Lebendige Auseinandersetzung mit Mathematik
|
|
|
- Swen Friedrich
- vor 9 Jahren
- Abrufe
Transkript
1 Lebendige Auseinandersetzung mit Mathematik probieren systematisch erfinden Aufgaben überprüfen Ergebnisse entnehmen Informationen Muster-Gültigkeit Schönheit Regel-Maß ordnen vermuten verallgemeinern überprüfen erklären Beziehungen übertragen Nutzen folgern erfinden Aufgaben Erschließung der Lebenswirklichkeit modellieren validieren beurteilen dokumentieren präsentieren überprüfen Ergebnisse lebendige Mathematik entnehmen Informationen
2 Liebe Kolleginnen und Kollegen, Mathematik leben Mathematik erleben mit Mathematik leben unter dieses Motto habe ich die Unterrichtsbeispiele und Unterrichtseinblicke gestellt, die ich in der nächsten halben Stunde kurz skizzieren möchte. Dabei geht es mir nicht darum, den idealen Mathematikunterricht oder die gute, lehrplangemäße Mathematikstunde mit all ihren methodisch-didaktischen Planungselementen hier aufzuzeigen. Ich denke, dafür ist Unterricht viel zu vielschichtig, sind Lehrerinnen und vor allem die Kinder mit ihren je eigenen Lernvoraussetzungen, - möglichkeiten, Ideen viel zu unterschiedlich. Worum es mir vor allem geht, ist aufzuzeigen, wie Kinder zu einer lebendigen Auseinandersetzung mit Mathematik angeregt werden können, oder umgekehrt: in welchen Lernsituationen die Mathematik für die Kinder lebendig werden kann, ganz im Sinne des Lehrplans und im Sinne des Jahres der Mathematik, in dessen Rahmen ja auch diese Veranstaltung stattfindet. Lebendig wird Mathematik ihrem Wesen nach immer dann, wenn ihre Muster- Gültigkeit, ihre Schönheit, ihre oftmals verborgenen Zusammenhänge und Logik zum Vorschein kommen, aber auch, wenn ihr Nutzen für die Erschließung der Lebenswirklichkeit, für die Bewältigung von Spiel- und Sachsituationen für die Kinder ersichtlich wird. Lebendige Auseinandersetzung mit Mathematik findet immer dann statt, wenn Kindern Raum und Zeit gegebenen wird für all die mathematischen Aktivitäten, wie sie in den prozessbezogenen Kompetenzerwartungen anschaulich und konkret aufgeschlüsselt, ausdifferenziert wurden. Ich hoffe, sie können sich nun auf Unterrichtseinblicke einlassen, die ich kaleidoskopartig und aus Zeitgründen weitestgehend unkommentiert darstellen möchte.
3 Buchstabenhäufigkeit 1. - Mehrmaliges Durchspielen von Galgenmännchen - Festhalten der richtig bzw. falsch geratenen Buchstaben im Spielprotokoll 2. Austausch über Überlegungen beim Raten einzelner Buchstaben 3. Vermutung bzgl. der 3 häufigsten und der 3 seltensten Buchstaben in der deutschen Sprache - Notieren der Buchstaben auf einzelne Post-it-Zettel - Anheften der Zettel geordnet nach dem Alphabet an der Tafel als Diagramm 4. Überlegungen zu Methoden der Überprüfung der Vermutungen 5. Überprüfung der Vermutungen durch Auszählen einzelner Buchstaben in 2 verschieden langen Texten (Erhebung von Stichproben) 6. Sortieren der Buchstaben nach Häufigkeit des Vorkommens und Vergleich der Ergebnisse in den beiden Texten 7. Informationsentnahme aus einem Diagramm zur Buchstabenhäufigkeit in der deutschen Sprache (erstellt in Anlehnung an Beutelspacher) - Sortieren der Buchstaben nach der Häufigkeit - Vergleich mit den beiden Stichproben 8. Nochmaliges Durchspielen von Galgenmännchen - Werden die Kenntnisse zur Buchstabenhäufigkeit zum Raten und zur geschickten Auswahl von Wörtern angewandt? 9. Übertragen der Kenntnisse zur Buchstabenhäufigkeit auf die Wort-/Wert-Tabelle im Spiel Scrabble - Verschriftlichung der Überlegungen zur fehlenden Anzahl bzw. zu fehlenden Buchstabenwerten in der Tabelle Lernarrangement: Galgenmännchen
4 Vermutete Buchstabenhäufigkeit Ausgezählte Buchstabenhäufigkeit (Stichprobe) Transfer auf Buchstabenanzahl und Buchstabenwert beim Spiel Scrabble
5 Zahlentafeln 1. Zauberkreuze auf dem Telefon 2. Untersuchungen an einer Zahlentafel mit einer besonderen Form - Vergleich in einer Rechenkonferenz 3. Eine ungewöhnliche Zahlentafel zusammensetzen - Untersuchung durch den Partner 4. Kreuz-Summen an der Hundertertafel 5. Kreuz-Summen in Rechen-Tabellen (plus) - in regelmäßig aufgebauten Plus-Tabellen - in unregelmäßig aufgebauten Plus-Tabellen 6. Selbstständige Erforschung anderer Rechen-Tabellen: - Minustabelle - Maltabelle
6 Aufgabe: Schau dir die Zahlentafel genau an. Was fällt dir auf? Tipp: Was kannst du erforschen? - gerade / ungerade Zahlen - Summen / Unterschiede -... Welche Zahlen kannst du untersuchen? - gegenüber / untereinander liegende - diagonal liegende - über Kreuz liegende - in den Ecken,... Wie kannst du deine Entdeckungen darstellen? - durch Kreise, Markierungen, Pfeile, Stichworte,... Fragen für die Entdeckerkonferenz: 1. Kannst du erkennen, was die Kinder entdeckt haben? 2. Hast du die Entdeckungen der anderen Kinder verstanden? 3. Sind die Entdeckungen richtig? 4. Was ist bei deinen Entdeckungen gleich? 5. Was ist für dich besonders spannend oder interessant? 6. Kannst du den anderen Kindern noch einen Tipp geben?
7 Aufgabe: Setze die Zahlenpaare so zu einem 4x4-Zahlenquadrat zusammen, dass man an deiner Zahlentafel etwas entdecken kann. Gib deinem Partner die Zahlentafel. Was fällt ihm alles auf?
8 Forscherfrage: Warum sind die beiden Summen im Kreuz immer gleich? Aufgabe: Untersuche, ob auch bei unregelmäßigen Plus- Tabellen die beiden Summen im Kreuz immer gleich sind = = = = 220 In beiden Aufgaben kommt dasselbe Ergebnis raus. Begründung: In beiden Aufgaben stehen die gleichen Zahlen.
Zaubern im Mathematikunterricht
Zaubern im Mathematikunterricht 0011 0010 1010 1101 0001 0100 1011 Die Mathematik als Fachgebiet ist so ernst, dass man keine Gelegenheit versäumen sollte, dieses Fachgebiet unterhaltsamer zu gestalten.
Mathematik im 1. Schuljahr. Kompetenzen und Inhalte
Mathematik im 1. Schuljahr Kompetenzen und Inhalte Mathematik ist......mehr als Plus- und Minus-Rechnen Wichtiger sind hier Verständnis, Sicherheit und Flexibilität im Umgang mit Zahlen und Rechenoperationen
Mathematik 2. Klasse Grundschule
Mathematik 2. Klasse Grundschule Die Schülerin, der Schüler kann (1) mit den natürlichen Zahlen schriftlich und im Kopf rechnen (2) geometrische Objekte der Ebene und des Raumes erkennen, und klassifizieren
1.4 Sachrechnen in den Bildungsstandards
1.4 Sachrechnen in den Bildungsstandards http://www.kmk.org/fileadmin/veroe ffentlichungen_beschluesse/2004/20 04_10_15-Bildungsstandards-Mathe- Primar.pdf Mathematikunterricht in der Grundschule Allgemeine
Inhaltsbezogene Kompetenzen
Rationale Zahlen Brüche und Anteile Was man mit einem Bruch alles machen kann Kürzen und Erweitern Die drei Gesichter einer rationalen Zahl Ordnung in die Brüche bringen Dezimalschreibweise bei Größen
Hier ist eine Zahlenmauer abgebildet, die aus drei Schichten aufgebaut ist. Überprüfe die oben beschriebene Bauvorschrift.
1 Einführung Mauern bestehen aus Steinen. Bei einer Zahlenmauer steht jeder Stein für eine Zahl. Später verwenden wir statt Zahlen auch Variablen. Wenn nicht anders angegeben verwenden wir meist die Zahlen
Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden auf welchen Schulbuchseiten trainiert?
Bildungsstandards im ZAHLEN-ZUG 2 1 Bildungsstandards im ZAHLEN-ZUG 2 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden auf welchen Schulbuchseiten
Bildungsstandards in FUNKELSTEINE Mathematik 4
Bildungsstandards in FUNKELSTEINE Mathematik 4 1 Bildungsstandards in FUNKELSTEINE Mathematik 4 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden
Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche Kompetenzen werden auf welchen Schulbuchseiten trainiert?
Bildungsstandards im ZAHLEN-ZUG 3 1 Bildungsstandards im ZAHLEN-ZUG 3 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche en werden auf welchen Schulbuchseiten trainiert? 1. Allgemeines
Bildungsstandards in FUNKELSTEINE Mathematik 1 1
Bildungsstandards in FUNKELSTEINE Mathematik 1 1 Bildungsstandards in FUNKELSTEINE Mathematik 1 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden
Zahlenraum bis 10 Unterricht & Bewertung (Stufe1) GGS Don Bosco. Stufe
Zahlenraum bis 10 Unterricht & Bewertung (Stufe1) GGS Don Bosco Stufe 1 Thema: Zahlenraum bis 10 Bereich: Arithmetik Übersicht: I.) Kompetenzen II.) Verfahren der Leistungsbewertung III.) Lernziele / Methoden
Klett. Ich weiß. Synopse zu den allgemeinen Bildungsstandards Mathematik zum Zahlenbuch Klasse 1 4
Klett. Ich weiß. Synopse zu den allgemeinen Bildungsstandards Mathematik zum Zahlenbuch Klasse 1 4 Allgemeine mathematische Kompetenzen Problemlösen mathematische Kenntnisse, Fertigkeiten und Fähigkeiten
BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK
BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK Allgemeine mathematische Kompetenzen (AK) 1. Kompetenzbereich Modellieren (AK 1) 1.1 Eine Sachsituation in ein mathematisches Modell (Terme und Gleichungen) übertragen,
Anknüpfungspunkte für besondere Lernaufgaben in
Anknüpfungspunkte für besondere Lernaufgaben in Jo-Jo Mathematik 1-2, Mathematik für Grundschulkinder 1. Schuljahr Schülerbuch Arbeitsheft mit interaktiven Übungen Arbeitsheft Fördern 978-3-06-082252-2
Daten, Häufigkeiten, Wahrscheinlichkeiten
Daten, Häufigkeiten, Wahrscheinlichkeiten Ein neuer Bereich im Lehrplan Mathematik Die acht Bereiche des Faches Mathematik Prozessbezogene Bereiche Problemlösen / kreativ sein Inhaltsbezogene Bereiche
Stoffverteilungsplan Mathematik 6 auf der Grundlage des G8-Kernlehrplans Lambacher Schweizer 6
1. Halbjahr Argumentieren / Vernetzen im Team arbeiten bei der Lösung von Problemen im Team arbeiten; über eigene und vorgegebene Lösungswege, Ergebnisse und Darstellungen sprechen, Fehler finden, erklären
Das Bauen einer Zahlenmauer erfolgt nach folgender Regel: Die Summe von zwei nebeneinander stehenden Zahlen ergibt stets die darüber liegende Zahl.
Einführung Mauern bestehen aus Steinen. Bei einer Zahlenmauer steht jeder Stein für eine Zahl. Später verwenden wir statt Zahlen auch Variablen. Wenn nicht anders angegeben verwenden wir meist die Zahlen
Schulinterner Lehrplan Mathematik Klasse 6
Schulinterner Lehrplan Mathematik Klasse 6 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Bruchzahlen - Wiederholen: Anteile als Bruch darstellen - Dezimalschreibweise - Dezimalschreibweisen
Interviewleitfaden. Thema: Prozessbezogene Kompetenzen Summen von Reihenfolgezahlen. Aufgabenkarten, leere Blätter, Eddings, Schere, Klebstoff
Thema: Prozessbezogene Kompetenzen Summen von Reihenfolgezahlen Zeitpunkt: zeitlicher Umfang: Material: ab Anfang 4. Schuljahr circa 35-45 Minuten Aufgabenkarten, leere Blätter, Eddings, Schere, Klebstoff
1./2. Klasse Daten und Zufall 4.1 Daten erfassen und strukturiert darstellen - Kompetenzerwartungen
Stochastik warum? Gründe: Begründungsfeld 1: Stochastik trägt zur Umwelterschließung bei Begründungsfeld 2: Entwicklung des Wahrscheinlichkeitsbegriffs braucht Zeit Begründungsfeld 3: Interesse am Gegenstand
LehrplanPlusMathematik (Stand )
LehrplanPlusMathematik (Stand 08.01.2014) Kompetenzorientiert unterrichten bedeutet, den Wechsel von der zielorientierten Inputsteuerung zur schülerorientierten Kompetenzerwartung (Outcome) zu vollziehen.
Schulinterner Lehrplan
Fach Mathematik Jahrgangsstufe 6 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Bruchzahlen - Wiederholen: Anteile als Bruch darstellen - Dezimalschreibweise - Dezimalschreibweisen vergleichen
BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK
BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und
Mathematik 4 Primarstufe
Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige
Lehrwerk: Lambacher Schweizer, Klett Verlag
Lerninhalte 6 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Rationale Zahlen 1 Teilbarkeit 2 Brüche und Anteile 3 ggt und kgv 4 Kürzen und Erweitern 5 Brüche auf der Zahlengeraden 6
1. Aufgaben und Ziele des Mathematikunterrichts in der Grundschule
1. Aufgaben und Ziele des Mathematikunterrichts in der Grundschule Aufgaben und Ziele des Mathematikunterrichts Forderungen zu mathematischer Grundbildung (Winter 1995) Erscheinungen der Welt um uns, die
Mathematik 1 Primarstufe
Mathematik 1 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige
Kombinatorik mit dem Dominospiel (Klasse 4)
Kombinatorik mit dem Dominospiel (Klasse 4) Alexandra Thümmler Einführung: Kombinatorik ist die Kunst des geschickten Zählens. In den Bildungsstandards werden kombinatorische Aufgaben inhaltlich dem Bereich
Schulinterner Lehrplan Mathematik basierend auf dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) Stufe 6
Schulinterner Lehrplan Mathematik basierend auf dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) Stufe 6 Obligatorische Inhalte Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Neue Medien,
Mathematik 3. Klasse Grundschule
Mathematik 3. Klasse Grundschule Die Schülerin, der Schüler kann (1) mit den natürlichen Zahlen schriftlich und im Kopf rechnen (2) geometrische Objekte der Ebene und des Raumes erkennen, und klassifizieren
Lernaufgaben Mathematik
Ministerium für Schule und Weiterbildung des Landes Nordrhein - Westfalen Lernaufgaben Mathematik Grundschule Daten, Häufigkeiten, Wahrscheinlichkeiten Mögliche Ereignisse eines Zufallsexperimentes bestimmen
Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -
1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal;
Stoffverteilungsplan Mathematik 6 für den G8-Zweig
Stoffverteilungsplan Mathematik 6 für den G8-Zweig prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lambacher Schweizer 6 Vernetzen bei der Lösung von Problemen im Team arbeiten; Begriffe an Beispielen
Stoffverteilungsplan Mathematik 5 / 6 Lehrwerk: Lambacher Schweizer 5/6
Klasse 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Medienkompetenzen Natürliche Zahlen Stochastik Erheben: Daten erheben, in Ur- und Strichlisten zusammenfassen Darstellen: Häufigkeitstabellen,
Lektion 2: Kompetenzaufbau - Beispielaufgaben
Lektion 2: Kompetenzaufbau - Beispielaufgaben Problemlösen Die Schülerinnen und Schüler greifen beim Suchen nach Aufgaben auf ihr Vorwissen zurück (bekannte Zerlegungen) und finden die Lösungen. Die Schülerinnen
Baden-Württemberg Bildungsplan 2004
Baden-Württemberg Bildungsplan 2004 Bildungsstandards für Mathematik Grundschule Klasse 2 Vorliegende Niveaukonkretisierungen: Niveaukonkretisierung 1 Klasse 2... 2 Niveaukonkretisierung 2 Klasse 2...
Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 4/2010
Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 4/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenz (Kap. 3.1) Inhaltsbezogene
Schuleigener Arbeitsplan im Fach Mathematik 3. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel
Schuleigener Arbeitsplan im Fach Mathematik 3. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen
Geheimnisvolle Zahlentafeln Lösungen
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Geheimnisvolle Zahlentafeln Lösungen Aufgabe 1 (3-mal-3-Zahlentafel (nur für die Klassen 7/8) [4 Punkte]). Finde je eine geheimnisvolle
Kompetenzmodell Mathematik, 4. Schulstufe. Ergänzende Informationen
Kompetenzmodell Mathematik, 4. Schulstufe Ergänzende Informationen Kompetenzmodell Mathematik, 4. Schulstufe 3 Kompetenzmodell Die für Mathematik streben einen nachhaltigen Aufbau von grundlegenden Kompetenzen
Schulinterner Lehrplan Mathematik Klasse 5
Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 5 Als Lehrwerk wird das Buch Mathematik real 5, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen
Stoffverteilungsplan Mathematik 6 für den G9-Zweig
Stoffverteilungsplan Mathematik 6 für den G9-Zweig prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lambacher Schweizer 6 Argumentieren / Vernetzen bei der Lösung von Problemen im Team arbeiten;
Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 7
Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 7 Reihen -folge Buchabschnit t Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.9 Zuordnungen -
Seite 1 von 5. Schulinternes Curriculum Mathematik. Jahrgang 6
Seite 1 von 5 Schulinternes Curriculum Mathematik Jahrgang 6 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche P1 mathematisch argumentieren I1 Zahlen
Schulinterner Lehrplan Mathematik G8 Klasse 6
Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/6 Jg 6, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 6 Verbindliche Inhalte zu Kapitel I Rationale Zahlen 1 Brüche und Anteile 2 Was man
geeigneten Fachbegriffen erläutern Kommunizieren
Kapitel I Rationale Zahlen Arithmetik / Algebra Einfache Bruchteile auf verschiedene Weise darstellen: Lesen: Informationen aus Text, Bild, 1 Brüche und Anteile handelnd, zeichnerisch an wiedergeben 2
Schulinternes Curriculum im Fach Mathematik CJD Christophorusschule Gymnasium Versmold
Darstellen von Daten einer Klasse Große Zahlen Stellentafel Anordnung der natürlichen Zahlen Zahlenstrahl Runden von Zahlen Bilddiagramme Größen und ihre Einheiten Maßstab Grafische Darstellung von Größen
Schulinterner Lehrplan Mathematik Klasse 8
Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 8 Als Lehrwerk wird das Buch Mathematik real 8, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen
Mathematik im 3. Schuljahr. Kompetenzen und Inhalte
Mathematik im 3. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen
Schulinternes Curriculum Mathematik 5 / 6
Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen
Schulinterner Lehrplan Mathematik Klasse 6
Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen
Illustrierende Aufgaben zum LehrplanPLUS
Division mit Rest Jahrgangsstufe 4 Fach Mathematik Kompetenzerwartungen M 3/4 1 M 3/4 1.2 Zahlen und Operationen Im Zahlenraum bis zur Million rechnen und Strukturen nutzen Die Schülerinnen und Schüler
Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung
. Lehre Weiterbildung Forschung Projekt AdL Math Monika Schoy-Lutz In Kooperation mit der PHGR Thema Kompetenzen konkret Zahlbegriffsentwicklung 1. Quartal Woche 4, Lektion 1 1: Zahlvorstellung, 2: Hundertertafel,
Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des Kernlehrplans 2005
Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des Kernlehrplans 2005 Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung
Zauberquadrate entdecken
Haus 7: Gute Aufgaben Zauberquadrate entdecken Von Mathematik kann man natürlich erst auf den höheren Stufen sprechen. In der Grundschule wird ja nur gerechnet (Moderator der Sendung Kulturzeit im 3sat,
Was macht mathematische Kompetenz aus?
Was macht mathematische Kompetenz aus? ^ Kompetenzstrukturmodell Zahlen und Operationen Raum und Form Größen und Messen Daten und Zufall Stand 02/2013 Probleme lösen mathematische Kenntnisse, Fertigkeiten
Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:
Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen
Arbeitsplan Mathematik Klasse 2. Kompetenzen. Fächerübergreifende Aspekte. Inhalt / Unterrichtsvorhaben. Überprüfung
Wann 1. Quartal Inhalt / Unterrichtsvorhaben Kapitel 1: Wiederholung und Vertiefung Addieren und Subtrahieren im ZR 20 Aufgabe und Umkehraufgabe Kreative Aufgaben: Zahlenmauern Kreative Aufgaben: Minus-
Die Hälfte färben. Darum geht es: LP NRW S. 64 Raum und Form Symmetrie Schuleingangsphase
Die Hälfte färben Darum geht es: Der Auftrag, die Hälfte eines Zahlenfeldes geschickt zu färben, erfordert die Beschäftigung mit geometrischen Mustern. Dabei kann die Symmetrie als Mittel zur Problemlösung
Mathematik - Klasse 6 -
Schuleigener Lehrplan Mathematik - Klasse 6 - Stand: 03.11.2011 2 I. Rationale Zahlen Die n Kompetenzen gelten grundsätzlich für alle Kapitel. Abweichungen werden gesondert aufgeführt. Die hier genannten
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 8 8 Kapitel I Reelle Zahlen 1 Von bekannten und neuen Zahlen 2 Wurzeln und Streckenlängen 3 Der geschickte Umgang mit Wurzeln
Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen
Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Ordnen ordnen und vergleichen rationale Zahlen Operieren lösen lineare Gleichungen nutzen lineare Gleichungssysteme mit
Stu. Geometrie: Geodreieck und Zirkel - Unterricht & Bewertung (Stufe 4) GGS Don
Stu Geometrie: Geodreieck und Zirkel - Unterricht & Bewertung (Stufe 4) GGS Don fe Thema: Zeichnen mit Geodreieck und Zirkel Bereich: Geometrie Raum und Form (Ebene Figuren, Raumorientierung und Raumvorstellung,
So kann es gehen. Zeit 1-3 Einheiten
Ziele - Möglichst alle Ergebniszahlen und die dazugehörigen Aufgaben finden (z. B. durch system. Probieren oder Anwenden einer Strategie) - Entdeckungen schriftlich beschreiben (begründen) - Rückschlüsse
Zahlenbuch Klasse 2. Umsetzung der prozessbezogenen Kompetenzen (Lehrplan NRW 2008) im Arbeitsplan Mathematik Klasse 2 (chronologisch geordnet)
Zahlenbuch Klasse 2 Umsetzung der prozessbezogenen (Lehrplan NRW 2008) im Arbeitsplan Mathematik Klasse 2 (chronologisch geordnet) 1 ZB S. 7 Zahlenmauern/ ZB S. 8 Einspluseins-Tafel/ ZB S. 9 Einsminuseins-Tafel/
Kinder mathematisch motivieren
Kinder mathematisch motivieren Referentin: Elisabeth Gaigl Elisabeth Gaigl Seite 1 Lernmotivation Lernmotivation ist die Bereitschaft der Person, eine Aktivität vornehmlich deshalb auszuführen, weil sie
GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung
Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.
Mathematik selbstständig entdecken
Mathematik selbstständig entdecken Aufgabenbeispiele zum Kommunizieren, Argumentieren, Modellieren, Darstellen und Problemlösen Schüler werden dazu angeregt, mathematische Gedankengänge zu reflektieren
Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand:
Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Zahlen überall 4-19 Seiten Prozessbezogene Kompetenzen Zahlen
Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse
Terme und Auflösen einer Klammer Subtrahieren einer Klammer Ausklammern Binomische Formeln Faktorisieren Mischungsaufgaben mit Parametern Typ T 1 T 2 = 0 7 46 10 16 17 18 19 21 22 27 28 33 34 37 38 40
Box. Mathematik 1. Begleitheft mit. 12 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen.
Box Mathematik 1 Begleitheft mit 12 Kopiervorlagen zur Lernstandskontrolle Beschreibung der Übungsschwerpunkte Beobachtungsbogen Lernbegleiter -Box Mathematik 1 Inhalt des Begleitheftes Zur Konzeption
Thema. beschreiben. Wahrnehmung und Lagebeziehung
Zeit Prozessbezogene Kompetenzen Thema Inhaltsbezogene Kompetenzen Methoden Material/ Medien/ Schulbuch Überprüfung Sommerferien bis Herbstferien - Eine Darstellung in eine andere übertragen - Zahlen auf
Mathe-Welt. mathematiklehren. Brüchen begegnen. Anteile ermitteln. Bruchzahlen. darstellen. Vergleichen und Anordnen
Mathe-Welt mathematiklehren... weil die Welt voller Mathematik steckt Anteile ermitteln Bruchzahlen darstellen Vergleichen und Anordnen Hallo! In dieser Mathe-Welt geht es um Anteile und Brüche. Du lernst
Implementationsmaterialien zum Lehrplan Mathematik Grundschule
Ministerium für Schule und Weiterbildung des Landes Nordrhein - Westfalen Implementationsmaterialien zum Lehrplan Mathematik Grundschule 2008 Vergleich Lehrplan Mathematik 2003 Lehrplan Mathematik 2008
Leistungsbewertungskonzept
2.2 Mathematik Das Fach Mathematik teilt sich in folgende vier inhaltsbezogene Bereiche auf: Zahlen und Operationen (Arithmetik) Raum und Form (Geometrie) Größen und Messen Daten, Häufigkeiten, Wahrscheinlichkeiten
LiG Mathematik Klasse 6
4-5 erläutern einfache mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen. begründen durch Ausrechnen. vergleichen verschiedene Lösungswege,
Jahresplanung mit Allgemeinen Kompetenzen
Jahresplanung mit Allgemeinen Kompetenzen Download (inkl. Inhaltlicher Kompetenzen) als editierbares Word-Dokument unter http://zahlenreise1.veritas.at = Erarbeitungsteil, = Übungsteil, = Materialien für
Interviewleitfaden. Beim 3x3-Gitter sind eine Reihe von Entdeckungen möglich, die zur Vervollständigung des Zahlengitters hilfreich sind:
Thema: Mathematik als die Wissenschaft von den Mustern - Entdecken, Erforschen und Erklären am Beispiel des Aufgabenformats Zahlengitter Zeitpunkt: zeitlicher Umfang: Material: ab Anfang 3. Schuljahr bis
Die Hälfte färben. Darum geht es: LP NRW S. 64 Raum und Form Symmetrie Schuleingangsphase
Symmetrien an Zahlenfeldern: Die Hälfte färben Lehrplanbezug / eigene Notizen Die Hälfte färben Darum geht es: Der Auftrag, die Hälfte eines Zahlenfeldes geschickt zu färben, erfordert die Beschäftigung
Leistungskonzept Mathematik (Stand 2017) 1. Leistungskonzept Mathematik (Stand 2017)
Leistungskonzept Mathematik (Stand 2017) 1 Leistungskonzept Mathematik (Stand 2017) Inhaltsverzeichnis 1. Einführung in das Leistungskonzept Mathematik 2. Leistungsbewertung in Mathematik 2. 1. LZK 2.1.1
Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen
Neue Wege Klasse 8 Schulcurriculum EGW Inhalt Neue Wege 8 prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Kapitel 1 Die Sprache der Algebra Terme und Gleichungen 1.1 Rechnen mit Termen Summen und
Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens
Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen Zum Gleichheitszeichen Materialien im Anfangsunterricht
Vorwort Übersicht der mathematischen Kompetenzen und Anforderungsniveaus der Arbeitsblätter... 6
Inhaltsverzeichnis Vorwort... 4 Übersicht der mathematischen Kompetenzen und Anforderungsniveaus der Arbeitsblätter... 6 Arbeitsblätter Klasse 3 AB 1 9: Zahlbereichserweiterung bis 1000... 9 AB 10 18:
Erich-Fried-Gesamtschule Mathematik Jahrgangsstufe 7.1 Stand: Januar 2011 Themenfeld Inhalte (inhaltsbezogene Kompetenzen) prozessbezogene Kompetenzen
Erich-Fried-Gesamtschule Mathematik Jahrgangsstufe 7.1 Stand: Januar 2011 Brüche multiplizieren und dividieren Geometrie: Entdeckungen an Geraden und Figuren Arithmetik u. Algebra: Zuordnungen Wdh. Brüche,
Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens
Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen Zum Gleichheitszeichen Materialien im Anfangsunterricht
Sprachförderung Hundertertafel. Die Zeile verläuft
Sprachförderung Hundertertafel Name: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
Mathematik im 2. Schuljahr. Kompetenzen und Inhalte
Mathematik im 2. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen
Themenzuordnung. Sachaufgaben (1) Seite 1 von 5
GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 3: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - beschreiben
SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7
Seite 1 von 7 Kapitel I: Rationale Zahlen - Einfache Bruchteile auf verschiedene Weise darstellen: handelnd, zeichnerisch an verschiedene Objekten, durch Zahlensymbole und als Punkt auf der Zahlengerade;
Elternbrief: Differenzierung im Mathematikunterricht mit dem Lehrwerk Fredo Seite 1
Elternbrief: Differenzierung im Mathematikunterricht mit dem Lehrwerk Fredo Seite 1 Liebe Eltern, wir Autorinnen möchten Ihnen zu Beginn des ersten Schuljahres auf wenigen Seiten erläutern, wie Ihre Kinder
Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1
Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Es hängt an der Wand, macht Ticktack, und wenn es runterfällt, geht die
Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1
Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Mathematikunterricht in der Grundschule Allgemeine mathematische Kompetenzen
Argumentieren/Kommunizieren
Im Fach Mathematik führen unsere SuS ein Merkheft. In diesem Heft werden alle grundlegenden Rechenregeln und Rechengesetze mit kleinen Beispielen aufgelistet. Die SuS verwenden das Heft zum Wiederholen
Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5
Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer
Synopse zum Kernlehrplan für die Realschule Schule: Schnittpunkt Mathematik Differenzierende Ausgabe Band Lehrer:
Synopse zum Kernlehrplan für die Realschule Schule: Schnittpunkt Mathematik Differenzierende Ausgabe Band 5 978-3-12-742471-3 Lehrer: Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung
Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012
Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012 Fach: Mathematik Stand: 10/2012 Fachvorsitzender: Da Mathematik : Schulinternes Curriculum - Realschule Klasse 5 Die
mein Forscherheft zur Mal-Mühle
mein Forscherheft zur Mal-Mühle 2 1 2 8 9 33 2 12 6 3 80 Name: vertauschen wird um größer/kleiner erhöhen verringern bleibt gleich beide Zahlen ergeben zusammen addieren abziehen/subtrahieren in der Dreierreihe
Haus 8: Guter Unterricht. Modul 8.3 Expertenarbeit im Mathematikunterricht aufgezeigt am Beispiel einer Unterrichtsreihe zum SOMA- Würfel
Haus 8: Guter Unterricht Modul 8.3 Expertenarbeit im Mathematikunterricht aufgezeigt am Beispiel einer Unterrichtsreihe zum SOMA- Würfel Aufbau des Fortbildungsmoduls 8.3 Inhaltliche Ebene: 1. Einbettung
In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln.
In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln. Die Schülerinnen und Schüler können Zahl- und Operationsbeziehungen sowie arithmetische
