Warteschlangentheorie

Größe: px
Ab Seite anzeigen:

Download "Warteschlangentheorie"

Transkript

1 Warteschlangentheorie Ankunftsrate, z. B. 5 Personen pro Stunde Bedienrate, z.b. 20 Personen pro Stunde sei so groß gewählt, dass pro Takt höchstens eine Person ankot, bzw. abgefertigt wird. Mit der Wahrscheinlichkeit erhöht sich die Anzahl der Personen u Eins, it bleibt die Anzahl gleich Hier beginnt die Warteschlange Wir haben es hier it einer Irrfahrt eines Teilchens auf eine Graphen zu tun (Markow-Kette). Es startet in eine beliebigen Zustand. Uns interessiert die durchschnittliche Länge der Warteschlange, die Verweil- und die Wartezeit. Eritteln wir zunächst die stationäre Verteilung p 0, p, p 2, p 3, p 4, it den Gleichgewichtsbeziehungen:. p 0 = p oder. p 0 = p fällt stets heraus, wir lassen es zukünftig gleich weg. 2. p + p = p 0 + p 2 und it. 2. p = p 2 entsprechend 3. p 2 = p 3 Dait erhalten wir: p = p 0 p 2 = p = ( )2 p 0 p 3 = p = ( )3 p 0 Die Sue der geoetrischen Reihe beträgt, daraus folgt it der Suenforel p 0 =. Das Ergebnis kann einfacher direkt ( p 0 ) = entnoen werden, siehe., 2.,.

2 Warteschlangentheorie Foreln L Anzahl der Personen i Syste = np n = ( ρ) nρ n = ρ ρ =, ρ = n 0 n 0 L Anzahl der Personen in der Warteschlange = (n )p n = = ρ2 ρ = 2 ( ) n 2 Die ittlere Bedienungsdauer eines Kunden ist, wenn er das Syste i Zustand n vorfindet, beträgt seine Zeit i Syste n+. W Zeit, die ein Kunde i Syste verbringt = n 0 n+ p n = = ρ ρ + = ρ = Das Ergebnis liegt nahe. Ein Kunde findet ein Syste vor, dessen Abarbeitung L Anzahl der Personen i Syste dauert. Seine eigene Bedienungsdauer ist zu addieren. Offensichtlich gilt: W Wartezeit, die ein Kunde in der Schlange verbringt = = ( ) Für die Herleitungen wird die Forel herangezogen. nq n = n 0 q ( q) 2, q < Little bewies 96: L Anzahl der Personen in der Warteschlange = W Wartezeit, die ein Kunde in der Schlange verbringt Die Aussage L Anzahl der Personen in der Warteschlange = W Wartezeit, die ein Kunde in der Schlange verbringt erscheint plausibel. ist die Zeit, die zwischen zwei Ankünften verstreicht. Dies uss auch die Wartezeit einer Person für das Aufrücken u einen Platz sein, wenn die Schlangenlänge als gleichbleibend angesehen wird. 2

3 Der Fall = Die Foreln setzen < voraus. Wird die Differenz kleiner, so vergrößert sich die Warteschlangenlänge und die Wartezeit, obwohl = eine ausgeglichene Situation nahezulegen scheint. Die Graphen für die stationären Verteilungen sind aufschlussreich. Für kleiner werdende Differenz gleichen sich die Wahrscheinlichkeiten ier ehr an. y 0,4 = 35 0,3 0,2 = 27 = 25 = 20 f(x) = ( ) ( )x 0, = 23 = 2 x Für = kann keine stationäre Verteilung existieren, jedoch für ein Syste it begrenzter Länge M, hier gezeichnet für M = M 3

4 Die Übergangsatrix lautet (a = ): A = a a a 2a a a 2a a a 2a a a a Aus A p = p ist nach kurzer Rechnung zu erkennen, dass alle Zustände auf lange Sicht gleich oft angenoen werden. Dies kann unittelbar bestätigt werden, da auch die Zeilensuen von A sind (A ist doppeltstochastisch). Dann gilt: L Anzahl der Personen i Syste = M + (+2++M) = M + M(M +) 2 = M 2 4

5 N Schalter Nehen wir jetzt an, dass N Schalter vorhanden sind und die(einzige) Warteschlange axial M Kunden fasst. I Zustand n it n N werden n Kunden gleichzeitig bedient, der Erwartungswert ist dann n N N+ N +2 N+M 2 3 N N N N Etwas vereinfacht und verallgeeinert: K 2 3 K Für die stationäre Verteilung p 0, p, p 2,, p K erhalten wir it den Gleichgewichtsbeziehungen: p = p 0 p 2 = p 3 = 2 2 p p 0 d.h. p n = p n 3, n n p 0 folgt aus der Norierungsbedingung p 0 +p +p 2 ++p K =. Nun sind wir in der Lage, die stationäre Verteilung für das N-Schalter-Proble anzugeben, sowie die ittlere Schlangenlänge S = p N+ +2 p N+2 ++M p N+M zu eritteln. Für begrenzte Systee ist öglich. I Zustand N +M kann das Syste keine weiteren Kunden aufnehen. Die Wahrscheinlichkeit beträgt: p N+M = ( )N+M p 0 N!N M Pro Zeiteinheit gehen also durchschnittlich p N+M Kunden verloren. 5

6 Warteschlangen N-Schalter-Beispiel N = 5 M = 20 = 80 (pro Zeiteinheit) = 20 stationäre Verteilung p n 0,4 0,2 0,0 0,08 0,06 0,04 0, n ittlere Warteschlangenlänge 2, ittlere Wartezeit in der Warteschlange 0,02 Variation = 5 stationäre Verteilung 0,4 0,2 0,0 p n 0,08 0,06 0,04 0, n ittlere Warteschlangenlänge,7 ittlere Wartezeit in der Warteschlange 0,56 6,4 Kunden gehen pro Zeiteinheit verloren. 6

7 N Schalter, Warteschlange nicht begrenzt N N+ N N N N N Die stationäre Verteilung p 0, p, p 2, lautet: p 0 p = p 0 p 2 = p 0 ( )2 2 p 3 = p 0 ( )3 3! p N = p 0 ( )N N! p N+ p N+2 = p 0 ( )N+ = p 0 ( )N+2 N!N N!N 2 p 0 folgt aus der Norierungsbedingung p 0 +p +p 2 + =. N p 0 [+ ( )n n! +( )N N! ( )n N ] n = n= n= }{{} ( N )n Die unendliche geoetrische Reihe konvergiert für < N gegen N. Die ittlere Schlangenlänge beträgt dann: L = n p N+n = p N n ( )n N N n = p N n= n= }{{} ( (siehe Forel Seite 2) N )2 ( N )n Die ittlere Verweilzeit in der Schlange soll noch erittelt werden. Ein Kunde findet ein Syste i Zustand k vor. Beachte, dass die Schlange auch leer sein kann und alle Schalter besetzt. W = N p N + 2 N p N+ + 3 N p N+2 + 7

8 N Schalter, Verweilzeit in der Warteschlange W = N p N + 2 N p N+ + 3 N p N+2 + = p N N [ +2 ( N )+3 ( N )2 +4 ( N )3 + }{{} ( N )2 ] Es wird die Forel verwendet. n 0 nq n = ( q) 2, 0 < q < Offensichtlich gilt auch hier L = W (Satz von Little). 8

Master Modul IV im SS 2016: Technisch-Ökonomische Wartesysteme

Master Modul IV im SS 2016: Technisch-Ökonomische Wartesysteme Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // M. Radermacher, M.Sc. DOOR Aufgabe 3 Master Modul IV im SS 206: Technisch-Ökonomische Wartesysteme Übungsblatt Wurde in der Übung am

Mehr

Die Maxwell-Boltzmann-Verteilung

Die Maxwell-Boltzmann-Verteilung Die Maxwell-Boltzann-Verteilung Sebastian Meiss 5. Oktober 8 Mit der Maxwell-Boltzann-Verteilung kann an Aussagen über die Energie- bzw. Geschwindigkeitsverteilung von Teilchen in eine Syste beschreiben.

Mehr

Operations Research Kurs 00859: Stochastische Simulation

Operations Research Kurs 00859: Stochastische Simulation Aufgabe B0404 In einem Friseursalon sind 1 Herrenfriseur, 1 Damenfriseur und 1 Meister, der sowohl Herren als auch Damen bedient, beschäftigt. Die Kunden bevorzugen eine Bedienung durch den Meister. Der

Mehr

3. Prozesse mit kontinuierlicher Zeit

3. Prozesse mit kontinuierlicher Zeit 3. Prozesse mit kontinuierlicher Zeit 3.1 Einführung Wir betrachten nun Markov-Ketten (X(t)) t R +. 0 Wie beim Übergang von der geometrischen zur Exponentialverteilung können wir uns auch hier einen Grenzprozess

Mehr

Institut für Betriebswirtschaftslehre Operations Management

Institut für Betriebswirtschaftslehre Operations Management Operations Management Kurzfristige Kapazitätsplanung & Warteschlangenmanagement Aufgabe 1/1 UBS plant eine Drive-in Filiale zu errichten. Das Management geht davon aus, dass pro Stunde durchschnittlich

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

Klausur. Grundlagen der Elektrotechnik II WS 04/ März Name Matrikelnummer Studiengang

Klausur. Grundlagen der Elektrotechnik II WS 04/ März Name Matrikelnummer Studiengang . Klausur Grundlagen der Elektrotechnik II WS 04/05. März 005 Nae Matrikelnuer Studiengang Aufgabe Thea Max. Punkte Erreichte Punkte ESB.5 Transistor 8 auschen 4 OPV 8.5/ 5 Digital 9 Sue /4.5 Hinweise:

Mehr

Analysis einer Variablen Lösungen zur Klausur vom F. Merkl

Analysis einer Variablen Lösungen zur Klausur vom F. Merkl Analysis einer Variablen Lösungen zur Klausur vo 8..7 F. Merkl. Gegeben sei eine Folge (f n ) n N von Funktionen f n : R R und eine weitere Funktion f : R R. (a) Definieren Sie, wann f n für n punktweise

Mehr

Die Zahlen e und π sind irrational.

Die Zahlen e und π sind irrational. Die Zahlen e und π sind irrational. Eva Gressung 2. Feruar 27 Die Zahl e ist irrational Zu Beginn dieses Aschnitts definieren wir die Eulersche Zahl e und zeigen anschließend, dass e irrational ist. Definition.

Mehr

14. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i

14. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i Motivation 14. Hashing Hash Tabellen, Geburtstagsparadoxon, Hashfunktionen, Perfektes und universelles Hashing, Kollisionsauflösung durch Verketten, offenes Hashing, Sondieren [Ottan/Widayer, Kap. 4.1-4.3.2,

Mehr

Fahrzeugfolgemodelle I

Fahrzeugfolgemodelle I Christoph Berkholz Eckart Stets SE Verkehrssimulation und Optimierung, 29.10.2008 Es gibt kein einheitliches Verkehrsmodell. Dafür aber viele Ansätze. Heute: klassische mikroskopische Fahrzeugfolgemodelle,

Mehr

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

Aufgabe zur Warteschlangensimulation

Aufgabe zur Warteschlangensimulation Aufgabe zur Warteschlangensimulation Diese Aufgabe vereint alle Aspekte, die in dem Abschnitt über Warteschlangen behandelt wurden. Deshalb klingt sie sehr komplex, jedoch lassen sich mit Hilfe der bisherigen

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Labor MIS Dr. Ing. habil. Albrecht Zur

Labor MIS Dr. Ing. habil. Albrecht Zur Labor MIS Dr. Ing. habil. Albrecht Zur Versuch zur Feststellung des Verhalten einer Bluetooth-Verbindung in Grenzsituationen Studenten : Gunnar Suhr Thorsten Hohann Aufgabe: Für die in einer Projektarbeit

Mehr

Ziele dieses Kapitels. Konzepte und Methoden der Systemsoftware Kapitel 8: Warteschlangentheorie. Holger Karl. Warteschlangen überall.

Ziele dieses Kapitels. Konzepte und Methoden der Systemsoftware Kapitel 8: Warteschlangentheorie. Holger Karl. Warteschlangen überall. Ziele dieses Kapitels Konzepte und Methoden der Systemsoftware Kapitel 8: Warteschlangentheorie Holger Karl Im vorherigen Kapitel wurden unterschiedliche Optionen zur Gestaltung von Client/Server-Systemen

Mehr

DWT 3.3 Birth-and-Death Prozesse 467/476 c Ernst W. Mayr

DWT 3.3 Birth-and-Death Prozesse 467/476 c Ernst W. Mayr 3.3 Birth-and-Death Prozesse M/M/1-Warteschlangen stellen einen Spezialfall so genannter Birth-and-Death Prozesse dar. Darunter versteht man kontinuierliche Markov-Ketten mit einem Übergangsdiagramm der

Mehr

Beschreibung von Warteschlangensystemen und deren psychologische Einflüsse auf den Menschen

Beschreibung von Warteschlangensystemen und deren psychologische Einflüsse auf den Menschen Beschreibung von Warteschlangensystemen und deren psychologische Einflüsse auf den Menschen Pascal Held 2007-11-22 Zusammenfassung Warteschlangen sind nicht etwa eine Erfindung von Theoretikern um etwas

Mehr

Rechnungen zu Kraft und Beschleunigung der ICE

Rechnungen zu Kraft und Beschleunigung der ICE Illustrierende Aufgaben zu LehrplanPLUS Gynasiu, Physik, Jahrgangsstufe 8 Rechnungen zu Kraft und Beschleunigung der ICE Stand: 6.08.015 Jahrgangsstufen 8 Fach/Fächer Physik Kopetenzerwartungen Die Schülerinnen

Mehr

4.1 Einführung Wiederholung: Wichtige Schedulingverfahren. Scheduling II Leistungsanalyse von Schedulingalgorithmen. Modell.

4.1 Einführung Wiederholung: Wichtige Schedulingverfahren. Scheduling II Leistungsanalyse von Schedulingalgorithmen. Modell. Betriebssysteme II - Analyse und Modellierung Sommersemester 218 4.1 Einführung 4.1 Einführung Wiederholung: Wichtige Schedulingverfahren Betriebssysteme II - Analyse und Modellierung 4. Kapitel Scheduling

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

OPERATIONS MANAGEMENT 4. Übungsstunde. Thema: Kurzfristige Kapazitätsplanung (Warteschlangenmanagement) Seite 1

OPERATIONS MANAGEMENT 4. Übungsstunde. Thema: Kurzfristige Kapazitätsplanung (Warteschlangenmanagement) Seite 1 OPERATIONS MANAGEMENT 4. Übungsstunde Thema: Kurzfristige Kapazitätsplanung (Warteschlangenmanagement) Seite 1 Prof. Dr. Helmut M. Dietl Aufgabe 1 UBS plant eine Drive-in Filiale zu errichten. Das Management

Mehr

Lösungsvorschläge für das 7. Übungsblatt Letzte Änderung am 27. Juni 2001

Lösungsvorschläge für das 7. Übungsblatt Letzte Änderung am 27. Juni 2001 Grundlagen zu Datenstrukturen und Algorithen Schitt, Schöer SS 2001 http://www.pi-sb.pg.de/~sschitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für das 7. Übungsblatt Letzte

Mehr

Diskrete Mathematik. Kryptographie und Graphentheorie

Diskrete Mathematik. Kryptographie und Graphentheorie Diskrete Matheatik Kryptographie und Graphentheorie Jochen Hores & Jonas Bühler 14.06.006 Jochen Hores, Jonas Bühler Kryptographie & Graphentherorie 1 Inhaltsverzeichnis Inhaltsverzeichnis 1. Kryptographie

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 40 Überblick Überblick Grundlegendes zu Markov-Ketten

Mehr

Service Management: Operations, Strategie und e-services Prof. Dr. Helmut M. Dietl

Service Management: Operations, Strategie und e-services Prof. Dr. Helmut M. Dietl Service Management: Operations, Strategie und e-services Universität Zürich Institut für Strategie und Unternehmensökonomik Services- und Operationsmanagement Übersicht 1. Nachfrageprognose 2. Variabilitätsmanagement

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

2. Stochastische Prozesse.

2. Stochastische Prozesse. SS 2006 Arbeitsblatt 2 / S. 1 von 7 2. Stochastische Prozesse. Warteschlangen treten als Erscheinungsformen von in der Zeit ablaufenden Prozessen auf, von denen wie oben erwähnt mindestens einer nicht

Mehr

Lösungen zur Übungsserie 8

Lösungen zur Übungsserie 8 Analysis Herbstseester 08 Prof Peter Jossen Montag, Noveber Lösungen zur Übungsserie 8 Aufgaben,,4,5,6,7,8,9,0, Aufgabe Sei (z n ) n=0 eine konvergente Folge in C ZeigenSie,dass( z n ) n=0 konvergiert

Mehr

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode Multiplikationsethode Inforatik I Einführung Rainer Schrader Zentru für Angewandte Inforatik Köln 30. Mai 005 zu (): Irrationale Zahlen sind eine gute Wahl. Erinnerung: Φ = 1 + 5 = 1.6180339887... ˆΦ =

Mehr

Theoretische Aspekte der Kommunikationsnetze Teil: Bedienungs- und Verkehrstheorie

Theoretische Aspekte der Kommunikationsnetze Teil: Bedienungs- und Verkehrstheorie BVT WS 2016/17 1 Theoretische Aspekte der Kommunikationsnetze Teil: Bedienungs- und Verkehrstheorie 0. Organisatorisches Kontaktdaten Dr.-Ing. Maik Debes Raum: H 3507 Telefon: 03677 691246 Mail: maik.debes@tu-ilmenau.de

Mehr

QueueTraffic und Warteschlangen

QueueTraffic und Warteschlangen QueueTraffic und Warteschlangen + Warteschlangen im Alltag Du bist sicher schon einmal in einer Warteschlange gestanden. Wo? Worin unterscheiden sie sich? Bei Skiliften, Ticketautomaten, Kassen, beim Arzt,

Mehr

OPERATIONS MANAGEMENT

OPERATIONS MANAGEMENT OPERATIONS MANAGEMENT - Kurzfristige Kapazitätsplanung - Helmut M. Dietl 1 Lernziele Nach dieser Veranstaltung sollten Sie wissen, welcher Trade-off zwischen Warte- und Servicekosten besteht wovon das

Mehr

Aussage: richtig falsch Entscheidungen über Investitionen werden stets in der kurzfristigen (operativen) Planung getroffen.

Aussage: richtig falsch Entscheidungen über Investitionen werden stets in der kurzfristigen (operativen) Planung getroffen. Aufgabe 1 Richtig oder Falsch? (20 Punkte) Folgende Aussagen sind entweder richtig oder falsch! Kreuzen Sie jeweils direkt hinter der Aussage eines der Kästchen an. Stimmt Ihre Bewertung einer Aussage

Mehr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr Definition 140 Wir bezeichnen einen Zustand i als absorbierend, wenn aus ihm keine Übergänge herausführen, d.h. p ij = 0 für alle j i und folglich p ii = 1. Ein Zustand i heißt transient, wenn f i < 1,

Mehr

Newtonsche Gesetze. Lösung: a = F m =

Newtonsche Gesetze. Lösung: a = F m = Newtonsche Gesetze 1. Der ICE 3 hat laut Hersteller eine axiale Anzugkraft von 300kN und ein,,leergewicht von 405t. Der Zug hat 415 Sitzplätze. Wir unterstellen für die Masse eines Passagiers eine Masse

Mehr

Lösung zu: Bau einer Windkraftanlage, Aufgabe: Windkraft Ina Dorothea Kleinehollenhorst und Olga Hartmann. Lösungsvorschläge

Lösung zu: Bau einer Windkraftanlage, Aufgabe: Windkraft Ina Dorothea Kleinehollenhorst und Olga Hartmann. Lösungsvorschläge Ina Dorothea Kleinehollenhorst und Olga Hartann Lösungsvorschläge 1. Einflussfaktoren welche die Windlast auf eine Windkraftanlage beeinflussen sind zu Beispiel: a. Standort der WKA & Ugebung b. Höhe c.

Mehr

Warteschlangen wurden erstmals vom dänischen Mathematiker Agner Krarup Erlang am Anfang des 20. Jahrhunderts erforscht. Er wurde von der nationalen

Warteschlangen wurden erstmals vom dänischen Mathematiker Agner Krarup Erlang am Anfang des 20. Jahrhunderts erforscht. Er wurde von der nationalen Warteschlangen wurden erstmals vom dänischen Mathematiker Agner Krarup Erlang am Anfang des 20. Jahrhunderts erforscht. Er wurde von der nationalen dänischen Telefongesellschaft beauftragt die Anzahl der

Mehr

2 Inhalte, Prämaße, Maße

2 Inhalte, Prämaße, Maße 13 2 Inhalte, Präaße, Maße Ein Inhalt ist eine nicht-negative nuerische Funktion auf eine Mengenring it der Eigenschaft, dass der Inhalt einer Vereinigung zweier punktfreder Mengen gleich der Sue der Inhalte

Mehr

Institut für Betriebswirtschaftslehre Operations Management

Institut für Betriebswirtschaftslehre Operations Management Operations Management Kurzfristige Kapazitätsplanung & Warteschlangenmanagement Aufgabe 1/1 UBS plant eine Drive-in Filiale zu errichten. Das Management geht davon aus, dass pro Stunde durchschnittlich

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Aufgaben zur Wellenoptik

Aufgaben zur Wellenoptik Aufgaben zur Wellenoptik C Mehrfachspalte Aufgabe C 1: Zeigeraddition bei Doppelspalt Die Abbildung zeigt einen Doppelspalt, an dessen Spalten zwei gleichphasig schwingende Wellen starten. Die zu den Schwingungen

Mehr

8.3 Zuverlässigkeitsmodelle

8.3 Zuverlässigkeitsmodelle 8.3 Zuverlässigkeitsmodelle Def. 29 (Zuverlässigkeit) Die Zuverlässigkeit eines Systems ζ ist die Wahrscheinlichkeit, dass das System zum Zeitpunkt t intakt ist: Rel(ζ) = P(X t). Annahme: Das System besteht

Mehr

PRINETO. Planung und Auslegung der Fußbodenheizung. Planung und Auslegung der Fußbodenheizung. Technische Daten Fußbodenheizung 313

PRINETO. Planung und Auslegung der Fußbodenheizung. Planung und Auslegung der Fußbodenheizung. Technische Daten Fußbodenheizung 313 PINETO Planung und Auslegung der Fußbodenheizung Die verschärften Anforderung an den Wäreschutz und die verbesserte Wäredäung führen zu einer drastischen eduzierung der Wäreverluste von Gebäuden. Die daraus

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Diskrete Ereignissysteme

Diskrete Ereignissysteme Distributed Computing HS 2 Prof. R. Wattenhofer / T. Langner, J. Seidel, J. Smula Diskrete Ereignissysteme Prüfung Montag, 6. Februar 22, 9: 2: Uhr Nicht öffnen oder umdrehen, bevor die Prüfung beginnt!

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Pensions- und Hinterbliebenenversicherung. Natascha Pleschiutschnig 8.Jänner 2008

Pensions- und Hinterbliebenenversicherung. Natascha Pleschiutschnig 8.Jänner 2008 Pensions- und Hinterbliebenenversicherung Natascha Pleschiutschnig 8.Jänner 2008 1 Inhaltsverzeichnis 1 Einleitung 3 2 Pensionsversicherung 3 2.1 Modell von Schärtlin......................... 4 2.2 Übergangswahrscheinlichkeiten...................

Mehr

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij.

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij. 8 Markov-Ketten 8.1 Grundlegendes zu Markov-Ketten Eine Markov-Kette ist ein stochastischer Prozess, der in diskreten Zeitschritten abläuft. Dabei wird jeweils von einem Zustand in einen nächsten übergegangen.

Mehr

1. Stationarität Definition: Ein stochastischer Prozess. heißt streng oder stark stationär, falls für

1. Stationarität Definition: Ein stochastischer Prozess. heißt streng oder stark stationär, falls für " " " Beschreibung stochastischer Prozesse Wir betrachten diskrete Zeitpunkte und die zugehörigen Zufallsvariablen!. ann sind die Zufallsvariablen durch ihre gemeinsame ichte " #%$&#'$)(*#'$,+- charakterisiert.

Mehr

Planen mit mathematischen Modellen 00859: Stochastische Simulation Techniken und Anwendungen

Planen mit mathematischen Modellen 00859: Stochastische Simulation Techniken und Anwendungen Planen mit mathematischen Modellen 00859: Stochastische Simulation Techniken und Anwendungen Leseprobe Autor: PD Dr. Elmar Reucher Kapitel 4 Anwendungen zur stochastischen Simulation 4.1 Simulation von

Mehr

Warteschlangen. Mike Hüftle. 31. Juli Einleitung Theorie und Modelle Kenngrößen von Warteschlangen... 3

Warteschlangen. Mike Hüftle. 31. Juli Einleitung Theorie und Modelle Kenngrößen von Warteschlangen... 3 Warteschlangen Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1 Theorie und Modelle......................... 2 1.2 Kenngrößen von Warteschlangen.................. 3 2 Warteschlangenmodelle

Mehr

. Die obige Beschreibung der Laufzeit für ein bestimmtes k können wir also erweitern und erhalten die folgende Gleichung für den mittleren Fall:

. Die obige Beschreibung der Laufzeit für ein bestimmtes k können wir also erweitern und erhalten die folgende Gleichung für den mittleren Fall: Laufzeit von Quicksort im Mittel. Wir wollen die erwartete Effizienz von Quicksort ermitteln. Wir nehmen an, die Wahrscheinlichkeit, dass das gewählte Pivot-Element a j das k-t kleinste Element der Folge

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbeerb, Klassenstufe 11 1/13 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Zeigt: Die Funktion f : R R, f(x) x, kann nicht als Summe von zei periodischen Funktionen geschrieben

Mehr

Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse mit Warteschlangentheorie

Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse mit Warteschlangentheorie Berichte aus der Informationstechnik Klaus-Dieter Thies Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse mit Warteschlangentheorie für Computernetzwerke

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

Wird nach dem Prinzip assemble-to-order produziert, so erfolgt die Endmontage spezifisch für den jeweiligen Kundenauftrag.

Wird nach dem Prinzip assemble-to-order produziert, so erfolgt die Endmontage spezifisch für den jeweiligen Kundenauftrag. Aufgabe Richtig oder Falsch? (0 Punkte) Folgende Aussagen sind entweder richtig oder falsch! Kreuzen Sie jeweils direkt hinter der Aussage eines der Kästchen an. Stimmt Ihre Bewertung einer Aussage so

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Theorie des maschinellen Lernens

Theorie des maschinellen Lernens Theorie des aschinellen Lernens ans U Sion 6 April 07 4 Lernen und unifore Konvergenz (endlicher Fall In Abschnitt 4 wird gezeigt, dass die unifore Konvergenz von L S (h gegen L D (h garantiert, dass die

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Übungsaufgaben. Was für Buchstaben gilt, gilt leider nicht für Zahlen! 4, ,75638

Übungsaufgaben. Was für Buchstaben gilt, gilt leider nicht für Zahlen! 4, ,75638 Übungsaufgaben Luat enier Stidue an der elingshcen Cabridge Unvirestiät ist es eagl, in wlehcer Rienhnelfoge die Bcuhtsbaen in enie Wrot sethen, das enizg wcihitge dbaei ist, dsas der estre und Izete Bcuhtsbae

Mehr

Statistische Methoden in der Sprachverarbeitung

Statistische Methoden in der Sprachverarbeitung ' Statistische Methoden in der Sprachverarbeitung Gerhard Jäger 7. Mai 22 Inforationstheorie Der Entropiebegriff Entropie: Chaos, Unordung, Nicht-Vorhersagbarkeit,... Begriff kot ursprünglich aus der Physik:

Mehr

= 6V 5 A =1,2 ; U V=U ges. =18V 5 A=90W Der Widerstand liegt also in

= 6V 5 A =1,2 ; U V=U ges. =18V 5 A=90W Der Widerstand liegt also in Übungsaufgaben Ohsches Gesetz, elektrische Leistung 1) Eine Glühlape für eine Betriebsspannung von 6 Volt und einer Leistung von 30 W soll an eine Spannungsquelle it 4 Volt angeschlossen werden. Zeichne

Mehr

Normalverteilung Approximation der Binomialverteilung

Normalverteilung Approximation der Binomialverteilung Noralverteilung Approiation der Binoialverteilung Für großes n ist der rechnerische Aufwand zur Bestiung von (Bernoulli-) Wahrscheinlichkeiten, dass eine binoialverteilte Zufallsfunktion die Funktionswerte

Mehr

Institut für Betriebswirtschaftslehre Service Management: Operations, Strategie und e- Services

Institut für Betriebswirtschaftslehre Service Management: Operations, Strategie und e- Services Service Management: Operations, Strategie und e- Services Prof. Dr. Helmut M. Dietl Übersicht 1. Nachfrageprognose 2. Variabilitätsmanagement und Service-Profit-Chain 3. Servicedesign, Serviceinnovation

Mehr

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 )

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 ) Kapitel 4 Streuen Wir behandeln nun Ipleentationen ungeordneter Wörterbücher, in denen die Schlüssel ohne Beachtung ihrer Sortierreihenfolge gespeichert werden dürfen, verlangen aber, dass es sich bei

Mehr

POTENZSUMMENFORMELN, POLYNOME UND DIFFERENZENRECHNUNG. m x=0

POTENZSUMMENFORMELN, POLYNOME UND DIFFERENZENRECHNUNG. m x=0 POTENZSUMMENFORMELN, POLYNOME UND DIFFERENZENRECHNUNG MARKUS FULMEK. Problestellung Seien n, N 0 = {0,,,...} natürliche Zahlen (inklusive 0). Wir betrachten die n te Potenzsue S n () := x n. x=0 Z.B. ist

Mehr

Vorlesung 15a. Quellencodieren und Entropie

Vorlesung 15a. Quellencodieren und Entropie Vorlesung 15a Quellencodieren und Entropie 1 1. Volle Binärbäume als gerichtete Graphen und die gewöhnliche Irrfahrt von der Wurzel zu den Blättern 2 3 ein (nicht voller) Binärbaum Merkmale eines Binärbaumes:

Mehr

Nachtermin 2002 Nichttechnik 12. Aufgabengruppe A

Nachtermin 2002 Nichttechnik 12. Aufgabengruppe A Aufgabengruppe A Gegeben sind die reellen Funktionen f : x a f (x); D = IR k k f f k 1 1 2 (x) = x + (k 1)x k x mit k IR k 1. 2 bezeichnet. k + Der Graph einer solchen Funktion fk mit ' 1.1 Berechnen Sie

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Wahrscheinlichkeitstheorie und Stochastische Prozesse

Wahrscheinlichkeitstheorie und Stochastische Prozesse http://www.stat.tugraz.at/courses/exa/hw_305.pdf 1 Wahrscheinlichkeitstheorie und Stochastische Prozesse Übungsblatt 3 13. 12. 2005 Failiennae Vornae Matrikelnuer Gruppe Failiennae Vornae Matrikelnuer

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Warteschlangen Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Inhaltsverzeichnis 1. Einleitung...1 2. Aufgaben...2 3. Simulation einer Warteschlange mit dem Würfel...2 4.

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

10 Markow-Ketten. Themen: Lineare Differenzengleichungen Irrfahrten Warteschlangen

10 Markow-Ketten. Themen: Lineare Differenzengleichungen Irrfahrten Warteschlangen 10 Markow-Ketten Themen: Lineare Differenzengleichungen Irrfahrten Warteschlangen 10.1 Lineare Differenzengleichungen Unter einer homogenen linearen Differenzengleichung der Ordnung r verstehen wir eine

Mehr

9. Eine einfache Warteschlangen-Simulation.

9. Eine einfache Warteschlangen-Simulation. SS 2006 Arbeitsblatt 4 / S. 1 von 9 9. Eine einfache Warteschlangen-Simulation. A) Allgemeine Bemerkungen. Die Warteschlange aus 8., wie auch solche mit nur endlich grossem Warteraum, können auf einfache

Mehr

Warteschlangentheorie

Warteschlangentheorie Warteschlangentheorie Frühjahrstrimester 2016 HSU Hamburg Andreas Löpker 1. Einführung 1.1. Einfaches Warteschlangenmodell Der Ankunftsprozess beschreibt die zufällige Ankunft von Kunden. Ist die Bedienstation

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Literatur zu Kapitel 4 der Vorlesung. Diskrete Ereignissysteme, Kapitel 4. Stochastische Prozesse. Weitere Literatur

Literatur zu Kapitel 4 der Vorlesung. Diskrete Ereignissysteme, Kapitel 4. Stochastische Prozesse. Weitere Literatur Diskrete Ereignissysteme, Kapitel 4 Literatur zu Kapitel 4 der Vorlesung 4. Stochastische diskrete Ereignissysteme 4.1 Grundbegriffe der Wahrscheinlichkeitsrechnung 4.2 Stochastische Prozesse in diskreter

Mehr

Aufgabe 1 (Warteschlange am Kartenschalter)

Aufgabe 1 (Warteschlange am Kartenschalter) Aufgabensammlung zum Wahlteil Seite 1 Aufgabe 1 (Warteschlange am Kartenschalter) Das Schaubild zeigt die Entwicklung der momentanen Ankunftsrate (Ankommende pro Stunde) am Kartenschalter eines Musiktheaters.

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Die Abbildung zeigt die Kette aus dem "

Die Abbildung zeigt die Kette aus dem ½ Ô ½ 0 1 2 Õ Eine Markov-Kette mit absorbierenden Zustanden Die Abbildung zeigt die Kette aus dem " gamblers ruin problem\ fur m = 2. Man sieht sofort, dass hier sowohl 1 = (1; 0; 0) als auch 2 = (0;

Mehr

Operations Management

Operations Management Operations Management Kurzfristige Kapazitätsplanung, Warteschlangenmanagement Prof. Dr. Helmut Dietl Lernziele Nach dieser Veranstaltung sollen Sie wissen, welcher Trade-off zwischen Warte- und Servicekosten

Mehr

Kapitel 6. Irrfahrten und Bernoullischemata

Kapitel 6. Irrfahrten und Bernoullischemata Kapitel 6 Irrfahrten und Bernoullischemata Ausgangspunkt dieses Kapitels ist das in den Abschnitten 2.5 und 3.3 vorgestellte mathematische Modell des mehrmals Werfens einer Münze. Die dort definierten

Mehr

Lösung der Zusatzaufgabe von Blatt 13

Lösung der Zusatzaufgabe von Blatt 13 Lösung der Zusatzaufgabe von Blatt 13 (1) Freier Fall (Fall eines Körpers i Vakuu, d.h. ohne Reibungswiderstand): (i) s = g. (a) Lösung von (i) it den Anfangsbedingungen s(0) = h und v(0) = ṡ(0) = 0: Integrieren

Mehr

Gewählt wird eine viersträngige Seilführung mit oberer Ausgleichsrolle (siehe Skript Blatt 4.4-10).

Gewählt wird eine viersträngige Seilführung mit oberer Ausgleichsrolle (siehe Skript Blatt 4.4-10). Zahlenbeispiel - erechnung und Entwurf eis ubwerks a) Anordnung (siehe Skript latt 0a) Das ubwerk hat die auptbaugruppen otor, TK Troelkupplung, K elastische Kupplung it resscheibe, T Seiltroel, echanische

Mehr

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise:

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise: Technische Mechanik III WiSe 0 6.0.0 Nae : Vornae : Matrikelnuer : Klausurnuer : Aufgabe Punkte 9 0 50 Allgeeine Hinweise: alle Blätter it Naen und Matrikelnuer beschriften! keine grüne oder rote Farbe

Mehr

Übungsaufgaben. Was für Buchstaben gilt, gilt leider nicht für Zahlen! 4, ,75638

Übungsaufgaben. Was für Buchstaben gilt, gilt leider nicht für Zahlen! 4, ,75638 Übungsaufgaben uat enier Stidue an der elingshcen Cabridge Unirestiät ist es eagl, in wlehcer Rienhnelfoge die Bcuhtsbaen in enie Wrot sethen, das enizg wcihitge dbaei ist, dsas der estre und Izete Bcuhtsbae

Mehr

Aufgabe 1 (Warteschlange am Kartenschalter)

Aufgabe 1 (Warteschlange am Kartenschalter) Aufgabensammlung Seite Aufgabe (Warteschlange am Kartenschalter) Das Schaubild zeigt die Entwicklung der momentanen Ankunftsrate (Ankommende pro Stunde) am Kartenschalter eines Musiktheaters. Der Schalter

Mehr

Konstruktion 2 A WiSe 10/11 2. Konstruktionsaufgabe - Testat. Abbildungsverzeichnis 3. Eidesstattliche Erklärung 4

Konstruktion 2 A WiSe 10/11 2. Konstruktionsaufgabe - Testat. Abbildungsverzeichnis 3. Eidesstattliche Erklärung 4 Inhaltsverzeichnis Abbildungsverzeichnis 3 Eidesstattliche Erklärung 4 1 Aufgabenstellung/Vorüberlegungen/Funktionsweise/Anforderungen 5 2 Gegebene Daten/Werte 6 2.1 Allgeein.....................................................

Mehr

ALKIS-Daten als Basis Kommunaler GeoinformaƟonssysteme

ALKIS-Daten als Basis Kommunaler GeoinformaƟonssysteme HeŌ 1 Würzburg 010 ALKIS-Daten als Basis Kounaler GeoinforaƟonssystee Anlage 1 Zusaenstellung der Foreln, Fehlergrenzen, Genauigkeiten Arbeitshilfen zur Einrichtung, Führung und Nutzung Kounaler GeoinforaƟonssystee

Mehr

Verkehrswesen, Fabrikplanung, Dienstleistungssysteme u.v.m.

Verkehrswesen, Fabrikplanung, Dienstleistungssysteme u.v.m. Warteschlangen wurden erstmals vom dänischen Mathematiker Agner Krarup Erlang am Anfang des 20. Jahrhunderts erforscht. Er wurde von der nationalen dänischen Telefongesellschaft beauftragt die Anzahl der

Mehr