Übung: Computergrafik 1
|
|
|
- Hansl Stein
- vor 7 Jahren
- Abrufe
Transkript
1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation
2 Organisatorisches Neue Abgabefrist für Blatt 8: KOMMENDER Freitag, 3.7. Kommende Übungsblätter: Blatt 9 (Fouriertransformationen) seit 26.6., Abgabe zwei Wochen später Blatt 10 (Region Growing), 3.7., Abgabe zwei Wochen später Blatt 11 (Klausurvorbereitung), keine Abgabe! Kommende Übungen: Region Growing, Klausurvorbereitung Klausurtermin: , 16:30-18:30 Uhr Übung Computergrafik 1 SoSe
3 Bilder im Frequenzraum Übung Computergrafik 1 SoSe
4 Bilder im Frequenzraum Normalerweise arbeiten wir mit Bildern die als Helligkeitswerte (im Graustufenfall) in zwei Dimensionen definiert sind (Ortsraum) Bilder lassen sich allerdings auch in den Frequenzraum konvertieren, was manche Filter wie Weich- oder Scharfzeichner deutlich weniger rechenaufwändig macht Bisheriger Weg: Konvolutionen Komplexität: O(N^4) Im Frequenzraum: Komplexität: O(N^2) (+ Fouriertransformation) Übung Computergrafik 1 SoSe
5 Wiederholung: JPEG-Kompression Übung Computergrafik 1 SoSe
6 Wiederholung: JPEG-Kompression Übung Computergrafik 1 SoSe
7 Diskrete Fouriertransformation Übung Computergrafik 1 SoSe
8 DFT Approximiere Signal durch eine gewichtete Summe von periodischen Basisfunktionen Übung Computergrafik 1 SoSe
9 DFT Bilder können als Funktionen mit zwei Parametern aufgefasst werden: f (x, y) = Helligkeitswert Eine Fourierreihe ist die Darstellung einer periodischen Funktion als gewichtete Summe von Kosinus- und Sinusfunktionen (hier: Funktion mit einem Parameter): (Quelle: Übung Computergrafik 1 SoSe
10 DFT Da lässt sich die Formel vereinfachen (hier jetzt zweidimensional): (Quelle: Übung Computergrafik 1 SoSe
11 DFT Die allgemeine Fourierreihe arbeitet auf einem kontinuierlichen Signal Wenn wir Bilder als Signale interpretieren haben wir diskrete Werte (an jedem Bildpunkt). Es ist also nicht mehr notwendig zu integrieren (d.h. die Fläche unter dem Graphen zu berechnen) sondern es reicht die einzelnen Messpunkte zu addieren: (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
12 DFT Dabei ist F(u,v) eine komplexe Zahl, d.h. sie hat einen Real- und Imaginärteil u ist die Anzahl der Frequenzen entlang der m-achse (also 0,..., M - 1) v ist die Anzahl der Frequenzen entlang der n-achse (also 0,..., N - 1) (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
13 DFT - Graphisch (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
14 DFT - Beispiele (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
15 DFT - Beispiele (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
16 DFT - Spektrum F(u,v) ist eine komplexe Zahl, aber leider ist sie wenig anschaulich Daher konvertiert man F(u,v) normalerweise in das sog. Spektrum Dazu nutzt man diese Gleichung: Das Spektrum setzt sich aus Amplitude und Phase zusammen: (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
17 DFT - Spektrum Was sagen Amplitude und Phase aus? Amplitude gibt die Helligkeit der Bildpunkte wieder Halbieren wir die Amplitude ist das Ergebnisbild nur noch halb so hell Oft Ansatzpunkt für Kompression weil Helligkeitsunterschiede vom menschlichen Auge nicht sehr genau aufgelöst werden Phase bestimmt Positionen im Bild Veränderungen verzerren das Bild - deshalb bleibt die Phase normalerweise unverändert (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
18 DFT - Spektrum (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
19 DFT - Spektrum Übung Computergrafik 1 SoSe
20 DFT - Spektrum Übung Computergrafik 1 SoSe
21 Schnelle Fouriertransformation Übung Computergrafik 1 SoSe
22 DFT Größtes Problem der DFT: Performance! Sehr komplexer Algorithmus mit einer Laufzeit von O(N^4) für ein N x N Bild Um einen Wert von F(u,v) zu berechnen müssen alle Pixel des Bilds (also N x N) betrachtet werden. Und das muss natürlich für jedes Pixel passieren. Unter der Annahme das das Multiplizieren für komplexe Zahlen eine Microsekunde dauert, braucht DFT für ein 1024 x 1024 Bild 12 Tage (!) (Quelle: Efford - Digital Image Processing using Java) Übung Computergrafik 1 SoSe
23 FFT Lösung: Schnelle (Fast) Fouriertransformation Verschiedene existierende Ansätze, bei denen verschiedene Eigenarten der Fouriertransformation ausgenutzt werden Im Folgenden wird der Algorithmus von Cooley und Tukey (1965) (ursprünglich: Gauss) beschrieben (Quelle: Übung Computergrafik 1 SoSe
24 FFT Erste Idee: Ausnutzung der Separabilität der FT. Eine Funktion heißt linear separierbar wenn gilt: Die beiden geschachtelten Summationen der FT sind separabel (ähnlich wie manche Konvolutionskernel): Anstatt also die geschachtelte DFT mit O(N^4) auszuführen, werden Zeilen und Spalten nacheinander als lineare FTs berechnet. Die sich ergebende Komplexität ist damit O(N^3) (O(N) pro Pixel) (Quelle: Übung Computergrafik 1 SoSe
25 FFT Weiterer Trick: Divide-And-Conquer Nach dem Separierschritt arbeiten wir nur noch mit eindimensionalen FTs Da wir mit einer Summation arbeiten lässt sich die DFT umformulieren. Von: nehmen wir jeweils die geraden und ungeraden Koeffizienten (K = N/2): (Quelle: Tönnies - Grundlagen der Bildverarbeitung) Übung Computergrafik 1 SoSe
26 FFT - Divide... Nochmal anders formuliert: Die Fourierreihe lässt sich als Polynom betrachten: Wir nehmen dieses Polynom und teilen es in gerade und ungerade Koeffizienten auf: Das lässt sich natürlich beliebig wiederholen Falls N eine Zweierpotenz ist können wir sogar teilen bis wir am Ende N Polynome haben (Quelle: Übung Computergrafik 1 SoSe
27 FFT -... and... Wenn wir die beiden Formeln etwas anders ausdrücken: können wir die ursprüngliche (komplette) Formel so schreiben: (Quelle: Tönnies - Grundlagen der Bildverarbeitung) Übung Computergrafik 1 SoSe
28 FFT -... Conquer Bisher haben wir noch nichts dadurch gewonnen, da wir weiterhin die gleiche Anzahl von Rechenschritten haben (statt einem großen Polynom haben wir N kleine Polynome). WN heißt primitive n-te Einheitswurzel. Für diese gelten folgende Eigenschaften: Das heißt also dass sich WN periodisch wiederholt (nach einem Durchlauf beginnt es wieder von vorne) Wir können also die berechneten Werte von 0 bis K - 1 nutzen um die Werte von K bis N - 1 zu berechnen und sparen uns die Hälfte des Aufwands! (Quelle: Tönnies - Grundlagen der Bildverarbeitung) Übung Computergrafik 1 SoSe
29 FFT -... Conquer Wir wandeln nochmal die Formel um: Für 0,..., K - 1 nutzen wir die ursprüngliche Formel, für K,..., N - 1 die obenstehende. (Quelle: Tönnies - Grundlagen der Bildverarbeitung) Übung Computergrafik 1 SoSe
30 FFT -... Conquer Weil wir nicht nur einmal, sondern log(n) mal teilen brauchen wir auch entsprechend viele Conquer-Schritte und müssen die Ergebnisse miteinander verrechnen Dazu nutzt man die Butterfly (Schmetterlings) Notation. Für jeden Wert wird eine Gerade angetragen Ein Kreis mit zwei Pfeilen symbolisiert eine Addition der beiden Werte, kann aber auch beliebige andere Operatoren enthalten Vorher wird noch mit eventuellen Faktoren die an den Pfeilen stehen multipliziert. (Quelle: Übung Computergrafik 1 SoSe
31 FFT -... Conquer Der Conquer-Schritt für unsere Berechnungsformeln von vorher: lässt sich in dieses Diagramm umwandeln: (Quelle: Übung Computergrafik 1 SoSe
32 FFT -... Conquer Der allgemeine Butterfly ist: Dieser kann auch mehrfach hintereinander angewendet werden. (Quelle: Übung Computergrafik 1 SoSe
33 FFT -... Conquer (Quelle: Übung Computergrafik 1 SoSe
34 FFT -... Conquer Die FFT kann in einem Puffer mit N Werten durchgeführt werden. Dabei müssen zuerst die Signale umsortiert und danach der Butterfly Algorithmus mehrfach angewendet werden Diese Umsortierung läuft folgendermaßen (Beispiel: N=8): (0, 1, 2, 3, 4, 5, 6, 7) wird aufgeteilt in (0, 2, 4, 6) und (1, 3, 5, 7) (0, 2, 4, 6) (1, 3, 5, 7) werden zu (0, 4) (2, 6) (1, 5) (3, 7) 0, 4, 2, 6, 1, 5, 3, 7 ist also die finale Reihenfolge im Puffer (Quelle: Übung Computergrafik 1 SoSe
35 FFT -... Conquer Übung Computergrafik 1 SoSe
36 FFT - Zusammenfassung Zusammenfassung FFT: N als Zweierpotenz wählen (notfalls mit Nullen auffüllen) Umsortieren der Werte Ausführen des Butterfly Algorithmus mit benachbarten Paaren im Puffer Ausführen des Butterfly Algorithmus mit Paaren von Abstand zwei Ausführen des Butterfly Algorithmus mit Paaren von Abstand vier etc. Solange weitermachen bis die Teilung N / 2 ist - der Puffer enthält die FT (Quelle: Übung Computergrafik 1 SoSe
37 Literatur Weiterführende Literatur: Nick Efford: Digital Image Processing - a practical introduction using Java, ISBN-13: Klaus D. Tönnies: Grundlagen der Bildverarbeitung, ISBN-13: Übung Computergrafik 1 SoSe
(Fast) Fourier Transformation und ihre Anwendungen
(Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F
Bildverarbeitung Herbstsemester 2012. Fourier-Transformation
Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie
Computergrafik 2: Filtern im Frequenzraum
Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz [email protected] MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen
Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation -
Bildverarbeitung Bildvorverarbeitung - Fourier-Transformation - 1 Themen Methoden Punktoperationen / Lokale Operationen / Globale Operationen Homogene / Inhomogene Operationen Lineare / Nichtlineare Operationen
Fouriertransformation
Fouriertransformation Radix2 fast fourier transform nach Cooley/Tukey 1 Inhaltsübersicht Mathematische Grundlagen: Komplexe Zahlen und Einheitswurzeln Die diskrete Fouriertransformation Der Radix2-Algorithmus
Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin
Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin 28.04.09 Übersicht Einleitung Problem: polynomiale Multiplikation Crashkurs Diskrete Fourier-Transformation DFT mit FFT
Computergrafik 2: Fourier-Transformation
Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz [email protected] MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen
Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group
Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)
Diskrete und Schnelle Fourier Transformation. Patrick Arenz
Diskrete und Schnelle Fourier Transformation Patrick Arenz 7. Januar 005 1 Diskrete Fourier Transformation Dieses Kapitel erläutert einige Merkmale der Diskreten Fourier Transformation DFT), der Schnellen
Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)
Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher
Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004
4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge
Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation
Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation
12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx
12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant
Grundlagen der Bildverarbeitung: Übung 3
Grundlagen der Bildverarbeitung: Übung 3 Michael Korn Raum: BC414, Tel.: 0203-379 - 3583, E-Mail: [email protected] Michael Korn ([email protected]) Grundlagen der Bildverarbeitung: Übung 3
1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.
. Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3
Technik der Fourier-Transformation
Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +
Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!
Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:
Einführung in die medizinische Bildverarbeitung WS 12/13
Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Pipeline Pipelinestufen können sich unterscheiden, beinhalten aber i.d.r. eine Stufe zur Bildvorverarbeitung zur
(Fast) Fourier Transformation und ihre Anwendungen
(Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation
Algebraische und arithmetische Algorithmen
Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche
Numerische Methoden und Algorithmen in der Physik
Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation
Graphische Datenverarbeitung und Bildverarbeitung
Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung
Die Fourier-Transformation
1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
3 Determinanten, Eigenwerte, Normalformen
Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses
Computergrafik und Bildverarbeitung. Prof. Dr. André Hinkenjann
Computergrafik und Bildverarbeitung Prof. Dr. André Hinkenjann Organisation Literatur The Computer Image Alan Watt, Fabio Policarpo Addison Wesley Digital Image Processing a practical introduction using
Polynome und ihre Nullstellen
Polynome und ihre Nullstellen 29. Juli 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Explizite Berechnung der Nullstellen 2.1 Polynome vom Grad 0............................. 2.2 Polynome vom Grad 1.............................
5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.)
5. Gitter, Gradienten, Interpolation 5.1. Gitter (Rezk-Salama, o.j.) Gitterklassifikation: (Bartz 2005) (Rezk-Salama, o.j.) (Bartz 2005) (Rezk-Salama, o.j.) Allgemeine Gitterstrukturen: (Rezk-Salama, o.j.)
Übung: Computergrafik 1
Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik MDIs in Qt Farbmodelle MDIs Übung Computergrafik SoSe 2009 2 Multiple
Computergrafik 2: Morphologische Operationen
Computergrafik 2: Morphologische Operationen Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz [email protected] MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies
Lineare Gleichungssysteme mit 2 Variablen
Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)
Grundlagen der Computer-Tomographie
Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen
Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :
Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5
Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16
Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).
SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:
/5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=
Grundlagen komplexe Zahlen. natürliche Zahlen
Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.
Graphische Datenverarbeitung und Bildverarbeitung
Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung
Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung
34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis
,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge
Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,
Digitale Signalbearbeitung und statistische Datenanalyse
Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete
Digitale Bildverarbeitung (DBV)
Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung
Schleifeninvarianten. Dezimal zu Binär
Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
Numerisches Programmieren, Übungen
Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus
[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.
Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv
Berechnungen mit dem Horner-Schema
Berechnungen mit dem Horner-Schema Das Hornerschema kann als Rechenhilfsmittel zur Berechnung von Funktionswerten von Polynomfunktionen, zur Faktorisieriung von Polynomen alternativ zur Polynomdivision
Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)
4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales
Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann
Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen
2. Quadratische Lagrangefunktionen und Fourierreihe.
0. Einführung Wir haben gerade das klassische Wirkungsprinzip betrachtet, nachdem wir wissen, dass der dynamische Verlauf eines Teilchens in dem Diagramm die Kurve darstellen soll, die die minimale Wirkung
Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1
Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben
Multiplikation langer Zahlen
Multiplikation langer Zahlen Aljoscha Rudawski 20.5.2017 Inhaltsverzeichnis 1 Einleitung 1 2 Multiplikation nach Lehrbuch 1 2.1 Addition langer Zahlen............................. 2 2.2 Multiplikation
2.2 Kollineare und koplanare Vektoren
. Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,
2. Digitale Codierung und Übertragung
2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien
Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter
Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?
Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik
Zeitfunktionen. Kapitel Elementarfunktionen
Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle
Analytische Lösung algebraischer Gleichungen dritten und vierten Grades
Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden
Höhere Mathematik III
Blatt 9 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Gruppenübungen Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani 6..4 Aufgabe 4. (schriftlich
Parallele Algorithmen in der Bildverarbeitung
Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren
Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :
Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man
Darstellung von Kurven und Flächen
Darstellung von Kurven und Flächen Technische Universität Dresden Fakultät Informatik Institut für Software- und Multimediatechnik Dozent: Dr. Mascolous Referent: Gliederung / Einleitung 1 / 25 1. Kurven
Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte
Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.
Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung
Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis
ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich
6. Vorlesung. Rechnen mit Matrizen.
6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt
Fourier-Reihen und Fourier-Transformation
Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt
Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2
Was bisher geschah digitale Bilder: Funktion B : pos col Matrix B col pos statistische Merkmale Punktoperationen f : col 1 col 2 (Bildanalyse) (Farbtransformation) Geometrische Operationen f : pos 1 pos
Filterung von Bildern (2D-Filter)
Prof. Dr. Wolfgang Konen, Thomas Zielke Filterung von Bildern (2D-Filter) SS06 6. Konen, Zielke Aktivierung Was, denken Sie, ist ein Filter in der BV? Welche Filter kennen Sie? neuer Pixelwert bilden aus
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.
Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:
Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann
Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann VL01 Stufen der Bildverarbeitung Bildgewinnung => Bildbearbeitung => Bilderkennung Bildgewinnung: Bildaufnahme Bilddiskretisierung Bildbearbeitung:
:. (engl.: first harmonic frequency)
5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
4. Übungsblatt zur Mathematik II für Inf, WInf
Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare
Diskrete Cosinustransformation (DCT)
Fachbereich Medieninformatik Hochschule Harz Diskrete Cosinustransformation (DCT) Referat Björn Wöldecke 10954 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort... 1. Methoden zur Datenreduktion...
Mathematik, Signale und moderne Kommunikation
Natur ab 4 - PH Baden Mathematik, Signale und moderne Kommunikation 1 [email protected] 29.4.2009 1 NuHAG, Universität Wien [email protected] Mathematik, Signale und moderne Kommunikation
Kap. 7: Wavelets. 2. Diskrete Wavelet-Transformation (DWT) 4. JPEG2000. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1
Kap. 7: Wavelets. Die kontinuierliche Wavelet-Transformation (WT). Diskrete Wavelet-Transformation (DWT) 3. Sh Schnelle Wavelet-Transformation ltt ti (FWT) 4. JPEG000 H. Burkhardt, Institut für Informatik,
Grundwissen 9. Sabine Woellert
Grundwissen 9 1. Quadratische Funktion... 2 1.1 Definition... 2 1.2 Eigenschaften der Normalparabel ( ):... 2 1.3 Veränderung der Normalparabel... 2 1.4 Normalform, Scheitelform... 4 1.5 Berechnung der
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Diskrete Signalverarbeitung und diskrete Systeme
Diskrete Signalverarbeitung und diskrete Systeme Computer- basierte Verarbeitung von Signalen und Realisierung von Systemverhalten erfordern diskrete Signale und diskrete Systembeschreibungen. Wegen der
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
Hauptseminar Autofokus
Hauptseminar Autofokus Hans Dichtl 30. Januar 2007 Wann ist ein Bild fokussiert? Wann ist ein Bild fokusiert? Welche mathematischen Modelle stehen uns zur Verfügung? Wie wird das elektronisch und mechanisch
Das Lösen linearer Gleichungssysteme
Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n
Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix
Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das
Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich!
Kapitel 1 Rechengesetze 1.1 Körperaxiome und Rechenregeln 1.1.1 Binomische Formeln Aufgabe 1.1.1.1. 1. Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit
Spezielle Klassen von Funktionen
Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n
MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB
MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für
Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!
Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:
Grundlagen der Videotechnik. Redundanz
Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein
