Elektrodynamik Zusammenfassung wichtiger Formeln und Verfahren

Größe: px
Ab Seite anzeigen:

Download "Elektrodynamik Zusammenfassung wichtiger Formeln und Verfahren"

Transkript

1 Elektodyaik Zusaefassug wichtige oel ud efahe E ( ( : potetielle Eegie ( E( d ( q * E( W q E q di Stodichte: J d ρv Potetial eie Puktladug: q ( ε Kaft zw. Puktladuge: q q ε Plattekodesato: x E σ x e x ε QC*U C ε Spaugsteso: T ε EE E T * df Maxwell-Gleichuge de Elektostatik: diffeetielle Dastellug: div E ρ ( ε q( itegale Dastellug: E * df ε ± ± ± vgl.: (/x -/x² S( d ot E,de ot gad E * d eld vo Puktladuge: E( qi * ε i q( physikalische Gaußsche Satz: E * df * ρ( d ε ε Gaußsche Satz: * Skalafelde df... d... it *, ektofelde * df gad d E * df div E d df ot d

2 Stokessche Satz: * Skalafelde d... ( df... it *, ektofelde * d df gad * d ot * df (Zyklische etauschug des Spatpodukts d ( df. Geesche Idetität: ( ψ + ( ψ * d S( ψ df. Geesche Idetität: ( ψ ψ ψ ψ d df S( Def.: Noalableitug vo auf S(: * ( Poisso-Gleichug: ( ρ ε wid ohe Radbediguge gelöst duch das Poisso-Itegal: ρ( ( d πε, de it δ( folgt: 4 ρ ρ( d ε ρ( * δ( d ε ε Ist de Raubeeich Ladugsfei gilt die Laplace-Gleichug: ( Die allgeeie Lösug de Poisso-Gleichug läßt sich als Sue eie spezielle Lösug de Poisso- Gleichug ud de allgeeie Lösug de Laplace-Gleichug dastelle. Radwetpoblee de Elektostatik: ρ( + πε π d ( df 4 4 S( G ρ( G(, d ε ( G(, df S( it G(, f(, ε + Übe die fei vefügbae uktio f(- lasse sich die Radbediguge efülle. Radbediguge:. Diichlet: Ist auf S( gegebe, wählt a f(- so, daß gilt: G( df,. Neua: S( was a oft ealisiet duch: G(- S( * E auf S( gegebe

3 i kathesische Koo.: ( x x + ( y y + ( z z i Zylidekoodiate: + * cos( + ( z z i Kugelkoodiate: + * [cos ϑ * cosϑ + si ϑ * si ϑ * cos ] Jackso S 7 ehalte vo E a leitede läche it σ : Noalkopoete: * ( E E σ ustetig σ ε * E ε Tagetialkopoete: ( t * ( E E stetig a i a i eldeegie & beit: Die beit wid positiv gezählt, we sie a Syste veichtet wid. Die Eegie eie auf eie edliche Raubeeich beschäkte Ladugskofiguatio ρ( etspicht de beit, u Laduge aus de Uedliche ( ( zu diese Kofiguatio zusae zu ziehe. W * d q E * d q d q *( ( ( q * U U E ( * d E * d d UE*d W CU kotiuieliche Ladugsveteilug: W ρ( ( d ( ist das vo de Ladugsveteilug selbst ezeugte el-stat.-potetial ε W E d ei Plattekodesato: Dipoloet: p li q a a q p ρ( d D Eegiedichte des el.stat.-eldes: w ε E w σ dw ε W dd * * p p cosϑ ( ; D (, ϑ, ε ε Quadupoloet: q i li d i p di p Qi ρ( ( xix δ i d Teso Q( qi ( x i x δ i 5 ε i, Q ist Spufei ud syetisch, hat dahe u 5 uabhägige Eleete

4 Eigeschafte de Diacsche δ-uktio: Di[ δ ( - ] Di[] falls δ( d sost δ( f( a falls α < a < β β f( x * δ( x a dx f( a falls a α ode a β α sost δ( f( x δ( x xi Nullstelle vo f(x sid bei x i i f ( xi δ( ax δ( x a g( x δ( x a g( a δ( x a ( x a δ( x a f( x δ ( x a f ( a δ( x a *( x a δ( x a li * e π Mehdiesioale δ-uktio: kathesische Koodiate: δ( δ( x x δ( y y δ( z z Zylidekoodiate: δ( δ( δ( δ( z z Kugelkoodiate: δ ( si ϑ δ ( δ ( ϑ ϑ δ ( Levi-Cevita-Teso: falls ( i,, k zyklisch ε ik falls ( i,, k atizyklisch sost a * b a i b i Es gilt die Eistei sche Suekovetio [ a b] ε a b ode als gaze ekto: a b ε ik a i b e k k ik i a * ( b c ε a b c ik i k a ( b c ε a ( b c ε a ε b c ε ε a b c εik εkl δ il δ δi δ l ε ε ik ik ik i ik i l l ik l i l

5 eya-tick: α* d α* * e d e d dα d α* * e P oduktegel dα α α* α* * e + * * e α α α* e * ( α * α Wichtige oel de Magetostatik & Löugsvefahe Kotiuitätsgleichug: div Leistug: P ( * E ( d Stofäde: d I d peesches Gesetz: -eld: ρ t II d ( d I I ( C C C C I d ( C d * d J ρ e fü ρ < R I -eld eies zyl. Leites: ( ( e J R e fü ρ > R πρ ρ beliebige Stodichte: ( d ( Kaft, die auf eie Stodichte ( vo eie vo eie adee Stodichte ezeugte -eld ausgeübt wid: [ ( ( ] d Dehoet M auf die Stodichte : M [ ( ( ] d Maxwellgleichuge: Diffeetiell: ot div ot H Itegal: * d * df I (pesches Duchflutugsgesetz; vegleichba it physikalische Gaußsche Satz ektopotetial: ot ( ( d Eichtasfoatio: + gad χ Coulob-Eichug: div agetisches Moet: (Noltig S 74 Magetisieug: ( H + M M χ H H

6 Poisso-Gleichug de Magetostatik: Lösugsvefahe wie bei de Elektostatik Ist i it Radbediguge auf S( ka a zu H wege ot H ei skalaes agetisches Potetial defiiee: H it div folgt da: (Laplacegleichug de Magetostatik Ist M( ugleich Null it i egibt sich: div M (skalae Poisso-Gleichug de MS Eie Lösug läßt isch it de Poisso-Itegal agebe: div M( M( ( d d Die bekate Multipoletwicklug, ka a ach de este Te abbeche ud ehält de Dipolte: * tot ( eldvehalte a Gezfläche: Die Noalkopoete de agetische Iduktio ist a de Gezfläche stetig: * ( H H ei fehlede lächestodichte ist die Tagetialkopoete des H-eldes stetig. ( t * ( H H * t Sepeatio de aiable: fü Laplace gilt: + + x y z Sepeatiosasatz: ( X( x * Y( y * Z( z i Laplace-Gl. eisetze ud duch teile. X Y Z + + X x Y y Z z a defiiet: α : X X x Y β : Y y woit a dei eizelee DGl.e hat. it α + β γ Das Podukt de Lösuge X*Y*Z sieht allgeei folgedeaße aus: e e e iαx iβy α β z ± ± ± + ( * * γ Z : Z z it α,β aus R; letzte Te ohe i, da γ² positiv ist Die Radbediguge bestie geaue. (? -> Reell: ( a cosαx + b siαx + a cosβy + b siβy + a cosh γz + b sih γzx sp: α α β β γ γ R: Potetial Null a de Räde eies Quades it b*l*h π π α β γ, π + b l b l Da & beliebig sid, ist die allgeeie Lösug die Sue aus alle Kobiatiosöglichkeite it eie etspechede Gewichtugsfakto,. ( si α x * si β y * sih γ z, ultipliziet it si α,,, x * siβ b l 4c bl sih( γ, y y ud itegiet vo bis b & vo bis l egibt sich fü, : si( α x dx si( β x dx... (vegleiche auch ufgabe 5.

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen D. Jüge Sege MTHEMTIK Gudlage fü Ökooe ÜBUNG 8.. - LÖSUNGEN. Gegee ist das lieae Gleichugssyste: 7 a. Es hadelt sich u ei ihoogees lieaes Gleichugssyste it Gleichuge ud Vaiale.. Ei lieaes Gleichugssyste

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

Lineare Algebra die Darstellungsmatrix von f bezüglich A. Es ist B = (b 1, b 2, b 3 ) mit. A = M A A (f) =

Lineare Algebra die Darstellungsmatrix von f bezüglich A. Es ist B = (b 1, b 2, b 3 ) mit. A = M A A (f) = Techische Uivesität Dotmud Sommesemeste 2017 Fakultät fü Mathematik Übugsblatt 3 Pof. D. Detlev Hoffma 22. Mai 2017 Maco Sobiech/ Nico Loez Lieae Algeba 1 Lösug zu Aufgabe 3.1: Voaussetzuge: Sei V ei deidimesioale

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß De Appoximatiossatz vo Weiestaß Votag im Posemia zu Fouieaalysis Uivesität Hambug, Dept. Mathematik ejami Wieeck Sommesemeste, 1. Apil 8 Das Ziel dieses Votages ist de eweis des Appoximatiossatzes vo Weiestaß.

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

Der Drehimpuls von Licht

Der Drehimpuls von Licht De Dehils vo Licht Qelle: htt://www.otiqe-igeie.og/e/coses/opi_ag_m_c3/co/cote_4.htl htt://load.wikiedia.og/wikiedia/coos/7/77/cicla.polaiatio.ciclal.polaied.light_with.cooets_right.haded.svg 3..3 Fachbeeich

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

Hohlleiter Quasioptische Ableitung der Felder der Hohlleiterwellen

Hohlleiter Quasioptische Ableitung der Felder der Hohlleiterwellen ohllit Quasioptisch blitug d Fld d ohllitwll 8.3 Mod i Rchtck- ud Rudhohllit Zu gau Bhadlug d Vilahl öglich Wll i ohllit uß a üb di ifühd ggb aschaulich Dastllug hiausgh ud di gigt Lösug d Mawll sch Glichug

Mehr

Formelsammlung Felder und Wellen WS11/12

Formelsammlung Felder und Wellen WS11/12 . Otsvektoen Fosalung Fde und Wlen WS/ Katesische Koodinaten Zlindekoodinaten Kugkoodinaten = cos = sincos = sin = sinsin = = cos + = = sin actan = = = = cos + + = + = + actan = actan = actan = =. Koponenten

Mehr

Der Fundamentalsatz der Algebra. Inhaltsverzeichnis

Der Fundamentalsatz der Algebra. Inhaltsverzeichnis Votag zum Posemia zu Aalysis, 06.10.2010 Stefa Bleß Ihaltsvezeichis 1 Vowot 2 2 De Beweis 3 2.1 -te Wuzel auf C............................... 3 2.2 Miimum des Betages eies Polyoms.................. 6

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

AR: Grundlagen der Tensor-Rechung

AR: Grundlagen der Tensor-Rechung Auto: Walte Bisli vo walte.bislis.ch/doku/a 8..3 7:57 AR: Gudlage de Teso-Rechug Matheatisch wede Beechuge de Eegiedichte ud de zugehöige Rauzeitküug it de Wekzeug de Teso-Aalysis ausgefüht. Auf de folgede

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Ableitung mechanischer Schemata und Schaltungen

Ableitung mechanischer Schemata und Schaltungen 2.1 Taslatoische Teilsystee 39 Aufgabe 2.9 Ableitug echaische Scheata ud Schaltuge Gebe Sie fü die echaische Systee i de Bilde.16 (a) bis (g) die echaische Scheata ud die echaische Schaltuge a. a) b) c)

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Geophysik. 3. Prozesse im Erdinneren

Geophysik. 3. Prozesse im Erdinneren Geophsik. Pozesse i Ediee Wi beobachte Pozesse i Ediee, die auf seh veschiedee Zeitskale ablaufe. Wähed die Matelkovektio so lagsa ist, dass sie u idiekt beobachtet wede ka, lässt sich die Kovektio i äußee

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =?

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =? Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati - W 8/9 57 Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati

Mehr

Mathematik 4 Vektorräume und affine Räume

Mathematik 4 Vektorräume und affine Räume 4 ektoäume ud affie äume olesugsmitschift - Kuzfassug Etwuf Pof. D. e. at. B. Gabowski HTW des Saalades 4 Ihalt Mathematik Kapitel 4 INHALTSEZEICHNIS 4 EKTOÄUME UND AFFINE ÄUME... 4.. EINLEITUNG... 4.

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Formel- und Tabellensammlung zum Aktuariellen Grundwissen

Formel- und Tabellensammlung zum Aktuariellen Grundwissen Formel- ud Tellesmmlug zum Aturielle Grudwisse Schdeversicherugsmthemti A. Zufllsvrile X, Y seie (disrete oder stetige Zufllsvrile. Verteilugsfutio: F( = P( X (Verteilugs-Dichte: f ( F ( = ei differezierrer

Mehr

Übungsblatt 02 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 02 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übugsblatt 0 Grudkurs IIIa für Physiker, Wirtschaftsphysiker ud Physik Lehramt Othmar Marti, othmar.marti@physik.ui-ulm.de 0., 6. ud 7. 5. 003 Aufgabe Licht i der geometrische Optik, Bilderzeugug durch

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Greifen an einer Masse mehrere Kräfte an, so gibt es zwei mögliche Fälle:

Greifen an einer Masse mehrere Kräfte an, so gibt es zwei mögliche Fälle: 4.3 Ado vo Käfte Gefe a ee Masse ehee Käfte a, so gbt es zwe öglche älle: We de vektoelle Sue de Käfte ull st, da vehat de Masse Ruhe ode gadlg glechföge Bewegug. 4 0 3 4 Wchtges Pzp de Statk 3 Veblebt

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2012 Prof. Dr. F. Kremer. Übersicht der Vorlesung am

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2012 Prof. Dr. F. Kremer. Übersicht der Vorlesung am olesug "Molekülhysik/estköehysik" Sommesemeste Pof... Keme Übesicht de olesug am 4.-.6. Halbleite mit idealem Kistall Eegieeigewetdichte des Elektoegases Eegieveteilug de quasifeie Elektoe Elektische eitfähigkeit

Mehr

Übungen zur Analysis II SS 2006

Übungen zur Analysis II SS 2006 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. R. Weissauer/Dr. U. Weselma http://www.mathi.ui-heidelberg.de/ weselma.uebuge.html Übuge zur Aalysis II SS 26 Lösugshiweise Blatt 3 Aufgabe 8*

Mehr

Prof. Dr. Tatjana Lange

Prof. Dr. Tatjana Lange Pof. D. Tatjaa Lage Lehgebiet: egelugstechik Laboübug 6: Thea: Stabilität vo egelkeise: Wuzelotsvefahe 1. Übugsziele: etiefug de egel zu Bildug vo Wuzelotskuve Deostatio echegestützte efahe de lieae Systeaalyse

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

beschreiben wir zuerst den Gesamtschadenprozess, der mit

beschreiben wir zuerst den Gesamtschadenprozess, der mit Die klassishe Ritheoie. Eifühg I diesem Kapitel betahte wi de klassishe Risiko-Pozess d leite eiige Egebisse fü die Wahsheilihkeit des Ris he. Isbesodee beweise wi Ldbeg s Ugleihg d zeige, wie explizite

Mehr

Kapitel 8: Unendlich teilbare Verteilungen

Kapitel 8: Unendlich teilbare Verteilungen - 8 (Kapitel 8: Uelich teilbare Verteilge Kapitel 8: Uelich teilbare Verteilge I iesem Kapitel were wir elich teilbare Verteilge af ( I R, B stiere, ie afs Egste mit e reellwertige Prozesse (X t t mit

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

Formelsammlung Felder und Wellen WS15/16

Formelsammlung Felder und Wellen WS15/16 . Otsvektoen = cos = sincos = sin = sinsin = = cos + = = sin actan = = = = cos + + = + = actan actan Fosalung Fde und Wlen WS5/6 Katesische Koodinaten Zlindekoodinaten Kugkoodinaten + = actan = = =. Koponenten

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

Lösungsvorschlag zur Klausur zur Analysis III

Lösungsvorschlag zur Klausur zur Analysis III Prof. Dr. H. Garcke, D. Deper WS 9/ NWF I - Mathematik 8..9 Uiversität Regesburg Lösugsvorschlag zur Klausur zur Aalysis III 6 Pukte pro Aufgabe) Aufgabe i) Bestimme Sie für die Fuktioefolge f :, 4) R,

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A FORMELSAMMLUNG V03 Alle Formel ohe Gewähr auf Korrektheit Grudlage der Wahrscheilichkeitstheorie 1) Wahrscheilichkeitsbegriff ud Reche mit Wahrscheilichkeite Relative Häufigkeit r N A = h N A N = Abs.

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

Leitfaden Bielefeld SS 2007 III-4

Leitfaden Bielefeld SS 2007 III-4 Leitfade Bielefeld SS 2007 III-4 8.2. Der allgemeie Fall. Satz. Sei N 1, sei ω eie primitive -te Eiheitswurzel ud K = Q[ω ]. Da gilt: (a) [K : Q] = φ(), (b) Φ ist irreduzibel, (c) O K = Z[ω ]. (d) Eie

Mehr

II.2 Mathematisches Handwerkszeug

II.2 Mathematisches Handwerkszeug II.2 Mathematisches Hadwerkszeug 2.1 Vektorraum der quadratitegrierbare Fuktioe Eie Fuktio f = f(x) heißt quadratitegrierbar, we das Itegral vo bis + eie edliche Wert hat: f(x) 2 dx < (1) Für ei eifache

Mehr

Handout. Instationäre Wärmeleitung. ka t. kat V. ktg D. Mit dem Körperfaktor G = bzw. = folgt. ktga. ktg = D. λkörper. ktga. kdfog. Mit = + folgt.

Handout. Instationäre Wärmeleitung. ka t. kat V. ktg D. Mit dem Körperfaktor G = bzw. = folgt. ktga. ktg = D. λkörper. ktga. kdfog. Mit = + folgt. T T T T k ex t ρcv D G Mit dem Körerfaktor G bzw. folgt V V D kt ρc V ktg ρc D Körer Körer Mit a bzw. ρc folgt ρc a ktg ρc D ktga D Körer at at Mit Fo bzw. D Fo folgt D D ktga D Körer kdfog Körer Mit +

Mehr

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript Wahrscheilichkeitsrechug & Statistik - Ergäzug zum Skript Prof. Schweizer 9. Oktober 008 Mitschrift: Adreas Steiger Warug: Wir sid sicher dass diese Notize eie Mege Fehler ethalte. Betrete der Baustelle

Mehr

Übungen zur Analysis 3

Übungen zur Analysis 3 Mathematisches Istitut der Uiversität Müche Prof Dr Fraz Merkl Witersemester 0/04 Blatt 9 050 Übuge zur Aalysis 9 addichte eier Gleichverteilug Die Gleichverteilug auf dem Dreieck ist das Maß : {(a, b)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Grundlagen der Differentialrechnung mit mehreren Veränderlichen

Grundlagen der Differentialrechnung mit mehreren Veränderlichen www.atheatik-etz.de Copyright, Page 1 of 6 Grudlage der Differetialrechug it ehrere Veräderliche Die Differezierbarkeit eier Fuktio f:m eier Veräderliche (d.h. M ) i eie Häufugspukt a M bedeutet a - geoetrisch

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Mathe für QM Fokus. Zusammenfassung.

Mathe für QM Fokus. Zusammenfassung. Mathe für QM Fokus. Zusammefassug. I) Der Hilbertraum. Vollstädiger, uitärer Raum. a) Volstädiges Orthoormalsystem (VONS). b) Lieares Fuktioal, dualer Raum, Dirac Notatio. c) Lieare Operatore im Hilbertraum.

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle:

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle: TEIL B Lösuge zu de Aufgabe zu Mathematik I.. Logik... A B A B A B A B A B w w w f f f f w f f w f w w f w f w w f w f f f w w w w A B A B B A B [ ] ( A B) ( A B) A ( ) ( ) A B A B A w w w f f f f w w

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1 Kofidezitervalle Praktische Übug Stochastik SS 017 Lektio 10 1 Kofidezitervalle Geerelle Aahme: Parametrisches Modell (P ϑ ) ϑ Θ Beobachtuge X 1,..., X u.i.v. ach P ϑ mit ubekatem ϑ Θ Grudidee: Schätzer

Mehr

Lineare Algebra 2. A m. A 3 XI n3

Lineare Algebra 2. A m. A 3 XI n3 Techische Uivesität Dotmud Sommesemeste 27 Fakultät fü Mathematik Übugsblatt 6 Pof D Detlev Hoffma 6 Jui 27 Maco Sobiech/ Nico Loez Lieae Algeba 2 Lösug zu Aufgabe 6: Voaussetzuge: Sei K ei Köpe ud sei

Mehr

Die natürlichen, ganzen und rationalen Zahlen

Die natürlichen, ganzen und rationalen Zahlen ie atürliche, gaze ud ratioale Zahle Ihaltsverzeichis.1 ieatürlichezahle... 11. iegazezahle... 15.3 ieratioalezahle... 15.4 Aufgabe... 17 ie Zahleege N, Z, Q ud R der atürliche, gaze, ratioale ud reelle

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

Lösung der Nachklausur

Lösung der Nachklausur H. Schmidli Eiführug i die Stochastik WS 8/9 Lösug der Nachklausur. a) Aus dem Satz der totale Wahrscheilichkeit folgt für de Ateil der Persoe, die der Vorlage zugestimmt habe Also liegt die Zustimmug

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

Anhang A: Die Gamma-Funktion

Anhang A: Die Gamma-Funktion O. Forster: Zetafuktio ud Riemasche Vermutug Ahag A: Die Gamma-Fuktio A.. Defiitio. Die Gamma-Fuktio ist für eie komplee Variable z mit Rez > durch das Euler-Itegral Γz := t z e t defiiert. Da mit := Rez

Mehr

a) Folgt aus der Linearität der Ableitung und den Eigenschaften der Supremumsnorm.

a) Folgt aus der Linearität der Ableitung und den Eigenschaften der Supremumsnorm. Lösug. a) Folgt aus der Liearität der Ableitug ud de Eigeschafte der Supremumsorm. b) d ist wohldefiiert. Es ist d(φ, φ 2 ) ( ) 2 2 α β = m 2 m = 4 < α,β N Symmetrie ist klar. Aus d(φ, φ 2 ) = folgt φ

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Lösungsvorschlag zu den Hausaufgaben der 4. Übung

Lösungsvorschlag zu den Hausaufgaben der 4. Übung FKULTÄT FÜR MTHEMTIK Pof. D. Patizio Neff Chistia Thiel 05.11.013 Lösugsvoschlag zu de Hausaufgabe de 4. Übug ufgabe 1: 6 Pute I eiem Lad ist jede Stadt mit jede adee duch geau eie Staße vebude, wobei

Mehr

Meßwerte in der Quantenmechanik

Meßwerte in der Quantenmechanik Meßwerte i der Quatemechaik w a s m i s s t m a d e e i g e t l i c h a e i e m W e l l e p a k e t?? 4. Postulat der Quatemechaik: (. Teil W e eie igefuktio zum Operator F ist, da führt die Messug vo

Mehr

7.7. Abstände und Winkel

7.7. Abstände und Winkel uu uu uu uu uu uu uu uu 77 Astäde ud Wikel 77 Wikel Geade - Geade Schittwikel zweie Geade: Am Schittpukt zweie Geade g ud g lasse sich die eide Wikel (g, g ) ud (g, g ) messe Als Schittwikel ezeichet ma

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Algebra 2 Daiel Plauma Techische Uiversität Dortmud Sommersemester 2017 9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Arbeitsblatt: Der Satz vo Cayley-Hamilto ud Aweduge Lese Sie de Text sorgfältig ud löse Sie

Mehr

Rudolf Steiner Schulen Hamburg, Schriftliche Realschulprüfung Mathematik am , Lösungen. Aufgabe 1 (ohne Taschenrechner) (insgesamt 34P)

Rudolf Steiner Schulen Hamburg, Schriftliche Realschulprüfung Mathematik am , Lösungen. Aufgabe 1 (ohne Taschenrechner) (insgesamt 34P) Rudolf Steier Schule Hamburg, Schriftliche Realschulprüfug Mathematik am.4.3, Lösuge Aufgabe (ohe Tascherecher) (isgesamt 34P) Aufgabe. a) b) c) d) Zuordug, Bewertug: a) b) c) d) Summe: 7 Aufgabe. 373,5

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Korrektur 6.06.06:.,3. ; 7.07.06: 3. Name, Vorame: Studiegag: Matrikelummer: 3 4 5 6 Z Pukte Note Klausur zum Grudkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 0.

Mehr

Forschungsstatistik I

Forschungsstatistik I Pschologie Pof. D. G. Meihadt 6. Stock, TB II R. 06-206 (Pesike) R. 06-321 (Meihadt) Spechstude jedezeit ach Veeibaug Foschugsstatistik I D. Malte Pesike pesike@ui-maiz.de http://psmet03.sowi.ui-maiz.de/

Mehr

Aufgabe 1-1: Aufgabe 1-2: Aufgabe 1-3: Aufgabe 1-4:

Aufgabe 1-1: Aufgabe 1-2: Aufgabe 1-3: Aufgabe 1-4: 1. Übug zur Höhere Mathematik 1 Abgabe: KW 4 Aufgabe 1-1: Es seie a,b mit a 0, b 0. Beweise Sie ab a b a b a b Aufgabe 1-: Beweise Sie durch vollstädig Iduktio k 1 (k 1) k 0 0 k 1!, 0, 0? 1,? d), 0, 0?

Mehr

Ableitungen der δ-funktion

Ableitungen der δ-funktion Ableituge der δ-fuktio . Der olekulare Hailto-Operator. Bor-Oppeheier Näherug KAPITEL : MOLEKULAE QUANTENMECHANIK Literatur: z.b: Jese, Itroductio to Coputatioal Cheistry, Wiley . Der olekulare Hailto-Operator

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Diplomvorprüfung Stochastik

Diplomvorprüfung Stochastik Uiversität Karlsruhe TH Istitut für Stochastik Prof. Dr. N. Bäuerle Name: Vorame: Matr.-Nr.: Diplomvorprüfug Stochastik 10. Oktober 2006 Diese Klausur hat bestade, wer midestes 16 Pukte erreicht. Als Hilfsmittel

Mehr