Digitale Bildverarbeitung (DBV)
|
|
|
- Laura Albrecht
- vor 9 Jahren
- Abrufe
Transkript
1 Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie heinz bochum.de Tel Sprechstunde: Montags Uhr und nach Vereinbarung HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 1
2 Bildvorverarbeitung Filteroperationen im Ortsbereich HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 2
3 Filterung im Ortsbereich Filteroperationen sind wichtige Hilfsmittel der Bildvorverarbeitung. Es handelt sich hier um Techniken, mit deren Hilfe Bilder so verändert werden können, dass gewünschte Merkmale besser sichtbar werden. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 3
4 Filterung im Ortsbereich Ziele: Glättung des Bildes. Behebung von technischen Störeinflüssen, Bildrauschen, Kontrastausgleich. Schärfung des Bildes, Betonung der lokalen Besonderheiten und Extrema, z.b. Kanten und Texturen. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 4
5 Filterung im Ortsbereich Im Ortsbereich wird die Filterung durch Faltung (engl. convolution) mit einem Filteroperator durchgeführt. Hierbei erfolgt eine gewichtete Summation der Grauwerte einer Umgebung des Eingabebildes., =,, mit f(x,y) = Ausgangsbild, g(x,y) = Filtermatrix HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 5
6 Filterung im Ortsbereich Die Filtermatrix besteht aus einem rechteckigen oder quadratischen Bildausschnitt (Fenster, Maske, Kernel, Filter), der auf die Bildkoordinate (x, y) zentriert und dann von Pixel zu Pixel verschoben wird. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 6
7 Filterung im Ortsbereich Eingabebild Ausgabebild HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 7
8 Filterung im Ortsbereich g 1 g i sind Gewichtungsfaktoren, die dem Zentralpixel sowie seinen i 1 Nachbarn zugeordnet sind. Die Funktion der Maske wird durch die Koeffizienten bestimmt. Die benachbarten Pixel beeinflussen also den neuen Grauwert. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 8
9 Filterung im Ortsbereich T[f(x, y)] = g1 f(x 1,y 1) + g2 f(x 1,y) + g3 f(x 1,y+1) + g4 f(x,y 1) + g5 f(x,y) + g6 f(x,y+1) + g7 f(x+1, y 1)+ g8 f(x+1,y) + g9 f(x+1, y+1) HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 9
10 Definition der Filtermatrix Die Größe der Filtermatrix definiert den Nachbarschaftsbereich. Die enthaltenen Zahlenwerte legen den Grad der Einflussnahme fest. 3 * 3 Matrix 5 * 5 Matrix 7 * 7 Matrix (ungerade Pixelanzahl Zentralpixel) HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 10
11 Verfahren Die Filtermatrix gleitet zeilen und spaltenweise über die Bildmatrix. Pro Position erfolgt: Multiplikation mit dem korrespondierenden Pixel der Bildmatrix Summation und Normierung Zuordnung des Ergebnisses zum aktuellen Zentralpixel der Bildmatrix Randprobleme sind zu berücksichtigen HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 11
12 Randproblem Bildmatrix mit Randerweiterung HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 12
13 Tiefpassfilter Zur Unterdrückung hochfrequenten Rauschens (lässt die niedrigen, tiefen Frequenzen passieren und eliminiert die hohen). Glättung und/oder Entfernung von Bilddetails Führt ggf. auch zu Unschärfe (engl. blurring) HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 13
14 Tiefpassfilter Da auch Kanten in der Ortsfrequenzdarstellung hochfrequente Anteile beinhalten, werden sie durch den Tiefpassfilter abgeflacht/zerstört. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 14
15 Tiefpassfilter Spaltentiefpass Gauß Tiefpass Da in den nebenstehenden Matrizen die Koeffizienten nicht normiert sind, ist das Ergebnis der Berechnung durch die Summe der Gewichtskoeffizienten zu dividieren. Spaltentiefpass: Gauß Tiefpass : HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 15
16 Tiefpassfilter Spaltentiefpass HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 16
17 Tiefpassfilter Gauß Tiefpass HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 17
18 Tiefpassfilter Gleitender Mittelwert Beseitigung von Störpixeln HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 18
19 Hochpassfilter Durch Hochpassfilter werden Kanten verstärkt bzw. extrahiert (lässt die hohen Frequenzen passieren und eliminiert die niedrigen). Der visuelle Eindruck des Bildes wird härter. Feine Bild Details werden hervorgehoben. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 19
20 Hochpassfilter Homogene Bereiche werden gelöscht. Das Bildrauschen wird verstärkt. Die Wahl der Koeffizienten legt die Vorzugsrichtungen fest. Je stärker die Gewichtung des Zentralpixels ist, um so größer ist der Filtereffekt. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 20
21 Hochpassfilter Nord Gradient Süd Gradient Ost Gradient West Gradient HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 21
22 Hochpassfilter Nord Gradient HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 22
23 Hochpassfilter Süd Gradient HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 23
24 Hochpassfilter Ost Gradient HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 24
25 Hochpassfilter West Gradient HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 25
26 Kanten Extraktion Die entsprechenden Filter modellieren Kanten heraus (engl. edge detection). Sie sind sog. Nullsummen Filter, da die Summer aller Filterelemente der Maske Null beträgt. Alle homogenen Flächen erscheinen schwarz, die Kanten (Grauwertsprünge) werden hell dargestellt. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 26
27 Laplace Filter Werden zur richtungsunabhängigen Hervorhebung von Kanten genutzt (rotationsinvariant). Der Operator ist punktsymmetrisch. Hell Dunkel Übergänge erzeugen im Ausgabebild ein entgegengesetztes Vorzeichen zu Dunkel Hell Übergängen. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 27
28 Laplace Filter Mit Viererumgebung HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 28
29 Laplace Filter Mit Achterumgebung HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 29
30 Bandpassfilter Beim Bandpassfilter erstreckt sich die Filterung auf ein spezielles Frequenzband der Signale. Frequenzbereiche unterhalb und oberhalb des Durchlassbereiches werden dabei gesperrt oder deutlich abgeschwächt. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 30
31 Laplace Filter Mit gleichzeitiger Tiefpasswirkung (mexican hat) Die Filtermatrix entsteht durch Hintereinanderschalten eines Gaußfilters und einer 2. Ableitung (Laplacian of Gaussian). Es ergibt sich ein Filter mit Bandpasscharakteristik, der als rauschunempfindlicher Kantendetektor eingesetzt werden kann. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 31
32 Laplace Filter Mit gleichzeitiger Tiefpasswirkung (mexican hat) HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 32
33 Sobel Operator Der Sobel Operator ist ebenfalls ein richtungsabhängiger Filter. Er arbeitet mit 2 Filter Masken in horizontaler und vertikaler Richtung G x = G y = HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 33
34 Sobel Operator Die gefalteten Bilder werden im Anschluss zum Gesamtgradienten zusammengefasst: HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 34
35 Canny Edge Operator Der Canny Edge Operator ist ein weit verbreiteter, robuster Algorithmus zur Kantendetektion. Er gliedert sich in verschiedene Faltungsoperationen (u.a. Sobel Operator) und liefert ein Bild, welches idealerweise nur noch die Kanten des Ausgangsbildes enthält. HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 35
36 Canny Edge Operator HS BO Labor für Photogrammetrie: Filteroperationen im Ortsbereich 36
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.
. Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3
Einführung in die medizinische Bildverarbeitung SS 2013
Einführung in die medizinische Bildverarbeitung SS 2013 Stephan Gimbel 1 Kurze Wiederholung Gradienten 1. und 2. Ableitung grad( f ( x, y) ) = f ( x, y) = f ( x, y) x f ( x, y) y 2 f ( x, y) = 2 f ( x,
Einführung in die medizinische Bildverarbeitung WS 12/13
Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Pipeline Pipelinestufen können sich unterscheiden, beinhalten aber i.d.r. eine Stufe zur Bildvorverarbeitung zur
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99
Struktur des menschlichen Auges 2 / 99 Detektoren im Auge Ca. 100 150 Mio. Stäbchen Ca. 1 Mio. Zäpfchen 3 / 99 Zapfen Entlang der Sehachse, im Fokus Tagessehen (Photopisches Sehen) Scharfsehen Farbsehen
Digitale Bildverarbeitung Einheit 8 Lineare Filterung
Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag WS 05/06 Fachbereich M+I der FH-Offenburg Dipl.-Math. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,
Bildverarbeitung Herbstsemester
Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Filter Filter 1 Inhalt Lineare und nichtlineare Filter Glättungsfilter (z.b. Gauss-Filter) Differenzfilter (z.b. Laplace-Filter) Lineare Faltung
Elementare Bildverarbeitungsoperationen
1 Elementare Bildverarbeitungsoperationen - Lineare Filterung - 1 Einführung 2 Definition der Faltung 3 Beispiele linearer Filter 4 Diskussion 5 Ausblick: nichtlineare Filterung 6 Literatur 1 Einführung
Segmentierung. Vorlesung FH-Hagenberg SEM
Segmentierung Vorlesung FH-Hagenberg SEM Segmentierung: Definition Die Pixel eines Bildes A={a i }, i=1:n, mit N der Anzahl der Pixel, werden in Teilmengen S i unterteilt. Die Teilmengen sind disjunkt
Kantenextraktion. Klassische Verfahren. Christoph Wagner. 30. Januar Vortrag zum Seminar Bildsegmentierung und Computer Vision
Klassische Verfahren 30. Januar 2006 Vortrag zum Seminar Bildsegmentierung und Computer Vision Gliederung Grundlagen 1 Grundlagen Aufgabenstellung Anforderungen an Kantenfilter Lineare Filter 2 3 Gliederung
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler
Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler Wenn man sie denn gefunden hat, was kann man mit den interessanten Punkten anfangen? /Anwendungsgebiete Wenn man sie denn gefunden
Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg
Bildverbesserung Frequenz-, Punkt- und Maskenoperationen Filtern im Frequenzraum Fouriertransformation f(x)->f( ) Filter-Multiplikation F =FxH Rücktransformation F ( )->f (x) local-domain frequency-domain
EVC Repetitorium Blender
EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen
Kapitel 8: Operationen auf Rasterdaten
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 8: Operationen auf Rasterdaten Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2015/16 Ludwig-Maximilians-Universität
FILTER UND FALTUNGEN
Ausarbeitung zum Vortrag von Daniel Schmitzek im Seminar Verarbeitung und Manipulation digitaler Bilder I n h a l t. Der Begriff des Filters 3 2. Faltungsfilter 4 2. Glättungsfilter 4 2.2 Filter zur Kantendetektion
Filter Transformationen (Blender) INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS
Filter Transformationen (Blender) INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Wozu Filter? Wozu Filter? Beispiel 3 Teil1: Filter anwenden (verschiedene Filter anwenden um diverse Effekte zu erzeugen)
Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2
Was bisher geschah digitale Bilder: Funktion B : pos col Matrix B col pos statistische Merkmale Punktoperationen f : col 1 col 2 (Bildanalyse) (Farbtransformation) Geometrische Operationen f : pos 1 pos
Segmentierung 1 Segmentation
Segmentierung Segmentation M. Thaler, TG08 [email protected] Juni 7 Um was geht es? Bis jetzt vor allem Transformation Bild Bild Neu Transformation Bild? Feature, Aussage, etc. Bild Aussage "it's a circle"
Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt
TU Bergakademie Freiberg Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt Filter in der Bildverarbeitung. Einleitung Digitale Filter gehören zu den wirkungsvollsten Methoden der Bildverarbeitung. Wir können
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
Digitale Bildverarbeitung Einheit 8 Lineare Filterung
Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, wie lineare
Systemtheorie abbildender Systeme
Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken
Kanten und Konturen. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz
Kanten und Konturen Industrielle Bildverarbeitung, Vorlesung No. 6 1 M. O. Franz 14.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Kanten und
Elementare Bildverarbeitungsoperationen
1 Elementare Bildverarbeitungsoperationen - Kantenerkennung - 1 Einführung 2 Gradientenverfahren 3 Laplace-Verfahren 4 Canny-Verfahren 5 Literatur 1 Einführung 2 1 Einführung Kantenerkennung basiert auf
Graphische Datenverarbeitung und Bildverarbeitung
Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV Regina Pohle. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung
Bildverarbeitung Herbstsemester 2012. Kanten und Ecken
Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector
1. Bildverbesserung / Bildvorverarbeitung
1. Bildverbesserung / Bildvorverarbeitung Bildverbesserung ist problemorientiert für menschliche/maschinelle Interpretation Dominanz zwischen Farbe, Textur, Kontext Ziel der ikonischen Bildauswertung:
Distanztransformation
1 Inhaltsverzeichnis Distanztransformation... 2 Vorwärtslauf... 2 Rückwärtslauf... 2 Weitere Masken... 2 Morphologie... 3 Erosion... 3 Dilatation... 3 Co-ocurrence Matrix... 3 Filteroperation... 5 Randbehandlung...
R.Wagner, Mathematik in der Astronomie
Mathematik in der Astronomie Roland Wagner Johann Radon Institute for Computational and Applied Mathematics (RICAM) Österreichische Akademie der Wissenschaften (ÖAW) Linz, Austria Linz, 20.Mai 2016 Übersicht
Graphische Datenverarbeitung und Bildverarbeitung
Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung
Praktikum 5. Bildfilter (Teil II)
Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_05 ImageJ.doc Praktikum 5 Digitale Bildverarbeitung Bildfilter (Teil II) Themen: Tiefpass- und Hochpassfilter zur Glättung und
Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 20. Januar 2004
[email protected] Universität Hamburg AB Technische Aspekte Multimodaler Systeme [email protected] Inhaltsverzeichnis 6. Bildverarbeitung..........................415 Aufbau
Form: Gradient. Informationsgewinnung
Form: Gradient Motivation: Wenn Objekte homoen bezülich dem Grauwert oder einem Teturmerkmal sind dann treten an den Objektrenzen starke Gradienten auf. Grauwertbild Gradientenbetrasbild Computer Vision
Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz
Filter Industrielle Bildverarbeitung, Vorlesung No. 5 1 M. O. Franz 07.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Lineare Filter 2 Formale
Computergrafik 2: Übung 7. Hough Transformation
Computergrafik 2: Übung 7 Hough Transformation Organisation KLAUSURANMELDUNG (UNIWORX) NICHT VERGESSEN! Computergrafik 2 SS2012 2 Quiz Berechnung der ersten Ableitung eines Bildes? Berechnung der zweiten
Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform. Thorsten Jost INF-M2 AW1 Sommersemester
Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform Thorsten Jost INF-M2 AW1 Sommersemester 2008 Agenda Motivation Feature Detection Beispiele Posenbestimmung in Räumen
Bildverarbeitung und Mustererkennung
Bildverarbeitung und Mustererkennung Prüfung im Modul ET5100 (Masterstudiengang) Professor Dr.-Ing. Martin Werner Februar 2016 Hinweise zur Bearbeitung der Klausur Die Klausur besteht aus zwei Teilen.
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev
Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev 1 Inhaltsverzeichnis: 1.Pixelbasierte Bildverbesserung...3 1.1.Monotone Grauwertabbildung...3 1.1.1.Maximierung des
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
LU Grundlagen der digitalen Bildverarbeitung Abgabe 2. Gruppe 25 peter holzkorn andreas bretschneider martin tintel
LU Grundlagen der digitalen Bildverarbeitung Abgabe 2 Gruppe 25 peter holzkorn 0426262 andreas bretschneider 0327444 martin tintel 0402913 Beispiel 6 Texturanalyse und Texturklassifikation Texturklassen
Computergrafik 2: Filtern im Frequenzraum
Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz [email protected] MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen
INTELLIGENTE DATENANALYSE IN MATLAB
INTELLIGENTE DATENANALYSE IN MATLAB Bildanalyse Literatur David A. Forsyth: Computer Vision i A Modern Approach. Mark S. Nixon und Alberto S. Aguado: Feature Extraction and Image Processing. Ulrich Schwanecke:
Segmentierung. Vorlesung FH-Hagenberg SEM. Digitale Bildverarbeitung in der Medizin. Schwellenwerte
Segmentierung g Vorlesung FH-Hagenberg SEM Schwellenwerte Globaler Schwellenwert Lokale Schwellenwerte Mehrfache Schwellenwerte Semi-Schwellenwerte Optimale Schwellenwerte 1 Optimal Threshold optimal zu
Bildverarbeitung und Mustererkennung
Bildverarbeitung und Mustererkennung Prüfung im Modul ET510 für den Masterstudiengang Systems Design & Production Management Professor Dr.-Ing. Martin Werner Juli 2014 Hinweise zur Bearbeitung der Klausur
Computergrafik 2: Filtern im Ortsraum
Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz [email protected] MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen
Kantenextraktion. Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften. Klassische Verfahren
CURANDO Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften UNIVERSITÄT ULM SCIENDO DOCENDO Kantenextraktion Klassische Verfahren Seminar Bildsegmentierung und Computer Vision WS 2005/2006
Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17
Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen
Proseminar "Aufgabenstellungen der Bildanalyse und Mustererkennung"
Fakultät Informatik, Institut für künstliche Intelligenz, Intelligent Systems Proseminar "Aufgabenstellungen der Bildanalyse und Mustererkennung" Lokale Merkmalsdeskriptoren Jens Stormberg - Dresden, 19.06.2009
Computergrafik 2: Kanten, Linien, Ecken
Computergrafik 2: Kanten, Linien, Ecken Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz [email protected] MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen
Grundlagen der digitalen Bildverarbeitung / Fortsetzung
Grundlagen der digitalen Bildverarbeitung / Fortsetzung Wir haben bereits zwei Beispiele digitaler Bildfilter gesehen. Es gibt eine große Menge von Filtern mit ganz unterschiedlicher Auswirkung auf das
Bildverarbeitung 4 - Filterung
Bildverarbeitun 4 - Filterun Frühjahrssemester 5 ETH Zürich Jan Dirk Wener und Michal Havlena ETH Zürich, Institut für Geodäsie und Photorammetrie (mit Material von Uwe Sörel, Friedrich Fraundorfer, Stefan
Inhaltsbasierte Bildsuche. Matthias Spiller. 17. Dezember 2004
Kantenbasierte Merkmale für die Bildsuche Inhaltsbasierte Bildsuche Matthias Spiller 17. Dezember 2004 Übersicht Übersicht Einleitung Was sind Kanten? Kantenrichtungs Histogramm Der Canny-Algorithmus Feature-Erzeugung
2D Graphik: Bildverbesserung 2
LMU München Medieninformatik Butz/Hilliges D Graphics WS5 9..5 Folie D Graphik: Bildverbesserung Vorlesung D Graphik Andreas Butz, Otmar Hilliges Freitag, 9. Dezember 5 LMU München Medieninformatik Butz/Hilliges
Filterung von Bildern (2D-Filter)
Prof. Dr. Wolfgang Konen, Thomas Zielke Filterung von Bildern (2D-Filter) SS06 6. Konen, Zielke Aktivierung Was, denken Sie, ist ein Filter in der BV? Welche Filter kennen Sie? neuer Pixelwert bilden aus
Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)
4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales
Ein auf Eigenwertanalyse basierendes Verfahren zur einfachen und robusten Linienerkennung. -erweiterte Web-Präsentation
Ein auf Eigenwertanalyse basierendes Verfahren zur einfachen und robusten Linienerkennung. -erweiterte Web-Präsentation Jan Rudert Vortrag vom. 05. 2004 Seminar Mustererkennung in Bildern und 3D-Daten
Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen
Grundlagen: Bildbearbeitung / Objekterkennung Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Videoerkennung! Warum? Live-Übertragung von Veranstaltungen Überwachung
Projekt Lesebrille : Mobiles Vorlesegerät für Blinde
Projekt Lesebrille : Mobiles Vorlesegerät für Blinde Texterkennung Vorverarbeitung Rauschen Kontrasterhöhung, Schärfung Binarizierung Layouterkennung Dokumentgrenzen Textblöcke, Textspalten Ausrichtung
43 Fourierreihen Motivation Fourierbasis
43 Fourierreihen 43. Motivation Ähnlich wie eine Taylorreihe (vgl. MfI, Kap. 2) eine Funktion durch ein Polynom approximiert, wollen wir eine Funktion durch ein trigonometrisches Polynom annähern. Hierzu
(Fast) Fourier Transformation und ihre Anwendungen
(Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F
2. Schnitterkennung Video - Inhaltsanalyse
2. Schnitterkennung Video - Inhaltsanalyse Stephan Kopf Definition: Schnitt Schnitte (cut) liefern Informationen über den Produktionsprozess eines Filmes. trennen kontinuierliche Aufnahmen, die als Kameraeinstellungen
3. Halbtonverfahren definieren? Wie funktioniert das wenn Schwellwert = 100? (Konstant Schwellwert).
Kurs Computergrafik 2 (Leistungsnachweise) Zweiter versuch 07.10.2016 Pro. Dr. Felten Die Fragen: 1. Was sind Dynamische Systeme? Mit Beispiel? 2. Was ist besagt die Abtasttheorie? Und die 2 Voraussetzung?
Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt
Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt im Juni 2016 Themen: Digitale Bilder, Eigenschaften
Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter
Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?
Angewandte Mathematik am Rechner 1
Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 5 Grundlagen Analysis Kontinuierliche Mengen Vollständige Mengen Folgen Iterative Berechnungen Grenzwert:
Bild-Erkennung & -Interpretation
Kapitel I Bild-Erkennung & -Interpretation FH Aachen / Jülich, FB 9 Prof. Dr. rer.nat. Walter Hillen (Dig Img I) 1 Einführung Schritte zur Bilderkennung und Interpretation: Bild-Erfassung Vorverarbeitung
Prüfung Grundlagen der digitalen Bildbearbeitung
Prüfung Grundlagen der digitalen Bildbearbeitung 14.06.2005 1) Gegeben sind 24 Bilder, die als Eingabe als auch als Ergebnis einer der 10 Bildoperationen auftreten können. (14 Punkte) 10 folgenden Bildoperationen,
Segmentierung. Inhalt. Segmentierung
Segmentierung Inhalt Segmentierung Definition der Segmentierung Kantenbasierte Segmentierung Regionenbasierte Segmentierung Globaler Schwellenwert (threshold) Adaptiver Schwellenwert Region Growing Segmentierung
Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003
Name:........................................ Vorname:..................................... Matrikelnummer:.............................. Bitte Studiengang ankreuzen: Computervisualistik Informatik Hauptklausur
Lösungsvorschlag zur 5. Übung zu Multimediale Systeme
Lösungsvorschlag zur 5. Übung zu Multimediale Systeme Dipl. Inf. Günter Robbert Universität Bayreuth Lehrstuhl für Angewandte Informatik I 20.6.2003 Lösungsvorschlag zur 5. Übung 1 AdOculos (1) AdOculos
Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10
Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration
Graphische Datenverarbeitung und Bildverarbeitung
Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung
3. Leistungsdichtespektren
Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt
Multiskalenanalyse. Any view depends on the viewpoint!
Multiskalenanalyse Any view depends on the viewpoint! Multiskalenanalyse Motivation Aufwandsminimierung bei Filterung Objekterkennung, Segmentierung Textur Klassifikation Mosaicing rundlagen Signaltheorie
Suche nach korrespondierenden Pixeln
Suche nach korrespondierenden Pixeln Seminar Algorithmen zur Erzeugung von Panoramabildern Philip Mildner, Gliederung 1. Motivation 2. Anforderungen 3. Moravec Detektor 4. Harris Detektor 5. Scale Invariant
2. Schnitterkennung Videoanalyse
2. Schnitterkennung Videoanalyse Stephan Kopf Inhalt Definition: Schnitt Klassifikation eines Schnittes Vorgehensweise bei der automatischen Schnitterkennung Pixelbasierte Verfahren Histogramme Aggregierte
Übersicht der Vorlesung
Übersicht der Vorlesung. Einführung. Bildverarbeitung. Morphologische Operationen 4. Bildsegmentierung 5. Merkmale von Objekten 6. Klassifikation 7. Dreidimensionale Bildinterpretation 8. Bewegungsanalyse
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Universität Trier. Fachbereich IV. Wintersemester 2004/2005. Wavelets made easy. Kapitel 2 Mehrdimensionale Wavelets und Anwendungen
Universität Trier Fachbereich IV Wintersemester 2004/2005 Wavelets made easy Kapitel 2 Mehrdimensionale Wavelets und Anwendungen Thomas Queckbörner 16.11.2004 Übersicht des Kapitels: 1. Einführung 2. Zweidimensionale
6.2 Eine Vorlage schärfen
6.2 Eine Vorlage schärfen SilverFast hat eine speziell entwickelte Schärfefunktion, die sogenannte Unschärfe-Maske (USM). Dieser Begriff kommt aus der traditionellen Lithographie, als noch chemisch gearbeitet
Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme
Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung
Übung: Computergrafik 1
Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation Organisatorisches Neue Abgabefrist für Blatt
Evaluation einer modernen Zynq-Plattform am Beispiel der Implementierung einer Hough Transformation
Evaluation einer modernen Zynq-Plattform am Beispiel der Implementierung einer Hough Transformation Zwischenpräsentation der Bachelorarbeit Dominik Weinrich [email protected] Dresden, 31.05.2018
