9 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis II 6.2.28 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung
Übungen Analysis I WS 03/04
Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe
Übungsaufgaben zu den mathematischen Grundlagen von KM
TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4
Vorlesungen Analysis von B. Bank
Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf
Übersicht. 1. Motivation. 2. Grundlagen
Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler
Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript
Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,
1 Die direkte Methode der Variationsrechnung
Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,
Analysis I. Guofang Wang , Universität Freiburg
Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x
Klausur zur Analysis I WS 01/02
Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =
Übungen zu Einführung in die Analysis
Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung
Funktionsgrenzwerte, Stetigkeit
Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn
D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x
D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +
Übungsaufgaben zu Analysis 1 Lösungen von Blatt VIII vom
Prof. Dr. Moritz Kaßmann Faultät für Mathemati Wintersemester 04/05 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt VIII vom 04..4 Aufgabe VIII. (8 Punte) a) Untersuchen Sie die folgenden
Mathematik I HM I A. SoSe Variante A
Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten
Höhere Mathematik II. Variante A
Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite
Lösungsvorschläge zum 14. Übungsblatt.
Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen
Analysis I. 3. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine
Übungen zu Analysis, SS 2015
Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie
Differentialrechnung im R n
Kapitel 9 Differentialrechnung im R n Bisher haben wir uns mit Funtionen beschäftigt, deren Verhalten durch eine einzelne Variable beschrieben wird. In der Praxis reichen solche Funtionen in der Regel
Definition: Differenzierbare Funktionen
Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ
Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:
d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat
1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen
1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09
Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching
Analysis I 8. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching April 9, 207 Grenzwerte Korollar 5.2.2 (Bernoulli-de l Hôpital) Seien f, g : [a, b] R stetig und differenzierbar
e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1
Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x
Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren
Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.
Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines
Lösungsvorschläge für das 5. Übungsblatt
Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),
Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch
TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.
Polynomiale Approximation. und. Taylor-Reihen
Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome
Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz
Klausur zur Vorlesung Analysis I für Lehramtskandidaten (Sommersemester 008) Dr. C. Lange, J. Schütz Beginn: 17. Juli 008, 10:00 Uhr Ende: 17. Juli 008, 11:30 Uhr Name: Matrikelnummer: Ich studiere: Bachelor
Lösungen zu Aufgabenblatt 10P
Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 05 9. Juni 05 Lösungen zu Aufgabenblatt 0P Aufgabe (Funktionsgrenzwerte) Berechnen Sie die folgenden Grenzwerte: cos(x) x cos( x )
Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)
Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur
f(x 0 ) = lim f(b k ) 0 0 ) = 0
5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.
10 Differenzierbare Funktionen
10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h
Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt
Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2
Klausur Analysis für Informatiker Musterlösung
Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:
Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)
Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.
Rechenoperationen mit Folgen. Rekursion und Iteration.
Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )
Analysis I & II Lösung zur Basisprüfung
FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die
Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.
Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital
Vorlesung Mathematik WS 08/09. Friedel Bolle. Vorbemerkung
Vorlesung Mathemati WS 08/09 Vorbemerung Weshalb Mathemati für Öonomen? Das werden Sie selbst sehen im Grundstudium in - Miroöonomie - Statisti - Maroöonomie - BWL: Prodution und dazu in einer Reihe von
2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)
Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss
Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12
Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag
Brückenkurs Rechentechniken
Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige
Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester
Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 7 3.9.7 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................
Analysis I. 6. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.
Lösung zu Kapitel 5 und 6
Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig
Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge
Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag
Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
Der Satz von Taylor. Kapitel 7
Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem
Übungen zum Ferienkurs Analysis II
Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 015): Differential und Integralrechnung 1 1.1 (Frühjahr 00, Thema 3, Aufgabe ) Formulieren Sie das Prinzip der vollständigen Induktion und beweisen
Stetigkeit vs Gleichmäßige Stetigkeit.
Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (
Musterlösung Klausur zu Analysis II. Verständnisteil
Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex
