Analysis einer Variablen Lösungen zur Klausur vom F. Merkl

Größe: px
Ab Seite anzeigen:

Download "Analysis einer Variablen Lösungen zur Klausur vom F. Merkl"

Transkript

1 Analysis einer Variablen Lösungen zur Klausur vo 8..7 F. Merkl. Gegeben sei eine Folge (f n ) n N von Funktionen f n : R R und eine weitere Funktion f : R R. (a) Definieren Sie, wann f n für n punktweise konvergent gegen f genannt wird. Schreiben Sie die Antwort als eine prädikatenlogischen Forel in das folgende Feld: f n f punktweise : x R ε > N n : f n (x) f(x) < ε (b) Definieren Sie, wann f n für n gleichäßig konvergent gegen f genannt wird. Schreiben Sie die Antwort als eine prädikatenlogischen Forel in das folgende Feld: f n f gleichäßig : ε > N n x R : f n (x) f(x) < ε (c) Forulieren Sie die Negation der in der letzten Teilaufgabe angegebenen Forel it einer prädikatenlogischen Forel, in der alle Quantoren zu Beginn stehen. Schreiben Sie die Antwort in das folgende Feld: f n f gleichäßig] ε > N n x R : f n (x) f(x) ε (d) Nun sei speziell f(x) und f n (x) cos(x/n) für n N und x R. Beweisen Sie, dass f n nicht für n gleichäßig gegen f konvergiert. Achten Sie bei de Beweis besonders auf eine logisch korrekte Darstellung. Beweis: Wir wählen ε. Nun sei N gegeben. Wir wählen n und x nπ/. Dann folgt f n (x) f(x) cos(π/) ε, also die Behauptung.. (a) Forulieren Sie die Forel für die geoetrische Sue. Geeint ist die endliche geoetrische Sue, nicht die geoetrische Reihe. Quantifizieren Sie auch alle dabei vorkoenden Variablen. Schreiben Sie die Antwort in das folgende Feld: Geoetrische Sue: x C \ {} n N : n k xk xn x. (b) Es bezeichnet i die iaginäre Einheit in C. Beweisen Sie für alle n N und a C it a < : n n a exp(πi k k n ) a n () Beweis der Forel (): Für n und a wie angegeben folgt it der geoetrischen Reihe (konvergent, da a exp(πi k n ) < für k N ): n k n a exp(πi k n ) k n l k a l e πikl/n a l e πikl/n Sei l N. Nun ist n k al e πikl/n na l, falls l jn ein ganzzahliges Vielfaches von n ist. Andernfalls ist e πil/n und dait it der geoetrischen Sue k l n a l e πikl/n a l e πil e πil/n. Es folgt, nochals it der geoetrischen Reihe: n n a l e πikl/n n l k also eingesetzt die Behauptung. j na jn a n,

2 (c) Berechnen Sie für gegebenes a C it a < das untenstehende Integral I. Schreiben Sie das Ergebnis in öglichst vereinfachter For in das folgende Feld: I : π π () aeix Hinweis: Eine ögliche Lösung verwendet die vorhergehende Teilaufgabe. Begründung der Forel (): Wegen der gleichäßigen Stetigkeit der Abbildung f :, π] x ae ix konvergiert die Folge der Treppenfunktion f n :, π] C, f n (x) : n {xπ} a + für n gleichäßig gegen f. Es folgt: π li aeix π li n π, da li a n wegen a <. n k 3. 3(a) Definieren Sie für a, b, c R die Aussage k π {πk/n x<π(k+)/n} a exp(πi k n ) f n (x) a exp(πi k n ) li π a n e x e x ax / + bx / + cx 3/ + O(x 5/ ) für x. (3) Schreiben Sie die Antwort als eine prädikatenlogische Forel in das folgende Feld: Aussage (3) : ε > C R + x ], ε: e x e x (ax / + bx / + cx 3/ ) Cx5/ 3(b) Berechnen Sie Konstanten a, b, c R so, dass die Aussage (3) wahr wird. Bei der Rechnung dürfen Sie wahre Gleichungen für Grenzwerte und Landausybole ohne Begründung verwenden. Schreiben Sie die Antworten in öglichst vereinfachter For in die nachfolgenden Felder: Es gilt für x : a, b 3 4, c (4) e x + x + x x3 + O(x 4 ), e x + x + x + 6 x3 + O(x 4 ), also und daher e x e x x + 3 x x3 + O(x 4 ) ( e x e x x / + 3 x + 7 ) / 6 x + O(x 3 ) Nun gilt für y it der binoischen Reihe: ( ) ( ) / / ( + y) / + y + y + O(y 3 ) y y + O(y 3 )

3 Setzen wir hier y 3 x x + O(x 3 ) für x ein: ( + 3 x + 7 ) / 6 x + O(x 3 ) 3 x + 7 ] 6 x + O(x 3 ) + 3 ] 3 8 x + O(x ) + O(x 3 ) 3 4 x x + O(x 3 ) wobei wir e x e x x / 3 4 x/ x3/ + O(x 5/ ) verwendet haben. Oben eingesetzt: 4. 4(a) Geben Sie eine Abbildung f : R + ], an, so dass sich jedes Integral der Gestalt R (x, ) x (5) it eine in den Variablen x und y rationalen Ter R(x, y) durch die Substitution x f(t) (6) in ein Integral der Gestalt Q(t) dt it rationale Integranden Q(t) transforieren lässt. Geben Sie auch soweit wie öglich vereinfachte Foreln für y f(t) und für dt f (t) an. Schreiben Sie die Antworten in die folgenden Felder: Rechnungen oder Skizzen dazu: x f(t) t + t, y f(t) t + t, dt f 4t (t) ( + t ). (7) Das ist die Eulersubstitution, die die Halbgerade {(, t) t > } vo Punkt (, ) aus auf den Einheitshalbkreis oberhalb der x-achse projiziert. In der Tat gilt für t > : und Weiter: y + x t ( t ) + ( + t ) t x + y ( t ) + (t) ( + t ). f (t) d dt + ] + t 4t ( + t ). 4(b) Welchen Ter Q(t) erhalten Sie in der Situation der vorhergehenden Teilaufgabe i Spezialfall R(x, y) (x y + )? Schreiben Sie das Ergebnis als gekürzten Bruch Q(t) Z(t) N(t) zweier Polynoe Z und N in das folgende Feld: Q(t) t ( t) (8) Begründung der Forel (8): Mit der Transforationsforel und x, y, /dt von der vorigen Teilaufgabe: Q(t) dt (x y + ) 4t (+t ) t +t t +t + ] 4t ( t ) t + ( + t )] t ( t)

4 4(c) Berechnen Sie das unten angegebene Integral. Schreiben Sie das Ergebnis soweit wie öglich vereinfacht in das nachfolgende Feld: (x log (9) x + ) Begründung der Forel (9): Wir arbeiten it der Transforation aus den vorhergehenden Teilaufgaben. Transforation der Grenzen: li t f(t), f(). Die Grenzen x und x entsprechen daher den transforierten Grenzen t und t. Es folgt: (x x + ) (t ) + (t ) dt t + log( t) + t log ] (t ) dt ] t t ( t) dt 5. Sie dürfen i Folgenden vorhergehende Teilaufgaben auch dann benutzen, wenn Sie diese nicht gelöst haben. Die Forelnuern a Rand sollen Ihnen das Zitieren erleichtern. 5(a) Es sei f :, ] R eine zweial stetig differenzierbare Funktion, wobei die Differenzierbarkeit a Rand einseitig geeint ist. Beweisen Sie: f() + f()] Beweis der Forel (): Mit zweialiger partieller Integration folgt: (x x )f (x) ] (x x )f (x) ( ) ] x f(x) f(x) x x f() + f()] f(x), (x x )f (x) () ( ) x f (x) f(x) wobei die Randtere bei der ersten partiellen Integration gleich sind. 5(b) Nun sei zusätzlich f. Beweisen Sie: Beweis der Forel (): Es git für x : x( x) (x x ) 8 (x x )f (x) 8 f () f ()] () ( x ) (x x ) 8 Multiplizieren wir diese Ungleichung it f (x) und integrieren wir dann von bis, folgt die Behauptung: (x x )f (x) 8 wobei i letzten Schritt der Hauptsatz angewandt wurde. f (x) 8 f () f ()],

5 5(c) Für n N sei gegeben: a n : ( n + ) log n n log(n!) () Beweisen Sie für alle n N: a n+ a n 8 ( n ) n + (3) Hinweis: Verwenden Sie die vorhergehenden Teilaufgaben i Spezialfall f(x) log(x + n). Beweis der Forel (3): Mit f(x) log(x + n), f (x) (x + n) und f (x) (x + n) für x sind die beiden vorhergehenden Teilaufgaben anwendbar und liefern: log n log(n + )] + log(x + n) 8 n + + ] n Nun gilt log n log(n + )] + log(x + n) log(n + ) + log(x + n)] x + (x + n) log(x + n) (x + n)] x ( log((n + )!) + log(n!) + x + n + ) ] log(x + n) (x + n) Setzen wir das oben ein, folgt die Behauptung. 5(d) Beweisen Sie induktiv für alle, n N it n : a a n 8 ( n ) x a n+ a n. (4) it der in Forel () definierten Folge (a n ) n N. Achten Sie bei Beweis besonders sorgfältig auf eine korrekte logische Darstellung, insbesondere bei der Wahl der Variable, über die die Induktion geführt wird, der Induktionsvoraussetzung, der Einführung freier Variablen und de Ugang it Quantoren. Induktionsbeweis: Wir schreiben die Behauptung in der folgenden For: k N, n N : n k a a n 8 ( n )] Wir zeigen dies durch vollständige Induktion über k N. Induktionsanfang, k : Gegeben, n N it n folgt n, also a a n ( 8 n ). Induktionsvoraussetzung: Es sei k N gegeben, und es gelte, n N : n k a a n ( 8 n )] Induktionsschluss: Zu zeigen ist:, n N : n k + a a n 8 Hierzu seien, n N it n k + gegeben. Nun gilt a n+ a n ( 8 n ) n + ( n )]

6 wegen Forel (3) und a a n+ 8 ( n + ) nach der Induktionsvoraussetzung wegen (n + ) k. Durch Addition dieser beiden Ungleichungen folgt die Behauptung so: (a a n+ ) + (a n+ a n ) a a n ( 8 n + ) + ( 8 n ) n + ( 8 n ) 5(e) Geben Sie für reellwertige Folgen (a n ) n N an, wie die Aussage (a n ) n N ist eine Cauchyfolge definiert ist. Schreiben Sie die Antwort als eine prädikatenlogische Forel in das folgende Feld: (a n ) n N ist eine Cauchyfolge : ε > l N l n l : a a n < ε. 5(f) Beweisen Sie, dass die durch die Forel () in Teilaufgabe 5(c) definierte Folge (a n ) n N eine Cauchyfolge ist. Achten Sie auch hier besonders sorgfältig auf eine korrekte logische Darstellung, insbesondere bei der Einführung freier Variablen und de Ugang it Quantoren. Beweis: Es sei ε > gegeben. Mit de archiedischen Axio wählen wir l N so groß, dass 8l < ε gilt. Nun seien, n N it l und n l gegeben. Wir dürfen zusätzlich n annehen; andernfalls vertauschen wir und n. Dann folgt a a n ( 8 n ) 8n 8l < ε, wegen Teilaufgabe 5(d), also die Behauptung: 5(g) Beweisen Sie, dass die durch a a n < ε. b n : nn+ e n n! (5) definierte Folge (b n ) n N in R konvergiert. Beweis: Es gilt b n exp a n für alle n N. Weil die Folge (a n ) n N eine Cauchyfolge ist, konvergiert sie in R. Weil die Exponentialfunktion stetig und daher folgenstetig ist, folgt hieraus auch die Konvergenz von (b n ) n N in R.

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Kapitel C. Integrale und Grenzwerte

Kapitel C. Integrale und Grenzwerte Kapitel C Integrale und Grenzwerte Inhalt dieses Kapitels C000 1 Der Satz von Fubini 2 Der Transformationssatz 1 Vertauschen von Integral und eihe 2 Vertauschen von Integral und Limes 3 Vertauschen von

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

Lösungen zur Übungsserie 9

Lösungen zur Übungsserie 9 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag,? November Lösungen zur Übungsserie 9 Aufgaben 1,2,3,5,6,8,9,11 Aufgabe 1. Sei a R. Berechnen Sie die folgenden Grenzwerte, falls sie existieren.

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Prof. Dr. Stefan Luckhaus WS 2013/14. Übungsserie 1. Mathematik für Wirtschaftswissenschaftler

Prof. Dr. Stefan Luckhaus WS 2013/14. Übungsserie 1. Mathematik für Wirtschaftswissenschaftler Prof. Dr. Stefan Luckhaus WS 203/4 Übungsserie Aufgabe. Seien f : R R, g : R R Funktionen, die wie folgt definiert sind: fx) =, gx) = x +. + x2 Stellen Sie die Funktionen als Quotienten von Polynomen dar.

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Mathematische Grundlagen (01141) SoSe 2009

Mathematische Grundlagen (01141) SoSe 2009 Mathematische Grundlagen (04) SoSe 2009 Klausur am 29.08.2009: Musterlösungen Aufgabe Im Induktionsanfang sei n 0 = 0. Dann gilt Somit gilt der Induktionsanfang. 0 Die Induktionsvoraussetzung ist, dass

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Die Zahlen e und π sind irrational.

Die Zahlen e und π sind irrational. Die Zahlen e und π sind irrational. Eva Gressung 2. Feruar 27 Die Zahl e ist irrational Zu Beginn dieses Aschnitts definieren wir die Eulersche Zahl e und zeigen anschließend, dass e irrational ist. Definition.

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Analysis für Informatiker und Statistiker Modulprüfung

Analysis für Informatiker und Statistiker Modulprüfung Prof. Dr. Peter Otte Wintersemester 2013/14 Tom Bachmann, Sebastian Gottwald 18.02.2014 Analysis für Informatiker und Statistiker Modulprüfung Lösungsvorschlag Name:.......................................................

Mehr

Analysis I. 2. Beispielklausur mit Lösungen

Analysis I. 2. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Die Produktmenge aus zwei Mengen L und M.

Mehr

Klausur Analysis II

Klausur Analysis II WS 28/9 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis II 6.2.28 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Nachklausur Analysis 1 WS 2007 /

Nachklausur Analysis 1 WS 2007 / Nachklausur Analysis 1 WS 27 / 28 18.4.28 Es gibt 11 Aufgaben. Die jeweilige Punktzahl steht am linken Rand. Die Gesamtpunktzahl ist 4 Punkte. Zum Bestehen der Klausur sind 16 Punkte erforderlich. Bei

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 (x 1, x 2,..., x n ) x 2... f 2 (x 1, x 2,..., x n )... x n f m (x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man:

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Modulprüfung Analysis I für Ingenieurwissenschaften

Modulprüfung Analysis I für Ingenieurwissenschaften Technische Universität Berlin WiSe 4/5 Fakultät II Institut für Mathematik 20. Februar 205 Doz.: Fackeldey, Guillemard, Penn-Karras Ass.: Beßlich, Winkert Modulprüfung Analysis I für Ingenieurwissenschaften

Mehr

eine reelle (oder komplexe) Folge. Dann heißt l der Limes oder der Grenzwert dieser Folge, notiert als

eine reelle (oder komplexe) Folge. Dann heißt l der Limes oder der Grenzwert dieser Folge, notiert als Analysis, Woche 9 Stetigkeit I A 9. Grenzwerte bei Funktionen 9.. Der einfachste Fall Wir erinnern noch mal an den Grenzwert bei einer Folge. Sei {a n } n=0 eine reelle (oder komplexe) Folge. Dann heißt

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 31.1.2017 Definition 2.2 (uneigentliches Riemann-Integral) Sei I = [a, b) mit a < b. Die Funktion f : I R sei Riemann-integrierbar auf [a, b ] für alle b < b. Falls x lim x b a f(ξ)

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 14

Technische Universität Berlin Fakultät II Institut für Mathematik SS 14 Technische Universität Berlin Fakultät II Institut für Mathematik SS 4 Doz.: Blath, Gündel vom Hofe Ass.: Altmann, Fackeldey, Hammer 8. Okt 4 Oktober Klausur Analysis I für Ingenieure Name:....................................

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 015): Differential und Integralrechnung 1 1.1 (Frühjahr 00, Thema 3, Aufgabe ) Formulieren Sie das Prinzip der vollständigen Induktion und beweisen

Mehr

Prüfungsfragen zur Theorie

Prüfungsfragen zur Theorie Prüfungsfragen zur Theorie Formulieren Sie die Monotoniegesetze (Rechenregeln für Ungleichungen)! Satz: Für alle a,b,c,d gilt: a b und c.d a+c b+d Satz: Für alle a,b,c,d + o gilt: a b und c d ac bd 1 Satz:

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Präsenzübungen zur Analysis I Lehramt

Präsenzübungen zur Analysis I Lehramt Technische Universität Dortmund 12. Oktober 217 Matthias Schulte Blatt, WiSe 17/18 Aufgabe.1 (Elementare Beweistechniken). a) Zeige, dass 2 Q gilt! b) Es seien A,B Mengen. Zeige: A B = B \A = B. Aufgabe.2

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014 Tutorübung 5 Analysis 2 für Lehramt TU Dortmund, Sommersemester 24 Aufgabe T Bestimme die Taylorreihen von (a) cos(x) um a. (b) ln(x) um a. (c) um a 2. +x Bestimme in allen Fällen das Taylorpolynom T n,a

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 12. Übungsblatt Institut für Analysis WS07/8 Prof. Dr. Dirk Hundertmark 6..08 Dr. Michal Je Höhere Mathematik I für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe 68: a Es sei c irgendeine Zahl zwischen

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, felix.b.mueller@physik.lmu.de Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke

Mehr

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume Inhaltsverzeichnis 6 Topologische Grundlagen 1 6.1 Normierte Räume................................ 1 6.2 Skalarprodukte................................. 2 6.3 Metrische Räume................................

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Prof. Dr. E. Triesch Höhere Mathematik I SoSe 06 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Zulassungsprüfung in Mathematik

Zulassungsprüfung in Mathematik der Deutschen Aktuarvereinigung e V Hinweise: Als Hilfsmittel sind ein Taschenrechner, eine mathematische Formelsammlung sowie entsprechende Literatur zugelassen Die Gesamtpunktzahl beträgt 9 Punkte Die

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

23 Konvexe Funktionen und Ungleichungen

23 Konvexe Funktionen und Ungleichungen 23 Konvexe Funktionen und Ungleichungen 231 Konvexe Funktionen 232 Kriterien für Konvexität 233 Streng konvexe Funktionen 235 Wendepunkte 237 Ungleichung von Jensen 2310 Höldersche Ungleichung 2311 Minkowskische

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Mathematische Grundlagen (01141) SoSe 2010

Mathematische Grundlagen (01141) SoSe 2010 Mathematische Grundlagen (4) SoSe Klausur am 8.8.: Musterlösungen Aufgabe Sei n. Es gilt (+) (+)(+). Es gilt somit der Induktionsanfang. Als Induktionsannahme nehmen wir an, dass n n(n+)(n+) für ein n

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Nachklausur zur Analysis 1, WiSe 2016/17

Nachklausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL 04.04.7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis, WiSe 06/7 Aufgabe

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Blatt 0 A.Dessai / A.Bartels Keine Abgabe Dieses Blatt wird in den Übungen in der zweiten Semesterwoche besprochen. Aufgabe 0.1 Zeigen Sie: Für jede natürliche Zahl n ist n(n + 5) durch 3 teilbar. Aufgabe

Mehr

Analysis 1 Erste Modulprüfung Ws 2017/8 4. April 2018

Analysis 1 Erste Modulprüfung Ws 2017/8 4. April 2018 Analysis Erste Modulrüfung Ws 207/8 4. Aril 208 Es gibt 8 Aufgaben. Die jeweilige Punktzahl steht am linken Rand. Die Maximalunktzahl ist 36, zum Bestehen sind 4 Punkte hinreichend. Die Bearbeitungszeit

Mehr

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Im folgenden finden Sie eine Liste von typischen Prüfungsfragen für die Vorlesungsprüfung Differential- und Integralrechnung

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014 Aufgabensammlung Höhere Mathematik für Physiker III Wintersemester 2014 1 Verbandstheorie 1. Aufgabe: (a) Sei f C(R) eine stetige Funktion. Wenn Rf(x)φ(x)dx = 0 für alle Testfunktionen φ Cc (R) gilt, dann

Mehr

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13 Universität Stuttgart Fachbereich Mathematik Prof. Dr. E. Teufel, Dr. N. Röhrl, J. Spreer MUSTERLÖSUNG FÜR KLAUSUR Mathematik inf / sotech / tpinf Aufgabe 1 (4 Punkte) Zeigen Sie, dass für alle n gilt

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim

Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim Beispiel 3.10 ( 1) n n a n a+nd aq n 1 (a > 0) n monoton steigend d 0 q 1 nein nein streng monoton steigend d > 0 q > 1 nein nein monoton fallend d 0 0 q 1 streng monoton fallend d < 0 0 < q < 1 ja nein

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Über Potenzsummenpolynome

Über Potenzsummenpolynome Über Potenzsuenpolynoe Jörg Feldvoss I Sande 4b, D-21369 Nahrendorf Gerany Einleitung Für jede natürliche Zahl n bezeichnen wir it P n das n-te Potenzsuenpolyno, welches dadurch gegeben ist, dass es für

Mehr