314 Wechselstrombrücke
|
|
|
- Siegfried Burgstaller
- vor 9 Jahren
- Abrufe
Transkript
1 314 Wechsestrombrücke 1. Aufgaben Mit Hife einer Wechsestrombrücke soen fogende Parameter bestimmt werden: 1.1 Messung der Induktivität von zwei Spuen. 1. Messung der Gesamtinduktivität zweier Spuen in eihenschatung bei a) geichsinniger & b) gegensinniger Koppung. Graphische Darsteung der Gesamtinduktivität in Abhängigkeit vom Koppungsgrad (Spuenabstand). Vergeich mit der Theorie! 1.3 Messung der Kapazität von zwei Kondensatoren. 1.4 Messung der Gesamtkapazität der zwei Kondensatoren in a) Paraeschatung & b) eihenschatung. Vergeich mit den aus beiden Einzekapazitäten berechneten Werten.. Grundagen Stichworte: Induktivität, Kapazität, kompexe Widerstände, Brückenschatung, Oszioskop, Phasenverschiebung, Wechsestromwiderstände.1. Wechsestromwiderstände Im Geichstromkreis ist der Widerstand einer Spue identisch mit dem ohmschen Widerstand ihrer Drahtwickung. Bei Wechsestrom hingegen besitzt sie einen frequenzabhängigen sogenannten Bindwiderstand vom Betrag B L = L (1) (... Kreisfrequenz, L... Induktivität), wecher mit dem ohmschen Antei (Wirkwiderstand) in eihe geschatet ist. Der Gesamtwiderstand ergibt sich durch vektoriee Addition in der kompexen ahenebene (eigerdiagramm, Bid 1), wobei der Betrag der kompexen Impedanz der Scheinwiderstand ist. Kompexe Impedanz = + j L Scheinwiderstand = + L 314-Wechsestrombrücke Seite 1 von 6 04/1
2 Phasenwinke = arctan L (Spannung eit Strom voraus!) Bid 1: eigerdiagramm für den Widerstand einer Spue. Bei einem Kondensator iegen anaoge Verhätnisse vor. Hier wird ein Bindwiderstand ( C 1 C B = ; C... Kapazität) zum (nahezu unendich großen) ohmschen Widerstand parae geschatet. Es addieren sich die Leitwerte. Der Phasenwinke wechset das Vorzeichen. (Lesen Sie dazu auch die entsprechende Literatur, z.b. /1/, /7/ u.a.). Bei eihenschatung von Spuen bzw. Kondensatoren addieren sich die ohmschen bzw. Bindwiderstände jeweis einzen. Geiches git bei Paraeschatung für die Leitwerte. Daraus fogt für Induktivitäten bzw. Kapazitäten eihe: L ges = L 1 + L +... = C C C ges Parae : = C ges C 1 + C L L L ges 1 (). Koppung von Spuen: Spuen koppen durch die Überagerung (geichsinnig oder gegensinnig) ihrer Magnetfeder. Die Induktivität einer Luftspue beträgt L = µ 0 N A (3) (N...Windungszah, A... Spuenquerschnitt,... Spuenänge). Eine zweite Spue geichen Querschnitts A und geicher Länge, aber anderer Windungszah N' hat die Induktivität 314-Wechsestrombrücke Seite von 6 04/1
3 L = µ 0 N A (4). Schiebt man beide Spuen ineinander und schatet sie geichsinnig in eihe (geiche Stromfussrichtung), so entspricht das einer Spue mit der Windungszah N G = N + N '. Die Gesamtinduktivität ergibt sich dann zu (N + N ) A L G = µ 0 A = µ 0 ( N + N + N N ) L + L + L L (5). Bei ungekoppeten Spuen ist die Gesamtinduktivität die Summe der Einzeinduktivitäten. Der Summand L L stet aso den Koppungsantei dar. Bei entgegengesetzter Stromrichtung (Gegenkoppung) ergibt sich L G L + L - L L (6). Sind die Spuenquerschnitte unterschiedich A' < A, so ist der Koppungsantei L L A A. Für kreisförmige Querschnitte mit den adien r und r' ist der Koppungsantei r' L L r. Sind die Spuen um die Länge x gegeneinander verschoben, so verringert sich die Koppung (bei Vernachässigung des Streufedes außerhab des Spueninneren) um den Faktor - x (reative Überappung). Für x > verschwindet die Koppung. usammenfassend erhät man aso - x r L G = L + L L L x r L G = L + L x (7). As Wechsestrombrücke wird eine Schatung entsprechend Bid bezeichnet. Die Idee ist ähnich der Wheatstonschen Messbrücke im Geichstromkreis (vg. Versuch 301). wei Messzweige werden mit Hife eines Nuabgeichinstruments vergichen. Einer der Messzweige enthät Baueemente mit nur bekannten Größen, der zweite weig enthät das zu vermessende Baueement. As Brückenabgeichsinstrument wird bei der Wechsestrombrücke oftmas ein Oszioskop verwendet. 314-Wechsestrombrücke Seite 3 von 6 04/1
4 Bid : Wechsestrombrücke. Ein Oszioskop dient zum Nuabgeich beider weige: echts: weig mit bekannten Größen, 4 und N. Linker weig: unbekanntes X ; 1 und 3 sind bekannte ohmsche Widerstände. 3. Versuchsdurchführung Die Wechsestrombrücke wird entsprechend Bid 3 geschatet. As Nuindikator für den Brückenabgeich wird ein Oszioskop verwendet. Die Speisespannung von einem Tonfrequenzgenerator wird zur Potentiatrennung über einen Übertrager angeegt. Bid 3: Messschatung: x, y - Anschüsse für den x bzw. y - Eingang des Oszioskops, U S - Speisespannung: ca. 5V, 1 khz, Sinus, 1 + = 1 k, = 100. Brücken- und Speisespannung werden an die y - bzw. x - Abenkung des Oszioskops geegt und erzeugen dabei eine Lissajousfigur. Diese ist im agemeinen Fa eine Eipse. Im abgegichenen ustand verschwindet die Brückenspannung und die Lissajousfigur ist eine waagerechte Gerade. Da mit dem Oszioskop die y - und x - Spannung gegen ein 314-Wechsestrombrücke Seite 4 von 6 04/1
5 gemeinsames Massepotentia gemessen werden müssen, wird as x-spannung nicht die voe Speisespannung U S verwendet, sondern nur der (phasengeiche) Spannungsabfa über, aso U. Der Abgeichvorgang veräuft in zwei Schritten, siehe Bid 4. Messzweig Vergeichszweig Bid 4: Dargestet sind jeweis die eigerdiagramme für inks den Messzweig und zeitgeich rechts den Vergeichszweig as Ausgangssituation (agemeiner Fa, Darsteung git für Induktivitäten) für eine unabgegichende Messbrücke. Die Phasenwinke φ x und φ N sind unterschiedich groß. Im unabgegichenen, agemeinen Fa finden wir x N x 1 N Oszioskopbid : eine Eipse. 1. Phasenabgeich: 3 / 4 so einsteen, dass die Eipse zur Geraden wird (man schatet zu x und N je einen Hifswiderstand ( 3 bzw. 4 ) in eihe, so dass sich in beiden weigen dassebe Verhätnis Bind-/Wirkwiderstand ergibt): Bx BN = + + x 3 N 4 ; die Phasenwinke sind damit geich groß. Messzweig Vergeichszweig Bid 5: Dargestet sind jeweis die eigerdiagramme für eine abgegichende Messbrücke. 3 und 4 werden so eingestet, dass die Phasenwinke φ x und φ N geich groß werden. 314-Wechsestrombrücke Seite 5 von 6 04/1
6 x N x 1 N Oszioskopbid: schrägiegende Gerade.. Brückenabgeich: Das Verhätnis 1 / so einsteen, dass die Gerade waagerecht iegt (der Spannungsteier 1 / wird in eine Steung gebracht, bei der die Gesamtspannung U S zwischen 1 und im geichen Verhätnis geteit wird wie zwischen x und N, d.h. 1 = x ; N die Spannung an y ist damit geich Nu). Da im abgegichenen ustand sowoh die ohmschen as auch die Bindanteie von ' x und ' N jeweis im Verhätnis 1 : stehen, d.h. B + L = = fogt sofort = B + L 1 x x 3 x 1 N N 4 N (8). Für Kapazitäten sieht das eigerdiagramm zwar etwas anders aus. Der Abgeich funktioniert aber genauso. Man erhät: C C = x N 1 (9). Literatur: /1/ Iberg, Krötzsch, Geschke: Physikaisches praktikum, B.G. Teubner, Stuttgart, Leipzig /7/ Grimseh: Lehrbuch der Physik, Teubner-Verag, Stuttgart 314-Wechsestrombrücke Seite 6 von 6 04/1
6 Magnetfeld, Induktion, Wechselstromgrößen
Physik-Praktikum für Studierende des Studiengangs Bacheor-Chemie WS 7-8 6 Magnetfed, Induktion, Wechsestromgrößen 6. Grundagen 6.. Induktion Gedämpfter Schwingkreis Vom Strom zum Magnetfed: Jede bewegte
405. Ein Strommesser hat einen Messwiderstand von 200 Ohm und einen Endausschlag. Aufgaben zur E-Lehre (Widerstand)
ufgaben zur E-Lehre (Widerstand) 6. In eine aten Haus wurden die uiniueitungen durch Kupfereitungen ersetzt; insgesat wurden 50 Kabe veregt. Jedes Kabe besteht aus einer Hin- und einer ückeitung und hat
a) Zeigen Sie, dass sich für eine lange Spule die magn. Flussdichte in der Mitte mit der Näherungsformel berechnen lässt.
Aufgaben Magnetfed einer Spue 83. In einer Spue(N = 3, =,5m), die in Ost-West-Richtung iegt, wird eine Magnetnade gegen die Nord-Süd-Richtung um 11 ausgeenkt. Berechnen Sie die Stärke des Stromes in 5
R R. l Es gilt: R = ρ, da es sich für beide Widerstände um den gleichen Draht handelt folgt: Rx l. / Widerstandswürfel
Zie: Kennenernen von Methoden zur Widerstandsmessung. Brückenschatung. Bestimmen Sie mit der Wheatstone-Brücke a) die Größe eines Widerstandes b) den Kemmwiderstand eines Netzwerkes Grundagen: Bei einfachen
1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt?
1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt? 2. Welchen Wert hat der Strom eine halbe Sekunde nach dem Einschalten, wenn die Induktivität einer Drosselspule
Versuch P1-83 Ferromagnetische Hysteresis Vorbereitung
Versuch P1-83 Ferromagnetische Hysteresis Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: Montag, 24.10.2011 Inhatsverzeichnis 1 Induktivität und Verustwiederstand einer Luftspue 2 1.1
Schaltzeichen: Q k = U Die Konstante k ist vom Aufbau des Kondensators abhängig. Sie wird Kapazität C genannt:
Kapazität und nduktivität - KOMPKT. Der Kondensator. ufbau Ein Kondensator besteht aus zwei eitfähigen Patten, den Eektroden und einem dazwischen iegenden soierstoff, dem Dieektrikum. Schatzeichen: Wird
Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E 13 Reihenschwingkreis In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis
Klasse : Name : Datum :
Widerstand eins Drahtes; Widerstandmessung mit der Wheatstone-Brücke Kasse : Name : Datum : Versuchszie : Wir woen untersuchen, von wechen Größen der Widerstand eines Drahtes abhängig ist. Vermutung: Wir
1. Temperaturabhängige Widerstände
V e r s u c h. Temperaturabhängige Widerstände. Einführung Im Technikbereich finden oft Prozesse statt, bei denen die Messung, Steuerung und egeung von Temperaturen eine wichtige oe spieen. Temperaturabhängige
F = m g sin. = sin dt l l = Pendellänge ( vom Aufhängepunkt bis zum Mittelpunkt der Kugel)
S1 Mathematisches und physikaisches Pende Stoffgebiet: Versuchszie: Literatur: Schwingungen agemein, mathematisches Pende, physikaisches Pende, Steinerscher Satz Mathematische Behandung von Schwingungsvorgängen
Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13:
Induktivitäten: Foren und Beispieaufgaben a) Induktivität eisenfreier Spuen Foren: Größe N² µoµr A L= git nur für Ringspuen und näherungsweise für ange einagige Zyinderspuen. Für andere Spuenforen können
C Mathematische Grundlagen
C Mathematische Grundagen C.1 Summen Mit dem Summenzeichen werden Rechenanweisungen zum Addieren kompakt geschrieben. Sie assen sich oft mit Hife der Summenregen vereinfachen. C.1 Gibt es insgesamt n Werte
Berechnung magnetischer Kreise
TU ergakademie Freiberg nstitut für Eektrotechnik Prof. Dr.-ng. habi. U. eckert G:\beckert\voresung\grd_et\er_magn_Kreise 2- erechnung magnetischer Kreise Der magnetische Kreis vieer technischer nwendungen
= p u. Ul x 0 U r x > 0
Das Riemann-Probem Das zu ösende Geichungssystem besteht aus den eindimensionaen hydrodynamischen Geichungen ohne Viskosität und externe Kräfte, den Euer-Geichungen. Beschränkung auf eine Dimension (x)
herleiten, wenn man für c(ha) c(ha) = (1 α) c 0,
Versuch E Bestimmung der Dissoziationskonstanten einer schwachen Säure durch Messung der Leitfähigkeit der Eektroytösung Aufgabensteung: Durch Leitfähigkeitsmessungen sind die Dissoziationskonstante und
Geschichte und Theorie
Eektrotechnikprotoko 1 rspannung (EMK) und innerer Widerstand Moser Guido eines Gavanischem Eements Fuda, den 9.03.00 Geschichte und Theorie Die ersten Spannungsqueen, die gebaut wurden, waren gavanische
PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005
PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende
Fourierreihenentwicklung Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik
Fourierreihenentwickung Prof. K. Weinberg Universität Siegen Lehrstuh für Festkörpermechanik Mathematische Grundagen für Einfachreihenentwickungen Für viee mathematische, physikaische und technische Probeme
/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.
Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die
Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten
1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen
Projektion. Kapitel Bildebene P 2. Sehstrahlen P 1. Projektionszentrum (Augenpunkt) Objekt. Bildebene
Kapite 14 Projektion 14.1 Bidebene Für die Aneige am weidimensionaen Ausgabegerät muß eine Abbidung (Projektion) der räumichen, dreidimensionaen Sene auf eine weidimensionae Projektionsebene erfogen. Gegeben
Klausur Grundlagen der Elektrotechnik B
Prof. Dr. ng. Joachim Böcker Kausur Grundagen der Eektrotechnik B 23.09.2005 ame: Matrike-r: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: 2 3 4 5 Σ ote Zugeassene Hifsmitte: eine sebsterstete, handgeschriebene
GRUNDLAGEN DER ELEKTROTECHNIK
GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators
Wechselstrombrücken. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines
Praktikum Grundlagen der Elektrotechnik Versuch: Wechselstrombrücken Versuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf dem jeweiligen Stoffgebiet
Messung ohmscher Widerstände, Brückenschaltungen und Innenwiderstände von Spannungsquellen
3 Car von Ossietzky niversität Odenburg - Fakutät V- Institut für Physik Modu Grundpraktikum Physik Tei I Messung ohmscher Widerstände, Brückenschatungen und Innenwiderstände von Spannungsqueen Stichworte:
Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course
Technische Universität Berin Abt. I Studierenden Service Studienkoeg / Preparatory Course Schriftiche Prüfung zur Feststeung der Eignung ausändischer Studienbewerber zum Hochschustudium im Lande Berin
3.5. Prüfungsaufgaben zur Wechselstromtechnik
3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung
WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN
INSIU FÜR ANGEWANDE PHYSIK Physikaisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße WÄRMELEIFÄHIGKEI UND ELEKRISCHE LEIFÄHIGKEI VON MEALLEN Eineitung In diesem
Ioduhr Oxidation von Iodid mit Peroxodisulfat
Knoch, Anastasiya Datum der Durchführung: Petri, Guido 19.01.2016 (Gruppe C11) Praktikum Physikaische Chemie II Reaktionskinetik Ioduhr Oxidation von Iodid mit Peroxodisufat 1. Aufgabensteung Es so für
Wechselstromwiderstände
Wechselstromwiderstände Wirkwiderstand, ideale Spule und idealer Kondensator im Wechselstromkreis Wirkwiderstand R In einem Wirkwiderstand R wird elektrische Energie in Wärmeenergie umgesetzt. Er verursacht
= 16 V geschaltet. Bei einer Frequenz f 0
Augaben Wechselstromwiderstände 6. Ein Kondensator mit der Kapazität 4,0 µf und ein Drahtwiderstand von, kohm sind in eihe geschaltet und an eine Wechselspannungsquelle mit konstanter Eektivspannung sowie
Interferenz an einer CD
Interferenz an einer CD Oaf Merkert (Manue Sitter) 18. Dezember 2005 1 Versuchsaufbau Abbidung 1: Versuchsanordnung mit Laser und CD [1] Ein auf einem Tisch aufgesteter Laser mit der Weenänge λ wird im
3.7 Sonderprobleme Ausnutzung der Symmetrie und Antimetrie. Größe. Belastung
VORLESUGSAUSKRIPT BAUSTATIK I II (UVERTIEFT).7 Sonderrobeme.7. Ausnutzung der Symmetrie und Antimetrie Durch die Ausnutzung der Symmetrie und Antimetrie kann der Grad der statischen Unbestimmtheit (u.
Thüringer Kultusministerium
Thüringer Kutusministerium Abiturprüfung 000 Physik as Leistungsfach (Haupttermin) 1 Hinweise zur Korrektur Nicht für den Prüfungsteinehmer bestimmt Die Korrekturhinweise enthaten keine voständigen Lösungen,
Berechnung von Wurzeln
Sieginde Fürst Berechnung von Wurzen Rekursive Fogen Zinseszinsforme; Heronverfahren Inhate Berechnung eines mit Zinsesezins verzinsten Kapitas auf zwei Arten Heronforme Einschranken von Wurzen Ziee Erernen
Bericht zum Versuch Induktion
Bericht zum Versuch Induktion Anton Haase, Michae Goerz 12. September 2005 GP II Tutor: W. Theis 1 Einführung Das Farraday sche Induktionsgesetz gibt die durch einen zeitich veränderichen magnetischeuss
Das Trägheitsmoment und der Satz von Steiner
Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders
FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik
4 4. Wechselgrößen Nimmt eine Wechselgröße in bestimmten aufeinander folgenden Zeitabständen wieder denselben Augenblickswert an, nennt man sie periodische Wechselgröße. Allgemeine Darstellung periodischer
Protokoll zum Versuch 13 Physikpraktikum
Protoko zum Versuch 3 Physikpraktikum Messung temperaturabhängiger eektrischer Widerstände mit der Wheatstone schen Brückenschatung Namen: Datum: Kurs/Gruppe: X Scheifdraht-Meßbrücke Dekade Badtemp.ϑ Scheifdraht
Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!
Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie
Übung Grundlagen der Elektrotechnik B
Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen
Projekt Experimentelle Mathematik mit GeoGebra
Projekt Experimentee Mathematik mit GeoGebra (Projekt für Q1, G. vom Stein) Gefäße mit unterschiedichen Formen werden mit einer variaben, aber konstanten Wasserzufuhr befüt. Es so jeweis die Funktion Zeit
Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments.
Musterlösung zur Klausur Grundlagen der Elektrotechnik I im SoSe 18 Aufgabe 1 Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Aufgabe 2 1. R 1 = R a und R b = R 2 R L R 2 +R L 2. R 1 + R 2 = 1
Transformator. Technische Universität Dresden Fachrichtung Physik. Inhaltsverzeichnis. Physikalisches Praktikum. 1 Aufgabenstellung 2
Technische Universität Dresden Fachrichtung Physik Transformator Inhatsverzeichnis Physikaisches Praktikum L. Jahn 03/ 1996 Versuch: TR bearbeitet 04/ 004 1 Aufgabensteung Stromdurchossene Spue.1 Spue
Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage
Baustatik Berechnung statisch unbestimmter Tragwerke von Raimond Damann 1. Aufage Baustatik Damann schne und portofrei erhätich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 006 Verag C.H. Beck
Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten
Department Informations- und Elektrotechnik Studiengruppe: Übungstag: Professor: abor für Grundlagen der Elektrotechnik EE1- ETP1 abor 4 Testat: Protokollführer (Name, Vorname): Weitere Übungsteilnehmer:
Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L
Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und
Biegelinie: PSfrag replacements. I : w I (x) = q 1l 4 [( x. II : w II (x) = (q 2 q 1 )l 4 [ ( x. ges (x) = w I (x) + w II (x) (19) l 24 + q x 3 )
Mechanik I Prof. Popov SS 05, 9. Woche Lösungshinweise Seite Biegeinienberechnung statisch bestimmter und unbestimmter Systeme Version. Juni 005 aus schanken Baken Aufgabe 9 a PSfrag repacements qx = q
R C 1s =0, C T 1
Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen
Kritischer Punkt von CO 2
Kritischer Punkt von CO 2 Praktikanten: Mirjam Eisee und Matthias Jasch Gruppennummer: 129 Versuchsdatum: 9. September 2009 Betreuer: Christof Gessner 1 Aufgabensteung Es werden für verschiedene Movoumina
E 4 Spule und Kondensator im Wechselstromkreis
E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm
Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik
Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen
Musterlösung zu Aufgabe 10)
Musterösung zu Aufgabe ) Seien n, K Körper, A K n n, b K n, und f: K n K n mit f x Ax für x K n. a) Zeigen Sie: f bidet Affinkombinationen von Vektoren in Affinkombinationen von deren Bidern unter f ab.
BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.
Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes
5.1.5 Pendel = Sinusbewegung ******
V55 5..5 ****** Motivation Dieser sehr schöne Versuch zeigt, dass die Projektion einer Kreisbewegung eine Sinusbewegung ergibt. Damit deckt sie sich mit einer simutanen Pendebewegung derseben Frequenz.
Versuchsprotokoll zum Versuch Nr. 10 Kondensator und Spule im Wechselstromkreis
Gruppe: A Versuchsprotokoll zum Versuch Nr. 0 Künzell, den 9.0.00 In diesem Versuch ging es darum die Kapazität eines Widerstandes und die Induktivität von Spulen zu bestimmen. I. Kondensator im Wechselstromkreis
Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen:
Aufgabe Ü3 Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: R = 1 Ω L1 W1 W4 I 1 R X C = 3 Ω X L = 2 3 Ω L2 W2 I 2 jx L -jx C = 13 V = 13 V e j120 L3 W3 W5 I 3 = 13 V e j120 N 1. Zeichnen
Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure von NaCl ist zu ermitteln
Hochschue Emden/Leer Physikaische Chemie Praktikum Vers. Nr. 16 pri 015 Eektroyte: Dissoziationskonstante von Essigsäure von NaC ist zu ermitten In diesem Versuch so die Dissoziationskonstante einer schwachen
Komplexe Widerstände
Komplexe Widerstände Abb. 1: Versuchsaufbau Geräteliste: Kondensator 32μ F 400V, Kapazitätsdekade, Widerstandsdekade, Widerstand ( > 100Ω), Messwiderstand 1Ω, verschiedene Spulen, Funktionsgenerator Speicheroszilloskop,
Wechselstromkreis E 31
E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde
3.5 Streuung auf dem kurzreichweitigen Potential
Woche 9 3.5 Streuung auf dem kurzreichweitigen Potentia Betrachten wir die Streuung angsamer Teichen τ 1) auf einem kurzreichweitigen Potentia mit charakteristischer Reichweite a. Die radiae G. ist: [
Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik
erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 3 Grundschaltungen der Wechselstromtechnik Teilnehmer: Name orname Matr.-Nr. Datum der
Feldtheorie und Induktion Zusammenfassung Abitur
Fedtheorie und Induktion Zusammenfassung Abitur Raphae Miche 20. März 2013 0.1 Grundgrößen Ladung Q Stromstäre I = Q t Spannung U = W Q Leistung P = W t = U I Widerstand R = ρ A, R = U I 1 Eektrisches
Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course
Technische Universität Berin Abt. I Studierenden Service Studienkoeg / Preparatory Course Schriftiche Prüfung zur Feststeung der Eignung ausändischer Studienbewerber zum Hochschustudium im Lande Berin
Anschluss von Kragplatten an Stahlbetondeckenplatten. Prof. Dr.-Ing. Erhard Gunkler Dipl.-Ing. Alice Becke
Anschuss von patten an Stahetondeckenpatten Prof. Dr.-Ing. Erhard Gunker Dip.-Ing. Aice Becke Detmod, Jui 2003 (üerareitet August 2004) Anschuss von patten an St.-Deckenpatten Seite 2 1 Agemeines Die Bemessung
Versuch 15 Wechselstromwiderstände
Physikalisches Praktikum Versuch 15 Wechselstromwiderstände Praktikanten: Johannes Dörr Gruppe: 14 [email protected] physik.johannesdoerr.de Datum: 06.02.2007 Katharina Rabe Assistent: Tobias Liese
Protokoll zum Laborversuch (Bachelor-Anleitung) Wechselstrom an Spule und Kondensator. Zug Labor am: Wochentag Abgabe am:
FHTW Berlin, Fachbereich, Physikalisches Praktikum - Wechselstromwiderstände Version /04 Hochschule für Technik und Wirtschaft Berlin Physikalisches Praktikum HTW-Berlin Protokoll zum Laborversuch (Bachelor-Anleitung)
Mathematisches Pendel und Federpendel
INSIU FÜR ANGEWANE PHYSIK Physikaisches Praktiku für Studierende der Ingenieurswissenschaften Universität Haburg, Jungiusstraße 11 Matheatisches Pende und Federpende 1 Zie In zwei Versuchsteien soen die
Vom Fallkreis zur Bahnellipse und zum Hodographen
Vom Fakreis zur Bahneipse und zum Hodographen Q R v P r X S F Y Gegeben: S P v Ort der Sonne Ort des Paneten zu irgendeinem Zeitpunkt t 0 Geschwindigkeit des Paneten zum Zeitpunkt t 0 Version 1.1 Frauenfed,
Versuch P1-70, 71, 81 Elektrische Messverfahren Auswertung
Versuch P - 70, 7, 8 Elektrische Messverfahren Auswertung Gruppe Mo-9 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: 4.. Inhaltsverzeichnis Versuchsergebnisse zu 3. Innenwiderstand des µa-multizets.......................
Versuch B2/3: Parallelschwingkreis
Versuch B2/3: Parallelschwingkreis 3. Einleitung Als realer Parallelschwingkreis wird die Parallelschaltung einer realen Kapazität (physikalisch als kapazitive Admittanz darstellbar) und einer realen Induktivität
1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben
1 Elektrotechnik 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1.1.1 Widerstand parallel zur idealen Spannungsquelle I R1 I R2
5.5 Ortskurven höherer Ordnung
2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder
Bewegung geladener Teilchen in elektrischen Feldern; homogenes Feld, Zentralfeld
1111 Bewegung geadener Teichen in eektrischen Federn; homogenes Fed, Zentrafed Bewegung in homogenen Federn Geadene Teichen erfahren in eektrischen Federn Kräfte; diese bewirken nach dem 2 Newton-Gesetz
Messung temperaturabhängiger elektrischer Widerstände mit der Wheatstone'schen Brückenschaltung
Messung temperaturabhängiger eektrischer Widerstände mit der Wheatstone'schen Brückenschatung Stichworte: Messbrücke, stromos messen, Heißeiter, Kateiter Grundagen In einer Wheatstoneschen Brückenschatung
Komplexe Zahlen - Rechenregeln
Technische Universität Dresden Fakutät Maschinenwesen / IFKM Professur für Getriebeehre Prof. Dr. rer. nat. habi. Moder Kompexe Zahen - Rechenregen Rechenregen Kompexe Zahen = x + iy = r e e i = cos +
Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten
Universität Stuttgart Fakultät Informatik, Elektrotechnik und Informationstechnik Umdruck zum Versuch Basis 1 Eigenschaften einfacher Bauelemente und Anwendung von Messgeräten Bitte bringen Sie zur Versuchsdurchführung
Praktikum ETiT 1 V2 / 1 Vorbereitungsaufgaben V Vorbereitungsaufgaben (Versuch 2) Summe pro Aufgabe 4 Punkte
Praktikum ETiT V / Vorbereitungsaufgaben V. Vorbereitungsaufgaben (Versuch Summe pro Aufgabe 4 Punkte. a Geben Sie die Formel für die Kapazität eines Plattenkondensator mit Dielektrikum an (P. Wie groß
Übung 6 - Musterlösung
Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte
3.2 Gleitreibung und Haftreibung 95
3.2 Geitreibung und Haftreibung 5 Lehrbeispie: Reibung in Ruhe und Bewegung Aufgabensteung: Zwei Körper A und B mit den Gewichtskräften F G1 und F G2 iegen übereinander auf einer ebenen Unterage. n den
KIT SS Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 11. Oktober 2012, Uhr
KIT SS 1 Kassische Theoretische Physik II : Prof. Dr. M. Müheitner, Ü: Dr. M. Rauch Kausur Lösung 11. Oktober 1, 8-1 Uhr Aufgabe 1: Kurzfragen 4+4+=1 Punkte a Die Transformationen und zugehörigen Erhatungsgrößen
Reihenresonanz - C8/ C8/9.2 -
Versuch C8/9: - C8/9. - Wechselstromwiderstände und Reihenresonanz - C8/9.2 - Wechselstromkreis mit induktiven und kapazitiven Elementen Spannung und Strom im allgemeinen nicht die gleiche Phase haben
Darstellende Geometrie Übungen. Tutorial zu Übungsblatt: Schatten in Axonometrie
Tutoria zu Übungsbatt: Schatten in Axonometrie BEISIEL Schatten des otrechten Stabes durch auf der waagrechten Grundebene:. Um diesen Schatten zu finden wird der Lichtstrah L durch den unkt und der Grundrissichtstrah
