Praktikum 5. Bildfilter (Teil II)

Größe: px
Ab Seite anzeigen:

Download "Praktikum 5. Bildfilter (Teil II)"

Transkript

1 Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_05 ImageJ.doc Praktikum 5 Digitale Bildverarbeitung Bildfilter (Teil II) Themen: Tiefpass- und Hochpassfilter zur Glättung und Bildschärfung. Übertragungsfunktion von Bildfiltern. Analyse der Square - Wave - Response - Function (SWRF) und der Modulations-Übertragungs-Funktion (MTF). MFT-Analyse eines Bilderfassungssystems Wirkung der Filter auf medizinische Bildvorlagen. Aufgabe 1: Wirkung von Tiefpass - Filtern auf periodische Strukturen einer definierten Ortsfrequenz. Das Bild MTF_LP_4.TIF (vergl. Abb.1) enthält ein Standard- Testmuster (4-fach dargestellt), das bei vielen bildgebenden Verfahren zur Bestimmung der Ortsauflösung über die SWRF eingesetzt wird. Eine periodische Struktur besteht aus hellen und dunklen Balken (Rechteck - Strukturen). Mit Ausnahme der groben Struktur in der zweiten Reihe (links) haben jeweils 4 helle und 4 dunkle Balken die gleiche Breite. Diese Gruppe von 4+4 Linien ist durch einen etwas längeren Balken getrennt. Von links nach rechts nimmt die Breite der Linien immer mehr ab. Die Ortsfrequenz der Struktur, die in "Zahl der Linienpaare pro mm" [lp/mm] gemessen wird, nimmt entsprechend zu. img_pk_05 ImageJ -1-

2 Bem.: Die feinen Strukturen (oben rechts) sind vom System nicht mehr auflösbar. Zudem sind Aliaising - Effekte erkennbar! Abb. 1: MTF_LP_4.TIF (Testmuster zur Analyse der SWRF) In Tabelle 1 sind die Ortsfrequenzen der einzelnen Gruppen aufgeführt. Die Gruppen - Nummer ist in Abb.1 (oben links) eingetragen. Gruppe Ortsfrequenz [lp/mm] Perioden Länge [mm] Untere Reihe: Obere Reihe: Tab. 1: Ortsfrequenzen des Testmusters (vgl. Abb. 1) (Pixel-Größe: mm) img_pk_05 ImageJ -2-

3 Analysieren Sie die Wirkung der folgenden Tiefpass - Filter auf die periodischen Rechteckstrukturen von Bild MTF_LP_4.TIF. Wie in Praktikum 4 beschrieben, sind diese vordefinierten Bildfilter unter dem Menü Process / Filters zu erreichen: 3*3 Gauß - Tiefpass 5*5 Gauß - Tiefpass 7*7 Spalt - Tiefpass ( Gaussian Blur, Radius = 1 pixel) ( Gaussian Blur, Radius = 2 pixels) ( Mean, Radius = 3 pixels) Lassen Sie dazu im Bild MTF_LP_4.TIF einen Quadranten unverändert (Referenz) und wenden Sie auf die anderen Quadranten die drei angegebenen Tiefpassfilter an (Quadranten zuvor mit ROI selektieren). Diskutieren Sie Ihre Beobachtungen (Filter - Wirkung). Welche (merkwürdigen?) Effekte treten bei dem 7*7 Spalt - Tiefpass bei höheren Ortsfrequenzen auf? Aufgabe 2: Analyse der Square-Wave-Response-Funktion Die Wirkung der Tiefpass - Filter auf die periodischen Rechteckstrukturen soll mit Hilfe der Square-Wave-Response-Funktion (SWRF) genauer untersucht werden. Definition der SWRF: Die SWRF gibt an, wie die Amplitude einer Rechteck - Struktur A ref mit einer gegebener Ortsfrequenz u [lp/mm] von einer Filter - Operation (oder von einem Bildübertragungs System) modifiziert wird (A filt : Amplitude der gefilterten Rechteck - Struktur). Die SWRF(u) wird durch das Verhältnis A filt (u) / A ref (u) bei den verschiedenen Ortsfrequenzen berechnet. Verfahren zur Bestimmung der Amplitude einer Rechteck - Struktur: 1. Eine Rechteck - Struktur mit definierter Ortsfrequenz wird durch ein ROI genau markiert (bleiben Sie genügend weit vom oberen und unteren Rand der Struktur entfernt und ebenfalls ausreichend entfernt von den rechten und linken Nachbarstrukturen warum?). 2. Darstellung des Grauwert - Histogramms der Rechteck - Struktur. img_pk_05 ImageJ -3-

4 3. Der gesamte Amplitudenhub (Spannweite bzw. Range) der Rechteck - Struktur wird aus dem maximalen und minimalen Wert des Grauwert - Histogramms bestimmt. Bem.: Welche Probleme und systematische Fehler entstehen bei dieser Methode der Amplitudenbestimmung in stark verrauschten Bildern? Verfahren zur Analyse der SWRF: 1. Die Rechteck - Struktur einer bestimmten Ortsfrequenz u wird im ungefilterten Referenzbild durch ein ROI markiert. Durch die Histogramm - Analyse wird, wie oben beschrieben, der Amplitudenhub A ref bestimmt. 2. Das ROI wird anschließend zur entsprechenden Struktur des gefilterten Bildes verschoben. Hier wird der Amplitudenhub A filt bestimmt. 3. Daraus folgt SWRF (u) = A filt (u) /A ref (u) bei der gewählten Ortsfrequenz u. Bem.: Dieses Verfahren hat experimentell die Schwierigkeit, dass sich in einem Bild nach starker Tiefpassfilterung auf Grund der Unschärfen die ROI Position für die A ref Bestimmung nur schwer bestimmen lässt. Daher wird für die SWRF-Analyse folgende Vorgehensweise empfohlen: Bestimmen Sie zunächst in einem Quadranten des Bilds MTF_LP_4.TIF (Abb.1) die Lage und die Dimension der ROI s für alle verfügbaren Ortsfrequenzen u. Bestimmen Sie A ref (u) für alle u. Filtern Sie das gesamte Bild und setzen Sie ROI s auf die gleiche Stelle wie für die A ref (u) -Bestimmung und ermitteln Sie A filt (u). Aufgaben: Bestimmen Sie für die in Tabelle 1 angegebenen Ortsfrequenzen die SWRF für die drei Tiefpass Filter aus Aufgabe 1. Tragen Sie auf Millimeterpapier (oder in Excel) die SWRF der Filter als Funktion der Ortsfrequenz u [lp/mm] auf, und diskutieren Sie das Verhalten. Wie lässt sich das merkwürdige Verhalten der SWRF beim 7*7 Spalt Tiefpass erklären? img_pk_05 ImageJ -4-

5 Aufgabe 3: Analyse der Modulations - Übertragungs - Funktion (MTF) bei Filtern zur Bildschärfung Definition der MTF: Die MTF gibt an, wie die Amplitude einer Sinus-Struktur mit gegebener Ortsfrequenz u [lp/mm] von einem Bildübertragungssystem oder von einer Filteroperation modifiziert wird. MTF_LP_6.TIF ist eine Bildvorlage mit 8 sinus-förmigen Strukturen (4-mal dargestellt). Die Ortsfrequenz u variiert von lp/mm. Das Bild ist mit einer Pixel - Größe von 100 µm aufgenommen. Die Quadranten des Bildes sollen mit folgenden Bildschärfungs- Filtern behandelt werden (vergl. Vorlesung F.4f(i)): 1. Quadrant: Referenz 2. Quadrant: Bildschärfungs - Operator V 8 (mit a=1/8) 3. Quadrant: Bildschärfungs - Operator V 8 (mit a=1/4) 4. Quadrant: Bildschärfungs - Operator V 8 (mit a=1/2) Bem.: In Anhang A ist beschrieben, wie der Bildschärfungs - Operator V 8 in ImageJ angewendet wird. Bitte vollziehen Sie die Konstruktion dieser Filteroperation genau nach. Bestimmen Sie die Übertragungs - Funktion (MTF) der drei Bildschärfungs - Filter als Funktion der Ortsfrequenz. Tragen Sie das Ergebnis grafisch auf. Die Bestimmung der Amplitude der sinus-förmigen Struktur und die Analyse der MTF erfolgt wie bei der SWRF (Aufgabe 2). Für sinus-förmige Strukturen gilt entsprechend: MTF (u) = A filt (u) /A ref (u). Aufgabe 4: MFT-Analyse eines Bilderfassungssystems Das Bild SWRF-MTF-TestChart.TIF eines medizinischen Bilderfassungssystems zeigt in der oberen Bildhälfte Rechteck-Strukturen und in der unteren Bildhälfte Sinus-Strukturen mit von rechts nach links wachsender Ortsfrequenz (vergl. Abb.2). Abb. 2: Aufgenommene Rechteck- und Sinus-Strukturen eines Bilderfassungssystems. img_pk_05 ImageJ -5-

6 In Abb. 3 ist ein Linienprofil der aufgenommenen Sinus-Struktur dargestellt. Deutlich erkennbar ist bei höheren Ortsfrequenzen der Abfall der Modulationshöhe auf Grund der begrenzten Systemauflösung. Abb. 3: Linienprofil der Sinus-Struktur Stellen Sie auf einer Druckvorlage das Testbild und das Linienprofil der Sinus- Struktur dar. Um ein Linienprofil in ImageJ wiederzugeben, wird zunächst mit dem straight line selection Tool eine Linie markiert, die in diesem Fall exakt horizontal ausgerichtet ist. Das Grauwertprofil entlang der ausgewählten Linie wird mit Analyze / Plot Profile (Strg+K) dargestellt. Mit Hilfe des Testbildes SWRF-MTF-TestChart.TIF soll die MTF des Bilderfassungssystems bestimmt werden. Dazu werden im Grauwertprofil die Modulationshöhen bei den verschiedenen Ortsfrequenzen genau vermessen. Betrachten Sie entlang einer kurzen horizontal ausgerichteten Linie ein Teilstück der Modulation (Abb. 4). In dieser Ansicht soll von jeweils einer Modulation die Abb. 4: Detailbild der Sinus-Struktur img_pk_05 ImageJ -6-

7 Modulationshöhe und die Periodenlange P mit dem Cursor ausgemessen werden (vergl. Abb. 4). Aus der Periodenlange (in Einheiten von mm!) wird die Ortfrequenz u der Modulation bestimmt: u [lp/mm] = 1/P [mm]. Bem.: Bei höheren Ortsfrequenzen kann für eine genauere Messung von P die Länge mehrerer Perioden ausgemessen werden. Zur MTF-Bestimmung wird die Modulationshöhe M(u) normiert auf die Modulation M0 bei Ortsfrequenz u=0. M0 kann ermittelt werden aus dem Kontrast der Rechteck-Strukturen bei niederen Ortsfrequenzen (Bild SWRF-MTF- TestChart.TIF, oben-rechts). Tragen Sie den Verlauf der MTF in Abhängigkeit der Ortsfrequenz auf (es soll hierzu die MTF bei mindestens 10 Ortsfrequenzen bestimmt werden). Aus MTF(u) wird die Übertragungscharakteristik eines Wiener-Restauration-Filters für das Bilderfassungssystem berechnet und im MTF-Plot dargestellt (vergl. Vorl. G.7e). Hierbei soll von einem konstanten System-Rauschen ausgegangen werden, das (in Einheiten der MTF umgerechnet) eine Höhe von N(u) 0.3 hat. Wie verhält sich das Wiener-Filter bei anderen Rauschhöhen? Aufgabe 5: Bildschärfung in der digitalen Radiographie. Durch Filter zur Bildschärfung lassen sich in der digitalen Röntgentechnik bemerkenswerte Bildverbesserungen erzielen. Die folgenden Bildbeispiele eines digitalen Röntgendetektors (Philips) sollen mit dem Operator V 8 verbessert werden. Testen Sie für die verschiedenen Anwendungen den Bildschärfungs - Operator mit verschiedenen a-parametern. Welchen Grad der Bildschärfung (a-parameter) halten Sie für die verschiedenen Anwendungen für optimal? Bildbeispiele: SC_SK3.TIF SC_SK2.TIF SC_CH2.TIF DVI_BR_2.TIF (Schädel, lat.) (Schädel) (Lunge) (Digitale Subtraktionsangiographie, DAS) img_pk_05 ImageJ -7-

8 Anhang A: Implementation des Bildschärfungs - Operator V 8 in ImageJ. Der Bildschärfungs-Operator V 8 ist in folgender Weise definiert (vergl. Vorlesung F.4f(i) ): a - a -a V 8 = a * = -a 1+8*a -a a - a -a Bildfilter mit einem speziellen Filterkern wie der V 8 Bildschärfungs-Operator können in ImageJ mit Hilfe des Menüs Process / Filters / Convolve ausgeführt werden. Die Filterkern wird hierzu in dem Convolver -Fenster eingegeben (vergl. Abb.5). Abb. 5: Convolver... -Fenster zur Eingabe des Filterkerns. Bem.: Der im Convolver -Fenster einzugebender Filterkern hat keine Einschränkung in der Dimension. Er muss aber quadratisch sein (N*N- Kernel; N ungerade). Die einzelnen Koeffizienten des Kerns (integer oder real) werden durch ein Leerzeichen getrennt. Jede Zeile des Filterkerns wird durch ein Return abgeschlossen. Wird Normalize Kernel im Convolver -Fenster angewählt, wird die Filteroperation normiert entsprechend der Summe der Filterkoeffizienten. img_pk_05 ImageJ -8-

9 Ist Normalize Kernel aktiviert, kann der V 8 Bildschärfungs-Operator durch folgenden Filterkern realisiert werden: X Bei dieser Operation wird automatisch ein Normierungswert von 1/(X-8) verwendet, so dass zu der oben angegebenen Form des V 8 Operators die Beziehung besteht: 1/(X-8) = a bzw. X = 8 + 1/a. img_pk_05 ImageJ -9-

Praktikum 1. Bildverarbeitungs - Software ImageJ LUT Manipulationen Bild - Quantisierung

Praktikum 1. Bildverarbeitungs - Software ImageJ LUT Manipulationen Bild - Quantisierung Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_01 ImageJ.doc Praktikum 1 Digitale Bildverarbeitung Bildverarbeitungs - Software ImageJ LUT Manipulationen Bild - Quantisierung

Mehr

Praktikum 2. Grauwert - Histogramme, Bimodalitätsanalyse Bildstatistik

Praktikum 2. Grauwert - Histogramme, Bimodalitätsanalyse Bildstatistik Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_02 ImageJ.doc Praktikum 2 Digitale Bildverarbeitung Grauwert - Histogramme, Bimodalitätsanalyse Bildstatistik Themen: Auswertung

Mehr

Praktikum 6. Digitale Bildverarbeitung

Praktikum 6. Digitale Bildverarbeitung Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_06 ImageJ.doc Praktikum 6 Digitale Bildverarbeitung Industrielle Bildverarbeitung (Machine Vision) Fertigungskontrolle von Unterlegscheiben

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag WS 05/06 Fachbereich M+I der FH-Offenburg Dipl.-Math. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Versuch C: Auflösungsvermögen Einleitung

Versuch C: Auflösungsvermögen Einleitung Versuch C: svermögen Einleitung Das AV wird üblicherweise in Linienpaaren pro mm (Lp/mm) angegeben und ist diejenige Anzahl von Linienpaaren, bei der ein normalsichtiges Auge keinen Kontrastunterschied

Mehr

Praktikum 4. Bildverknüpfungen Bildfilter (Teil I)

Praktikum 4. Bildverknüpfungen Bildfilter (Teil I) Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_04 ImageJ.doc Praktikum 4 Digitale Bildverarbeitung Bildverknüpfungen Bildfilter (Teil I) Themen: Rauschunterdrückung durch Bild

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Pipeline Pipelinestufen können sich unterscheiden, beinhalten aber i.d.r. eine Stufe zur Bildvorverarbeitung zur

Mehr

Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99

Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99 Struktur des menschlichen Auges 2 / 99 Detektoren im Auge Ca. 100 150 Mio. Stäbchen Ca. 1 Mio. Zäpfchen 3 / 99 Zapfen Entlang der Sehachse, im Fokus Tagessehen (Photopisches Sehen) Scharfsehen Farbsehen

Mehr

Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003

Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003 Name:........................................ Vorname:..................................... Matrikelnummer:.............................. Bitte Studiengang ankreuzen: Computervisualistik Informatik Hauptklausur

Mehr

Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg

Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg Bildverbesserung Frequenz-, Punkt- und Maskenoperationen Filtern im Frequenzraum Fouriertransformation f(x)->f( ) Filter-Multiplikation F =FxH Rücktransformation F ( )->f (x) local-domain frequency-domain

Mehr

Bildgebung mit Röntgenstrahlen. Bildqualität

Bildgebung mit Röntgenstrahlen. Bildqualität Bildqualität Scanogramm Röntgen- Quelle Detektor Entwicklung Verarbeitung Tomogramm Einflussfaktoren Rauschen Kontrast Schärfe System- Rauschen (Verstärker) Strahlen- Dosis (Quantenrauschen) Objekt- Dicke

Mehr

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche

Mehr

Bildverarbeitung Herbstsemester

Bildverarbeitung Herbstsemester Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Filter Filter 1 Inhalt Lineare und nichtlineare Filter Glättungsfilter (z.b. Gauss-Filter) Differenzfilter (z.b. Laplace-Filter) Lineare Faltung

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Versuch 4. Standardmessungen mit dem Oszilloskop. Gruppe: Tisch: Versuchsdatum: Teilnehmer: Korrekturen: Testat:

Versuch 4. Standardmessungen mit dem Oszilloskop. Gruppe: Tisch: Versuchsdatum: Teilnehmer: Korrekturen: Testat: Versuch 4 Standardmessungen mit dem Oszilloskop Gruppe: Tisch: Versuchsdatum:.. Teilnehmer: Korrekturen: Testat: Vers. 17/18 Versuch 4 1 / 5 Lernziel und grundsätzliche Vorgehensweise bei der Protokollerstellung

Mehr

Beispielprojekt: Datenloggen mit MSD200 und Auswertung mit Tabellenkalkulation (Teil 2)

Beispielprojekt: Datenloggen mit MSD200 und Auswertung mit Tabellenkalkulation (Teil 2) Beispielprojekt: Datenloggen mit und Auswertung mit Tabellenkalkulation (Teil 2) Im zweiten Teil dieses Beispielprojektes Datenloggen mit und Auswertung mit Tabellenkalkulation gehen wir auf das Weiterverarbeiten

Mehr

Ortsauflösung in der Computertomographie Vergleich von MTF und Linienpaarstrukturen

Ortsauflösung in der Computertomographie Vergleich von MTF und Linienpaarstrukturen DGZfP-Jahrestagung 2011 - Mo.3.B.1 Ortsauflösung in der Computertomographie Vergleich von MTF und Linienpaarstrukturen Andreas STAUDE, Jürgen GOEBBELS BAM Bundesanstalt für Materialforschung und -prüfung,

Mehr

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2 Was bisher geschah digitale Bilder: Funktion B : pos col Matrix B col pos statistische Merkmale Punktoperationen f : col 1 col 2 (Bildanalyse) (Farbtransformation) Geometrische Operationen f : pos 1 pos

Mehr

Systemtheorie abbildender Systeme

Systemtheorie abbildender Systeme Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken

Mehr

Übungen zum MATLAB Kurs Teil

Übungen zum MATLAB Kurs Teil Übungen zum MATLAB Kurs Teil 1 29.09.04 Indizierung Erzeugen Sie eine 5 x 5 Matrix A mit der Funktion rand Überlegen und testen Sie die Ergebnisse der folgende Ausdrücke: A([3 5],:) A(2,:) A([3,5]) A(:)

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz Filter Industrielle Bildverarbeitung, Vorlesung No. 5 1 M. O. Franz 07.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Lineare Filter 2 Formale

Mehr

Einführung in das 6. Aufgabenblatt: Bildverarbeitung und Klassifkation

Einführung in das 6. Aufgabenblatt: Bildverarbeitung und Klassifkation Einführung in das 6. Aufgabenblatt: Bildverarbeitung und Klassifkation Philippe Dreuw dreuw@i6.informatik.rwth-aachen.de Praktikum im Grundstudium SS 2007 28. Juni 2007 Human Language Technology and Pattern

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

Informatik I. Matthias Geel Büro: IFW A Blog:

Informatik I. Matthias Geel Büro: IFW A Blog: Informatik I Matthias Geel Büro: IFW A45.2 E-Mail: geel@inf.ethz.ch Blog: http://blogs.ethz.ch/infitet09/ Übersicht 1. Nachbesprechung Übung 5 2. Theorie: Ein- und Ausgabe 3. Vorbesprechung Übung 7 09.11.2009

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt im Juni 2016 Themen: Digitale Bilder, Eigenschaften

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?

Mehr

Praktikum 7. Industrielle Bildverarbeitung (Machine Vision) Differenzbild-Analyse zur Zahlenerkennung. Digitale Bildverarbeitung

Praktikum 7. Industrielle Bildverarbeitung (Machine Vision) Differenzbild-Analyse zur Zahlenerkennung. Digitale Bildverarbeitung Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_07 ImageJ.doc Praktikum 7 Digitale Bildverarbeitung Industrielle Bildverarbeitung (Machine Vision) Differenzbild-Analyse zur Zahlenerkennung

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, wie lineare

Mehr

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten TGM Abteilung Elektronik und Technische Informatik Übungsbetreuer Dokumentation und Auswertung Prof. Zorn Labor Jahrgang 3BHEL Übung am 10.01.2017 Erstellt am 11.01.2017 von Poppenberger Übungsteilnehmer

Mehr

Digitale Bildverarbeitung Einheit 6 Punktoperationen

Digitale Bildverarbeitung Einheit 6 Punktoperationen Digitale Bildverarbeitung Einheit 6 Punktoperationen Lehrauftrag WS 06/07 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Elementare Bildverbesserung

Mehr

Readme zum Filterbastler

Readme zum Filterbastler Dies ist ein kleines Delphi-Projekt, was ich mir zum Ausprobieren von digitalen FIR-Filtern geschrieben habe. Es ist im Grunde kein echtes Nutzprogramm, obwohl es ein paar nützliche Dinge beinhaltet. Im

Mehr

Excel Grundlagen. Peter Wies. 1. Ausgabe, Februar 2013

Excel Grundlagen. Peter Wies. 1. Ausgabe, Februar 2013 Excel 2013 Peter Wies 1. Ausgabe, Februar 2013 Grundlagen EX2013 3 Excel 2013 - Grundlagen Die folgende Tabelle zeigt Beispiele für häufige Fehler bei der Eingabe von Formeln: Fehlerbeschreibung Beispiel

Mehr

Kenngrößen von Projektoren

Kenngrößen von Projektoren Praktikum Juli 25 Fachgebiet Lichttechnik Bearbeiter: Torsten Maaß Kenngrößen von Projektoren (Lichttechnische Leistungsmerkmale). Ziel des Praktikumsversuches Ziel soll es sein, die lichttechnischen Parameter

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

9.3 Lineare Regression

9.3 Lineare Regression 9.3 Lineare Regression 115 A B C D E F G H 1 2 Pearsonscher Korrelationskoeffizient 3 4 5 6 x-werte y-werte ANALYSE ASSISTENT 7 2,4-4 8 3,2-1 9 8,3 6,4 Spalte 1 Spalte 2 10 6,4 6 Spalte 1 1 11 7,2 6,3

Mehr

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter 6. Aktive Filter Filterschaltungen sind Schaltungen mit einer frequenzabhängigen Übertragungsfunktion. Man unterscheidet zwischen Tief, Hoch und Bandpässen sowie Sperrfiltern. Diesen Filtern ist gemeinsam,

Mehr

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:... Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich

Mehr

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten TGM Abteilung Elektronik und Technische Informatik Übungsbetreuer Dokumentation und Auswertung Prof. Zorn Labor Jahrgang 3BHEL Übung am 10.01.2017 Erstellt am 11.01.2017 von Poppenberger Übungsteilnehmer

Mehr

Mehrfache Lineare Regression 1/9

Mehrfache Lineare Regression 1/9 Mehrfache Lineare Regression 1/9 Ziel: In diesem Fallbeispiel soll die Durchführung einer mehrfachen linearen Regressionsanalyse auf der Basis vorhandener Prozessdaten (Felddaten) beschrieben werden. Nach

Mehr

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min Thema: Experimente mit Interferometern Im Mittelpunkt der in den Aufgaben 1 und 2 angesprochenen Fragestellungen steht das Michelson-Interferometer. Es werden verschiedene Interferenzversuche mit Mikrowellen

Mehr

Übung zur Vorlesung 2D Grafik Wintersemester 05/06. Otmar Hilliges

Übung zur Vorlesung 2D Grafik Wintersemester 05/06. Otmar Hilliges Übung zur Vorlesung 2D Grafik Wintersemester 05/06 Übungsblatt 5 Musterlösung auf der Übungsseite. https://wiki.medien.ifi.lmu.de/pub/main/uebung2dgrafikws 0506/FFT_LSG.jar Page 2 transform() for (y =

Mehr

Multiskalenanalyse. Any view depends on the viewpoint!

Multiskalenanalyse. Any view depends on the viewpoint! Multiskalenanalyse Any view depends on the viewpoint! Multiskalenanalyse Motivation Aufwandsminimierung bei Filterung Objekterkennung, Segmentierung Textur Klassifikation Mosaicing rundlagen Signaltheorie

Mehr

Anhang: Ungarische Methode

Anhang: Ungarische Methode Ungarische Methode 107 Anhang: Ungarische Methode Zum Schluss des Kurses soll noch der Algorithmus der Ungarischen Methode beschrieben werden. Wir lehnen uns hierbei eng an der Darstellung von DOMSCHKE

Mehr

Kurzanleitung HP49G. Überschrift NAME() des Befehls und über welche TASTEN der Befehl im Menü gefunden wird. Wie der Befehl eingesetzt werden kann.

Kurzanleitung HP49G. Überschrift NAME() des Befehls und über welche TASTEN der Befehl im Menü gefunden wird. Wie der Befehl eingesetzt werden kann. Kurzanleitung HPG Inhalt. Allgemeines. Das Dateisystem. Wichtige e. Arbeiten mit Matrizen. Allgemeines Alle Angaben in dieser Anleitung beziehen sich auf den Algebraischen Modus und nicht auf den RPN Modus.

Mehr

Binärbildverarbeitung

Binärbildverarbeitung Prof. Dr. Wolfgang Konen, Thomas Zielke Binärbildverarbeitung SS06 4.1 Konen, Zielke Anwendungen von Binärbildern Ein Bild mit nur zwei Grau/Farb-Stufen nennt man Binärbild. In der Regel werden Bildpunkte

Mehr

Übungen mit dem Applet Kurven in Parameterform

Übungen mit dem Applet Kurven in Parameterform Kurven in Parameterform 1 Übungen mit dem Applet Kurven in Parameterform 1 Ziele des Applets... Wie entsteht eine Kurve in Parameterform?... 3 Kurvenverlauf für ausgewählte x(t) und y(t)... 3 3.1 x(t)

Mehr

Frequenzselektive Messungen

Frequenzselektive Messungen Mathias Arbeiter 31. Mai 2006 Betreuer: Herr Bojarski Frequenzselektive Messungen Aktive Filter und PEG Inhaltsverzeichnis 1 Aktive Filter 3 1.1 Tiefpass.............................................. 3

Mehr

Einführung in die medizinische Bildverarbeitung SS 2013

Einführung in die medizinische Bildverarbeitung SS 2013 Einführung in die medizinische Bildverarbeitung SS 2013 Stephan Gimbel 1 Kurze Wiederholung Gradienten 1. und 2. Ableitung grad( f ( x, y) ) = f ( x, y) = f ( x, y) x f ( x, y) y 2 f ( x, y) = 2 f ( x,

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

Einführungsveranstaltung Grundlagen der Praktika

Einführungsveranstaltung Grundlagen der Praktika Einführungsveranstaltung Grundlagen der Praktika Dipl.-Ing. (FH) Sven Slawinski, Dipl.-Ing. (FH) Denny Ehrler sven.slawinski@fh-zwickau.de Tel.: +49 (0) 375 536 1405 denny.ehrler@fh-zwickau.de Tel.: +49

Mehr

CalcVectorPC v Veröffentlicht 2016 Copyright S-cubic GmbH. Krebsbachstr. 12 D Bergisch Gladbach

CalcVectorPC v Veröffentlicht 2016 Copyright S-cubic GmbH. Krebsbachstr. 12 D Bergisch Gladbach CalcVectorPC v1.0.0 CalcVectorPC v1.0.0 Veröffentlicht 2016 Copyright 2016 S-cubic GmbH Krebsbachstr. 12 D-51429 Bergisch Gladbach Tel +49 (0) 2204 9160 30 Fax +49 (0) 2204 9199 416 email: info@s-cubic.de

Mehr

Einführung in die Praktische Informatik. Übungsblatt 3. PD Dr. U. Köthe Heidelberg, 7. November Aufgabe 3.1 Gaußsche Osterregel [6 Punkte]

Einführung in die Praktische Informatik. Übungsblatt 3. PD Dr. U. Köthe Heidelberg, 7. November Aufgabe 3.1 Gaußsche Osterregel [6 Punkte] Einführung in die Praktische Informatik PD Dr. U. Köthe Heidelberg, 7. November 2016 Übungsblatt 3 Aufgabe 3.1 Gaußsche Osterregel [6 Punkte] Erstellen Sie ein Programm, das mit dem Algorithmus von Gauß

Mehr

[ZVEI] Deutschland Anleitung zur Prüfung der Automatischen Dosismodulation an CT von GE Healthcare. Scan Techniken und Parameter

[ZVEI] Deutschland Anleitung zur Prüfung der Automatischen Dosismodulation an CT von GE Healthcare. Scan Techniken und Parameter [ZVEI] Deutschland Anleitung zur Prüfung der Automatischen Dosismodulation an CT von GE Healthcare Scan Techniken und Parameter Platzieren Sie das CTDI Phantom horizontal liegend zentriert auf dem CT-Tisch

Mehr

Einsatz von CAS im Mathematikunterricht Klasse 8

Einsatz von CAS im Mathematikunterricht Klasse 8 Einsatz von CAS im Mathematikunterricht Klasse 8 Beispiele für den Einsatz des Voyage 200 im Lernbereich 3 Funktionen und lineare Gleichungssysteme Darstellungsformen von Funktionen Eigenschaften ganz-

Mehr

Versuch 5: Filterentwurf

Versuch 5: Filterentwurf Ziele In diesem Versuch lernen Sie den Entwurf digitaler Filter, ausgehend von der Festlegung eines Toleranzschemas für den Verlauf der spektralen Charakteristik des Filters, kennen. Es können Filtercharakteristiken

Mehr

Digitale Bildverarbeitung Einheit 6 Punktoperationen

Digitale Bildverarbeitung Einheit 6 Punktoperationen Digitale Bildverarbeitung Einheit 6 Punktoperationen Lehrauftrag WS 05/06 Fachbereich M+I der FH-Offenburg Dipl.-Math. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Elementare

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation Organisatorisches Neue Abgabefrist für Blatt

Mehr

Natürliches Licht und Farbfilter

Natürliches Licht und Farbfilter 4. Versuchsdurchführung 4.1. Bestimmen der Gitterkonstante abor zum Physikalisches Praktikum Natürliches icht und Farbfilter Die Entfernung zwischen Gitter und Intensitätsmeßgerät beträgt 1,20m. Der Abstand

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

OpenOffice Writer 4 / LibreOffice Writer 4. Grundlagen. Peter Wies. 1. Ausgabe, Oktober 2014 OOW4LOW4

OpenOffice Writer 4 / LibreOffice Writer 4. Grundlagen. Peter Wies. 1. Ausgabe, Oktober 2014 OOW4LOW4 Peter Wies 1. Ausgabe, Oktober 2014 OpenOffice Writer 4 / LibreOffice Writer 4 Grundlagen OOW4LOW4 8 OpenOffice Writer 4 / LibreOffice Writer 4 - Grundlagen 8 Dokumente mit Illustrationen gestalten In

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Landmarkenbasierte anhand anatomischer Punkte interaktiv algorithmisch z.b. zur Navigation im OP Markierung von

Mehr

Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich), Phys. Technik / Bio.Med. Technik. EDV - Praktikum (4)

Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich), Phys. Technik / Bio.Med. Technik. EDV - Praktikum (4) Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich), Phys. Technik / Bio.Med. Technik i:\lab_doc\hillen\edv_prak\pas_pr04.doc EDV - Praktikum (4) Thema: Anwendung von Schleifen Verwendung von Auswahlanweisungen

Mehr

4. Bildqualitätsverbesserung

4. Bildqualitätsverbesserung 4. Bildqualitätsverbesserung 4.1 Kantenanschärfung Die subjetiv empfundene Bildqualität hängt zu einem wesentlichen Teil von der Kantenschärfe der vorhandenen Konturen ab. Weiche Übergänge vermitteln einen

Mehr

Simulation einer Mikrostreifenleitung mit Tiefpasscharakteristik. Khaoula Guennoun Torsten Finger Jan-Frederic Overbeck

Simulation einer Mikrostreifenleitung mit Tiefpasscharakteristik. Khaoula Guennoun Torsten Finger Jan-Frederic Overbeck Fachhochschule Aachen Master Telekommunikationstechnik Elektrotechnik und Informationstechnik Lehrgebiet: Hoch- und Höchstfrequenztechnik Prof. Dr. Ing. H. Heuermann Simulation einer Mikrostreifenleitung

Mehr

Digitale Bildverarbeitung - Rechnerübung 3

Digitale Bildverarbeitung - Rechnerübung 3 Digitale Bildverarbeitung - Rechnerübung 3 1. Khoros Zur Durchführung der Rechnerübung wird das Programmpaket KHOROS mit seiner Benutzerschnittstelle Cantata verwendet. Nach der Anmeldung am Rechner durch

Mehr

Fourierreihen und Spektrenanalyse Protokoll 11

Fourierreihen und Spektrenanalyse Protokoll 11 Fourierreihen und Spektrenanalyse Protokoll 11 Messtechnik II für KEB, TFH Berlin, Gruppe D 17. Januar 27 Torben Zech 738845 Martin Henning 73615 Abdurrahman Namdar 73968 Inhaltsverzeichnis 1 Grundgedanke

Mehr

Gedächtnisprotokoll zur ADELE-Klausur vom (Prof. Orglmeister)

Gedächtnisprotokoll zur ADELE-Klausur vom (Prof. Orglmeister) 1. Aufgabe: Bandsperre Gegeben war das Toleranzschema einer Bandsperre über der normierten Frequenz (vgl. Abb. 1, links). Abbildung 1: Toleranzschema Die Verstärkung im Durchlassbereich sollte 1/ 2 betragen,

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Excel 2010 für Windows. Aufbaukurs kompakt. Peter Wies 1. Ausgabe, 2. Aktualisierung, Dezember Trainermedienpaket K-EX2010-AK_TMP

Excel 2010 für Windows. Aufbaukurs kompakt. Peter Wies 1. Ausgabe, 2. Aktualisierung, Dezember Trainermedienpaket K-EX2010-AK_TMP Peter Wies 1. Ausgabe, 2. Aktualisierung, Dezember 2013 Excel 2010 für Windows Aufbaukurs kompakt medienpaket K-EX2010-AK_TMP hinweise Unterrichtsdauer und Medien Abschnitt Mitgelieferte Medien 3.1 Den

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Lehrauftrag SS 2007 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Lehrauftrag WS 2007/2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik Herzlich Willkommen zum Fachvortrag Mess-Signale und Mess-Strategien von Harald Bonsel ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik Harald Bonsel Fachvortrag: Messsignale und

Mehr

Die Zentripetalkraft Praktikum 04

Die Zentripetalkraft Praktikum 04 Die Zentripetalkraft Praktikum 04 Raymond KNEIP, LYCEE TECHNIQUE DES ARTS ET METIERS November 2015 1 Zielsetzung Die Gleichung der Zentripetalkraft F Z (Zentralkraft, auch Radialkraft genannt) wird auf

Mehr

>> Die Mathematik hinter den Tönen >>

>> Die Mathematik hinter den Tönen >> Embedded System Technologies >> Die Mathematik hinter den Tönen >> Fuldaer Brückenkurs Mathematik Sebastian Wendt Schallwandlung Schall, Töne, Musik => Luftdruckänderungen Ein Mikrofon wandelt Luftdruckänderungen

Mehr

Autofokus für das MONET-Teleskop. Projektwoche 2013 im Pascal-Gymnasium Münster AiM-Projektgruppe

Autofokus für das MONET-Teleskop. Projektwoche 2013 im Pascal-Gymnasium Münster AiM-Projektgruppe Autofokus für das MONET-Teleskop Projektwoche 2013 im Pascal-Gymnasium Münster AiM-Projektgruppe Einführung Wir gehen davon aus, dass ein Bild mit einem kleinen mittleren Sternendurchmesser eher für eine

Mehr

Morphologische Filter

Morphologische Filter Morphologische Filter Industrielle Bildverarbeitung, Vorlesung No. 8 1 M. O. Franz 28.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Morphologische

Mehr

Handbuch OEE Anlage. Viktor Bitter

Handbuch OEE Anlage. Viktor Bitter / Handbuch OEE Anlage Viktor Bitter info@oeehelp.de 26.09.2014 Inhaltsverzeichnis 1 Versionshistorie... 2 2 Beschreibung... 2 3 Systemvoraussetzungen... 2 4 Erste Schritte... 3 5 Eingabe der Daten... 4

Mehr

Hilfekarte CASIO CFX-9850GB Plus. Kapitel / Ziel Eingabe Bildschirmanzeige Ableitungen berechnen und darstellen

Hilfekarte CASIO CFX-9850GB Plus. Kapitel / Ziel Eingabe Bildschirmanzeige Ableitungen berechnen und darstellen Hilfekarte CASIO CFX-9850GB Plus Ableitungen berechnen und darstellen Ableitung einer Funktion (in Y1) an einer bestimmten Stelle berechnen, z. B. f (2) für f mit f (x) = x 3 2 x. Menu 1 F2 : d/dx vars

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

S.M. Hartmann GmbH IT Solutions

S.M. Hartmann GmbH IT Solutions S.M. Hartmann GmbH 82008 Unterhaching Prager Straße 7 www.smhsoftware.de S.M. Hartmann GmbH IT Solutions Software für den modernen Handel Zusatzmodule Version V6.0 Vorgangsbeschreibung SMH-Modul: Statistik

Mehr

Protokoll Grundpraktikum: F0: Auswertung und Präsentation von Messdaten

Protokoll Grundpraktikum: F0: Auswertung und Präsentation von Messdaten Protokoll Grundpraktikum: F0: Auswertung und Präsentation von Messdaten Sebastian Pfitzner 19. Februar 013 Durchführung: Sebastian Pfitzner (553983), Jannis Schürmer (5589) Betreuer: N. Haug Versuchsdatum:

Mehr

A= A 1 A 2. A i. A= i

A= A 1 A 2. A i. A= i 2. Versuch Durchführung siehe Seite F - 3 Aufbau eines zweistufigen Verstärkers Prof. Dr. R Schulz Für die Verstärkung 'A' eines zwei stufigen Verstärkers gilt: oder allgemein: A= A 1 A 2 A= i A i A i

Mehr

4. Segmentierung von Objekten Video - Inhaltsanalyse

4. Segmentierung von Objekten Video - Inhaltsanalyse 4. Segmentierung von Objekten Video - Inhaltsanalyse Stephan Kopf Inhalt Vorgehensweise Berechnung der Kamerabewegungen zwischen beliebigen Bildern Transformation eines Bildes Hintergrundbilder / Panoramabilder

Mehr

Distributed Algorithms. Image and Video Processing

Distributed Algorithms. Image and Video Processing Chapter 7 High Dynamic Range (HDR) Distributed Algorithms for Quelle: wikipedia.org 2 1 High Dynamic Range bezeichnet ein hohes Kontrastverhältnis in einem Bild Kontrastverhältnis bei digitalem Bild: 1.000:1

Mehr

ANLEITUNG TIROLSOLAR

ANLEITUNG TIROLSOLAR ANLEITUNG TIROLSOLAR RÄUMLICH HOCHAUFGELÖSTE SOLARPOTENTIALKARTE TirolSolar ist ein webbasiertes Online-Tool mit räumlich hochaufgelösten Solarpotentialkarten und entwickelten konkreten Empfehlungen zur

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Menue Vorher Nachher Bemerkungen

Menue Vorher Nachher Bemerkungen Menue Vorher Nachher Bemerkungen Symbol Average Fügt das Durchschnittssymbol ein Symbol Delta Fügt das Deltadreieckein ein Symbol Count Fügt das Aufzählungszeichen ein Symbol Sum Σ Fügt das Summenzeichen

Mehr

7. Grundlagen von Rasterdaten

7. Grundlagen von Rasterdaten 7. Grundlagen von Rasterdaten 1. Einführung 2. Speicherung von Rasterdaten 3. Eigenschaften von Rasterdaten Geo-Informationssysteme 184 Definitionen 7.1 Einführung (I) Rasterdaten beschreiben die Geometrie

Mehr