Zur Geschichte des Photons
|
|
|
- Sabine Richter
- vor 9 Jahren
- Abrufe
Transkript
1 Zur Geschichte des Photons Jan-Peter Meyn
2 Zur Geschichte des Photons Jan-Peter Meyn Frühe Vorstellungen 2. Plancks und Einstein 3. Nach Laserphysik und Quantenoptik ab Experimente mit nicht-klassischem Licht 6. Didaktische Reflexion 2
3 Frühe Vorstellungen über Licht 13. Jhd. Lichtstrahl [Al Haytham] Experimentell als Schattengrenze demonstriert 3
4 Frühe Vorstellungen über Licht 1609 Erfindung des Teleskops Newton, Opticks 1730: Korpuskular-Theorie Lichtmodell war kein Schwerpunkt der Arbeit! Young 1801: Experimentelle Evidenz für Wellentheorie Maxwell, A Treatise on Electricity and Magnetism 1873 [F. Hund: Geschichte der physikalischen Begriffe] 4
5 Geschichte der Wärme 5
6 Statistische Physik Ludwig Boltzmann ( ) Mechanik der Vielteilchensysteme Verwendung statistischer Methoden 6
7 Energetik Energie als fundamentale Größe Energie dominiert die neue Formulierung der Mechanik Ablehnung der mechanischen Erklärung der Wärme Mechanische Erklärung ist Rückkehr zu weniger fundamentalen Größen wie Ort und Impuls Verfechter E. Mach, W. Ostwald Bildarchiv der Österreichischen Nationalbibliothek, Wien. 7
8 Boltzmann vs. Ostwald Verbales Duell in Lübeck, [Fasol-Boltzmann 2006, S. 26] Ostwald: Es ist in der Gastheorie ein gewisses Missverhältnis zwischen Aufwand und Resultaten nicht zu leugnen Boltzmann: Seit wann wird denn bei der Schätzung wissenschaftlicher Ergebnisse die Mühe in Rechnung gestellt, die ihre Gewinnung gekostet hat Kommentar Sommerfeld Der Stier besiegte diesmal den Torero trotz aller Fechtkunst Planck beide Gegner [waren] sich an Schlagfertigkeit und natürlichem Witz ebenbürtig 8
9 Thermische Strahlung Spektrum thermischer Strahler kann nicht exakt berechnet werden Legitimations-Problem für die Statistische Physik 9
10 Beitrag Max Planck Theoretischer Physiker, Schwerpunkt Entropie, 2. Hauptsatz Skizze zur Begründung des Strahlungsgesetzes Moden des e/m Feldes im Kasten Berechne Modendichte Anregung der Moden Thermisches Gleichgewicht Absorption der Kastenwände Anregung der Moden gemäß Boltzmann-Statistik Energie einer einzelnen Mode ändert sich in Energie-Quanten hν Perfektes Modell für experimentelle Ergebnisse Ein Trick, um die Formel passend zu machen. [Dieter Hoffmann: Max Planck und die moderne Physik] [Max Planck: Die Ableitung der Strahlungsgesetze] 10
11 [H. Rubens und F. Kurlbaum: Annalen der Physik 309(4), (1901)] 11
12 Photoeffekt Einstein, Ann. Phys. 17, 132 (1905): Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt Die mit kontinuierlichen Raumfunktionen operierende Undulationstheorie des Lichts hat sich zur Darstellung der rein optischen Phänomene vortrefflich bewährt und wird wohl nie durch eine andere Theorie ersetzt werden Es erscheint [ ] die Beobachtungen über die schwarze Strahlung [ ] besser verständlich erscheinen unter der Annahme, dass die Energie des Lichtes diskontinuierlich im Raume verteilt sei. [Irons, EJP 25, 269 (2004); Provost & Bracco, EJP 29, 1085 (2008)] Verbindung zur kinetischen Gastheorie Aus heutiger Sicht ist die erste Aussage richtig, die zweite Aussage ist so nicht haltbar. Diskontinuierliche Verteilung führt zum Kugelmodell des Photons 12
13 Didaktischer Einschub: Das Photonen-Kugelmodell 13
14 Kugelmodell des Photons [Netzwerk Physik 7:] 14
15 Fehlvorstellungen zum Kugelmodell Folgerung: Photonen kleiner als Oberflächenstrukturen! [Netzwerk Physik 7] 15
16 Ende des didaktischen Einschubs 16
17 Einstein nach 1905 Alternative Herleitung des Strahlungsgesetzes in der üblichen Form [Verh. DPG 18, (1916)] 17
18 Mathematische Beherrschung der QM (1926) DeBroglie 1925: Materiewellen postuliert Schrödinger 1926: Wellenmechanik Heisenberg 1926: Matrizenmechanik (diskrete Zustände) Schrödinger: Mathematische Äquivalenz von Wellen- und Matrizenmechanik sowie Überlegenheit gegenüber älteren Theorien Ann. Phys 80, 734 (1926) Heisenberg 1927: Unschärferelation Damit ist die Quantenphysik als Mechanik etabliert Grundlage der üblichen Quantenmechanik-Vorlesung 18
19 Weitere Entwicklung der Quantenphysik G. Wentzel: Photoeffekt in semiklassischer Näherung (1926) Atom ist quantisiert gemäß Schrödinger-Gleichung Störung durch Licht als elektromagnetische Welle [G. Wentzel, Zeitschrift für Physik 40, 574 (1926)] 19
20 Wentzel als Kugel-Photonen-Forscher Werner Heisenberg, Development of concepts in the history of quantum theory, Am. J. Phys. 43, (1973) 20
21 Photonenzahl als Erhaltungsgröße? Gilbert N. Lewis, Nature 118, 874 (1926) 21
22 Quantentheorie des e/m Feldes P.A.M. Dirac: Relativistische Quantentheorie (1928) Grundlage der Quantisierung des e/m Feldes (Erinnerung: Relativitätstheory ist Elektrodynamik) E. Fermi: Ergebnisse entsprechen des klassisch erwarteten [Quantum Theory of Radiation, Rev. Mod. Phys. 4, (1932)] Entwicklungen unmittelbar nach Schrödinger-Gleichung sind in der Grundausbildung gänzlich unbekannt oder unbewusst. aber Standard in der Atomphysik [Haken-Wolf, ] 22
23 1960er Jahre: Grundlagen der Quantentheorie 1960 Erfindung des Lasers als Arbeitspferd der Atomphysik 1963 R. Glauber beschreibt e/m Welle in Photonenzahlen [Phys. Rev. Lett. 10, 84-86], Nobelpreis Bell schlägt experimentelle Überprüfung des EPR- Paradoxons vor Viele Arbeiten zur semiklassischen Theorie Theoretische und später experimentelle Suche nach nichtklassischem Licht 23
24 Wenn man QED kann, reicht klass. e/m Feld... 24
25 Wenn man QED kann, macht man das auch [R. Glauber, Phys. Rev. 131, 2766 (1963)] Few problems of physics have received more attention in the past than those posed by the dual wave-particle properties of light. The story of the solution of these problems is a familiar one. It has culminated in the development of a remarkably versatile quantum theory of the electromagnetic field. Yet, for reasons which are partly mathematical and partly, perhaps, the accident of history, very little of the insight of quantum electrodynamics has been brought to bear on the problems of optics. The statistical properties of photon beams, for example, have been discussed to date almost exclusively in classical or semi-classical terms. Such discussions may indeed be informative, but they inevitably leave open serious questions of self-consistency, and risk overlooking quantum phenomena which have no classical analogs. (note: Glauber was offered a photon licence by Lamb) 25
26 Photomultiplier: semiklassisch vs. QED Erwartetes Signal bei elektromagnetischer Welle Wahre Aussage: Photon wird absorbiert click t Falsche Aussage: click Licht besteht aus einzelnen Photonen Kohärenter Zustand 26
27 Nicht-klassisches Licht Quantenphänomene anders als klassisch erwartet Formalismus liefert andere Resultate als semiklass. Theorie Landau/Lifshitz Band IV: QED, Kapitel I Das Photon Experiment muss auf QED-Effekt beruhen Spontane Emission Parametrische Fluoreszenz Erstes Experiment zur Photonenpaarerzeugung 1970 [D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84] 27
28 Unterscheidung QED./. semiklassisch 69 Jahre nach Einsteins Deutung des Photoeffekts 46 Jahre nach Dirac-Gleichung 14 Jahre nach Erfindung des Lasers 28
29 Fluoreszenzkaskade [Aspect, Grangier, Roger, Phys. Rev. Lett. 47, 460 (1981)] 239nm Lebensdauer 5,4 ns (kurz!) 29
30 Photonen am Strahlteiler [Grangier, Roger, Aspect, Europhys. Lett 1, (1986)] Ca - Atomstrahl 30
31 Nachweis der Antikorrelation Auswertung der Koinzidenzmessung 31
32 Quantenrauschen Alternativ: coherent states an Stelle von Fock states Verallgemeinerung squeezed states reduziere Amplitudenrauschen zu Lasten des Phasenrauschens [D. F. Walls, Nature 306, 141 (1983)] [Breitenbach, Schiller, Mlynek; Nature 387, 471 (1997)] 32
33 Geburt und Zerfall eines Photons Gleyzes et al., Nature 2007, p
34 Didaktische Reflexion 34
35 Am. J. Phys. 57, (1989) 35
36 Über Photonen sprechen Licht hat keinen Teilchencharakter Daher gibt es auch keinen Welle-Teilchen-Dualismus Photon ist Elementaranregung des e/m Feldes Plancks Idee zum Strahlungsgesetz ist aktuell geblieben Energieportion E= ħω Räumliche Ausdehnung gemäß Maxwell-Gleichung Komplexer Photonen-Zustand (Bell-state) > 144km nachgewiesen Photon nur sinnvoll als Erweiterung der Maxwell-Theorie Nicht-klassisches Licht ist nicht offensichtlich! anders als Supraleitung, Leitwertquantisierung, Einzelereignisse + Statistik mit Fock-states Quantenrauschen mit coherent states 36
37 Über Photonen heute sprechen Experiment mit PDC Definition des Photons über Präparationsmethode Ereignisse auf Zeitskala [Bronner et al. Eur. J. Phys. 2009, p345] 37
38 38
Von der Kerze zum Laser: Die Physik der Lichtquanten
Von der Kerze zum Laser: Die Physik der Lichtquanten Jörg Weber Institut für Angewandte Physik/Halbleiterphysik Technische Universität Dresden Was ist Licht? Wie entsteht Licht? Anwendungen und offene
Laserphysik. Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli. Oldenbourg Verlag München
Laserphysik Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Grundprinzipien des Lasers
1 Grundprinzipien des Lasers Licht im Hohlraum Atome im Laserfeld Ratengleichungen Lichtverstärkung 13
1 Grundprinzipien des Lasers 1 1.1 Licht im Hohlraum 1 1.2 Atome im Laserfeld 6 1.3 Ratengleichungen 10 1.4 Lichtverstärkung 13 1.5 Strahlungstransport* 15 1.6 Lichterzeugung mit Lasern 19 Aufgaben 22
Fazit: Wellen haben Teilchencharakter
Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch
Teil II: Quantenmechanik
Teil II: Quantenmechanik Historisches [Weinberg 1] Den ersten Hinweis auf die Unmöglichkeit der klassischen Physik fand man in der Thermodynamik des elektromagnetischen Feldes: Das klassische Strahulungsfeld
Die seltsame Welt der Quanten
Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt [email protected]
Die Macht und Ohnmacht der Quantenwelt
Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik
Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007
Der Laser Florentin Reiter 23. Mai 2007 Die Idee des Lasers A. Einstein (1916): Formulierung der stimulierten Emission von Licht als Umkehrprozess der Absorption Vorschlag zur Nutzung dieses Effektes zur
Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?
Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova
1 Physikalische Hintergrunde: Teilchen oder Welle?
Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche
Der Welle-Teilchen-Dualismus
Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.
Bellsche Ungleichungen
Bellsche Ungleichungen Christoph Meyer Seminar - Grundlagen der Quantenphysik Christoph Meyer Bellsche Ungleichungen 1 / 20 Inhaltsverzeichnis 1 Einführung Das EPR-Paradoxon Verborgene Variablen 2 Herleitung
Einführung in die Quantentheorie der Atome und Photonen
Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich
Optik und Wellenmechanik (WS 2011/ physik311) Stefan Linden Physikalisches Institut Universität Bonn
Optik und Wellenmechanik (WS 2011/2012 - physik311) Stefan Linden Physikalisches Institut Universität Bonn Leistungspunkte physik311 : 7 LP Nachweis: Erfolgreiche Teilnahme an Übungen und Klausur Zulassung
Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung
Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung 10. November 2010 Physik Institut für Angewandte Physik Jörg Hoppe 1 Inhalt Motivation
27. Wärmestrahlung. rmestrahlung, Quantenmechanik
24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung
Grundlagen der Quantentheorie
Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische
X. Quantisierung des elektromagnetischen Feldes
Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden
Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker
Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge
Bloch Oszillationen. Klassisch chaotische Streuung. Klassisch chaotische Streuung
Bloch Oszillationen periodische Oszillation keine systematische Dispersion Modell der gekippten Bänder: Zwei Zeitskalen: Bloch-Zeit Antriebsperiode Annahme: mit teilerfremden ganzen Zahlen Hamilton-Operator
Atome - Moleküle - Kerne
Atome - Moleküle - Kerne Band I Atomphysik Von Univ.-Professor Dr. Gerd Otter und Akad.-Direktor Dr. Raimund Honecker III. Physikalisches Institut der Rheinisch-Westfälischen Technischen Hochschule Aachen
Physik IV Einführung in die Atomistik und die Struktur der Materie
Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH
Vom Doppelspalt zum Quantencomputer
Vom Doppelspalt zum Quantencomputer Aktuelle Physik in der Schule Herbert Rubin Aufbau der Lerneinheit Vorstellungen von Licht Huygens Newton Young 1704 1678 1804 Linienspektren Äusserer Photoeffekt Hallwachs-Effekt
Durch welchen Schlitz ist das Teilchen geflogen? Beobachtung
) Grundlagen der Quantenmechanik Welle-Teilchen-Dualismus: das Doppelspaltexperiment Teilchen Welle Durch welchen Schlitz ist das Teilchen geflogen? Beobachtung Welle-Teilchen-Dualismus: 1) P =... Wahrscheinlichkeitsamplitude
Vorlesung 3: Das Photon
Vorlesung 3: Das Photon Roter Faden: Eigenschaften des Photons Photoeffekt Comptonstreuung ->VL3 Gravitation Plancksche Temperaturstrahlung ->VL4 Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/
Entwicklung der Atommodelle
Entwicklung der Atommodelle Entwicklung der Atommodelle Demokrit 460 v Chr. Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.
Physik III. Mit 154 Bildern und 13 Tabellen
Physik III Optik, Quantenphänomene und Aufbau der Atome Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Wolfgang Zinth und Hans-Joachim Körner 2., verbesserte Auflage Mit
Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg
Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Vortragender: Imran Khan Betreuer: Dr. Christine Silberhorn, Dipl. Phys. Andreas Eckstein Datum: Gliederung 1. Einführung
23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik
23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie
14. Teilchen und Wellen
Inhalt 14.1 Strahlung schwarzer Körper 14.2 Der Photoeffekt 14.3 Der Comptoneffekt 14.4 Materiewellen 14.5 Interpretation von Teilchenwellen 14.6 Die Schrödingergleichung 14.7 Heisenberg sche Unschärferelation
PROBLEME AUS DER PHYSIK
Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New
Relativistische Mechanik und Quantenmechanik
Sommersemester 2010 Beginn: Donnerstag, 22. April, 14.00-15.30 Klaus Keller Seminarraum IAM (1.12) des Relativistische Mechanik und Albert Einstein (1879-1955). Max Planck (1858-1947) Nils Bohr (1885-1962)
Inhaltsverzeichnis. Einleitung 1
Inhaltsverzeichnis Einleitung 1 1 Licht und Materie 7 Was ist eigentlich Licht? 8 Aber was schwingt da wie? 9 Was sind Frequenz und Wellenlänge des Lichts? 11 Was ist eigentlich Materie? 12 Woraus besteht
27. Wärmestrahlung. rmestrahlung, Quantenmechanik
25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz
Quantenphysik. von Stephen Gasiorowicz 9., vollständig überarbeitete und erweiterte Auflage
Quantenphysik von Stephen Gasiorowicz 9., vollständig überarbeitete und erweiterte Auflage 1 Die Entstehung der Quantenphysik 1 1.1 Die Strahlung des schwarzen Körpers 1 1.2 Der Photoeffekt 6 1.3 Der Compton-Effekt
Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik
Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik 1 Stand: 16.05.2014 2.1.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Physik und Sport / Verkehr
Quantenmechanik. Walter Greiner. Teill. Theoretische Physik. Ein Lehr- und Übungsbuch. Verlag Harri Deutsch. Band 4
Theoretische Physik Band 4 Walter Greiner Quantenmechanik Teill Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen Lösungen 5., überarbeitete und erweiterte
14 Teilchen und Wellen
14 Teilchen und Wellen 14.1 Teilchencharakter von elektromagnetischen Wellen 1411 14.1.1 Strahlung schwarzer Körper 14.1.2 Der Photoeffekt 14.1.3 Technische Anwendungen 14.2 Wellencharakter von Teilchen
LEHRBUCH DER THEORETISCHEN PHYSIK
LEHRBUCH DER THEORETISCHEN PHYSIK VON DR.PHIL. DR.H.C. SIEGFRIED FLÜGGE ORDENTLICHER PROFESSOR AN DER UNIVERSITÄT FREIBURG/BREISGAU IN FÜNF BÄNDEN BAND IV QUANTENTHEORIE I SPRINGER-VERLAG BERLIN GÖTTINGEN
Verschränkung. Kay-Sebastian Nikolaus
Verschränkung Kay-Sebastian Nikolaus 24.10.2014 Überblick 1. Definition und Allgemeines 2. Historische Hintergründe, Probleme 2.1 Einstein-Podolsky-Rosen-Paradoxon 2.2 Erklärung, Bell sche Ungleichungen
Silvia Arroyo Camejo. Skurrile Quantenwelt ABC
Silvia Arroyo Camejo Skurrile Quantenwelt ABC Inhaltsverzeichnis Einleitung.................................................... 1 1 Licht und Materie......................................... 7 Was ist
Was ist eigentlich ein Photon? 1
Was ist eigentlich ein Photon? 1 Oliver Passon und Johannes Grebe-Ellis 2 Kurzfassung: Die übliche Einführung des Photon-Begriffs bezieht sich auf Einsteins Arbeit von 1905 und zeichnet damit den historischen
Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung
Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen
In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf
L. D. LANDAU f E. M. LIFSCHITZ QUANTENTHEORIE In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf Mit 21
Einführung in die Quantenphysik
Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische
QUANTENTELEPORTATION. von Matthias Wiecha und Marc Hanefeld
QUANTENTELEPORTATION von Matthias Wiecha und Marc Hanefeld 2 Gliederung Relevante Grundlagen aus der Quantenmechanik Teleportations-Protokoll Experimentelle Umsetzung Ausblick 3 Relevante Grundlagen der
Aharonov-Bohm-Effekt. Nanostrukturphysik II, 21. Juli Caroline Schultealbert
Aharonov-Bohm-Effekt Nanostrukturphysik II, 21. Juli 2014 Caroline Schultealbert Inhalt Einleitung Sieben Wunder der Quantenmechanik Der Aharonov-Bohm Effekt in der Theorie Mathematik Elektromagnetischer
10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper
10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper
5.3 Ausblick: Eine weitreichende Anwendung der Planckschen Strahlungsformel
Eberhard Müller: Interdisziplinärer Zugang zu den Grundlagen der Quantentheorie: Beginn der Quantentheorie 5.3 Ausblick: Eine weitreichende Anwendung der Planckschen Strahlungsformel Bei der Entwicklung
Zum Bahnbegriff eines Teilchens in der Physik
11. Februar 2009 Abschlussvorlesung Mathematik I für Physiker Kann man auch in der Quantenmechanik von der Bahn eines Teilchens sprechen? Zitate zum Bahnbegriff in der Quantenmechanik Das Wort Bahn hat
Experimentalphysik III Relativitätstheorie, Quantenphysik, Kern- & Teilchenphysik
Experimentalphysik III Relativitätstheorie, Quantenphysik, Kern- & Teilchenphysik Prof. Dr. Kilian Singer 15.10.2015 Mo 11-13 Uhr (Raum 3137) Mo 14-16 Uhr (Raum 0282) Sprechstunde: Mo 16-17 Uhr (Raum 1166)
Bedeutende Theorien des 20. Jahrhunderts
Bedeutende Theorien des 20. Jahrhunderts Ein Vorstoß zu den Grenzen von Berechenbarkeit und Erkenntnis Quantenmechanik - Relativitätstheorie - Gravitation - Kosmologie - Chaostheorie - Prädikatenlogik
Walter Greiner THEORETISCHE PHYSIK. Ein Lehr-und Übungsbuch für Anfangssemester. Band 4: Quantenmechanik. Eine Einführung
Walter Greiner THEORETISCHE PHYSIK Ein Lehr-und Übungsbuch für Anfangssemester Band 4: Quantenmechanik Eine Einführung Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen Lösungen 2.,
Max Planck: Das plancksche Wirkungsquantum
Max Planck: Das plancksche Wirkungsquantum Überblick Person Max Planck Prinzip schwarzer Strahler Klassische Strahlungsgesetze Planck sches Strahlungsgesetz Beispiele kosmische Hintergrundstrahlung Sternspektren
EPR, Verschränkung und die Bell schen Ungleichungen
Quantenphysik EPR, Verschränkung und die Bell schen Ungleichungen Einstein-Podolski-Rosen 1935 Einstein-Podolski-Rosen 1935 Einstein-Podolski-Rosen 1935 If, without in any way disturbing a system, we can
Quantenteleportation
Quantenteleportation Tim Robert Würfel Fakultät für Physik Universität Bielefeld Physikalisches Proseminar 2013 1 von 34 Würfel, Tim Robert Quantenteleportation Gliederung Motivation 1 Motivation 2 Physikalische
1.2 Grenzen der klassischen Physik Michael Buballa 1
1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:
1. Auf dem Weg zur Quantentheorie Grundlegende Experimente und Erkenntnisse
1. Auf dem Weg zur Quantentheorie Grundlegende Experimente und Erkenntnisse 1.1. Theorie der Wärmestrahlung Plancksche Strahlenhypothese Untersuchungen der Hohlraumstrahlung vor 1900 zeigten, dass das
2.8.1 Modul Physik I: Dynamik der Teilchen und Teilchensysteme. Die Studiendekanin/der Studiendekan des Fachbereichs Physik.
2.8 Nebenfach Physik 2.8.1 Modul Physik I: Dynamik der Teilchen und Teilchensysteme Status Wahlpflichtmodul. Modulverantwortliche(r) Die Studiendekanin/der Studiendekan des Fachbereichs Physik. Modulbestandteile
Einleitung: Experimentelle Hinweise auf die Quantentheorie
Kapitel 1 Einleitung: Experimentelle Hinweise auf die Quantentheorie c Copyright 2012 Friederike Schmid 1 1.1 Historische Experimente ( historisch : Aus der Zeit, in der die Quantentheorie entwickelt wurde)
Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften
Rätsel in der Welt der Quanten Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften 1. Februar 2012 Die Klassische Physik Bewegung von Objekten Lichtwellen Bewegung von Objekten Newtonsche
Theoretische Physik F Statistische Physik
Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Theoretische Physik F Statistische Physik Sommersemester 2010 2 Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität)
1. Zusammenfassung: Masse in der klassischen Mechanik. 2. Energie des klassischen elektromagnetischen Feldes
2. Vorlesung 1. Zusammenfassung: Masse in der klassischen Mechanik + 1. Übungsaufgabe 2. Energie des klassischen elektromagnetischen Feldes Literatur: beliebiges Lehrbuch klassische Elektrodynamik z.b.
Ansprechpartner: Prof. Dr. Thomas Fauster Vorlesung Übung. Übung 1
Wahlpflichtmodule des Nebenfachs Physik Ansprechpartner: Prof. Dr. Thomas Fauster [email protected] Angebot für Bachelor- und Masterstudierende, welche Physik zum ersten Mal als Nebenfach
SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi
Quantenmechanik des Wasserstoff-Atoms [Kap. 8-10 Haken-Wolf Atom- und Quantenphysik ] - Der Aufbau der Atome Quantenmechanik ==> Atomphysik Niels Bohr, 1913: kritische Entwicklung, die schließlich Plancks
Vorlesung. Einführung in die Moderne Optik und Quantenoptik. Sommersemester Dr. Elke Neu & Prof. Dr. Christoph Becher Fachrichtung Physik
Vorlesung Einführung in die Moderne Optik und Quantenoptik Sommersemester 2017 Dr. Elke Neu & Prof. Dr. Christoph Becher Fachrichtung Physik Geb. E2.6, EN: Raum 1.17, Tel. 2739, [email protected]
9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.:
phys4.015 Page 1 9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators Schrödinger-Gl.: Normierung: dimensionslose Einheiten x für die Koordinate x und Ε für die Energie E somit
2. Max Planck und das Wirkungsquantum h
2. Max Planck und das Wirkungsquantum h Frequenzverteilung eines schwarzen Strahlers Am 6. Dezember 1900, dem 'Geburtsdatum' der modernen Physik, hatte Max Planck endlich die Antwort auf eine Frage gefunden,
Aharonov-Bohm-Effekt. Quantenmechanisches Seminar bei Prof. Dr. Georg Wolschin Projekt von Mathis Brosowsky
Aharonov-Bohm-Effekt Quantenmechanisches Seminar bei Prof. Dr. Georg Wolschin Projekt von Mathis Brosowsky 15.11.13 15.11.13 Motivation 15.11.13 Gliederung I. Definition und Geschichte II. klassisch: geladenes
3. Kapitel Der Compton Effekt
3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen
AG Theoretische Quantenoptik
AG Theoretische Quantenoptik Klassische Physik vs. Quantenphysik Prof. Werner Vogel und Team: Dr. Jan Sperling, Dr. Dmytro Vasylyev, M. Sc. Elizabeth Agudelo, M. Sc. Martin Bohmann, M. Sc. Stefan Gerke,
Physik IV Übung 4
Physik IV 0 - Übung 4 8. März 0. Fermi-Bose-Boltzmann Verteilung Ein ideales Gas befinde sich in einer Box mit Volumen V = L 3. Das Gas besteht entweder aus Teilchen, die die Bose-Einstein oder Fermi-Dirac
Welle-Teilchen-Dualismus
Welle-Teilchen-Dualismus Andreas Pfeifer Proseminar, 2013 Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April 2013 1 / 10 Gliederung 1 Lichttheorie, -definition Newtons Korpuskulatortheorie
6.2 Schwarzer Strahler, Plancksche Strahlungsformel
6. Schwarzer Strahler, Plancsche Strahlungsformel Sehr nappe Herleitung der Plancschen Strahlungsformel Ziel: Berechnung der Energieverteilung der Strahlung im thermischen Gleichgewicht bei der Temperatur
Moderne Physik. von Paul A. Tipler und Ralph A. LIewellyn. Oldenbourg Verlag München Wien
Moderne Physik von Paul A. Tipler und Ralph A. LIewellyn Oldenbourg Verlag München Wien Inhaltsverzeichnis I Relativitätstheorie und Quantenmechanik: Die Grundlagen der modernen Physik 1 1 Relativitätstheorie
Quantenphysik aus klassischen Wahrscheinlichkeiten
Quantenphysik aus klassischen Wahrscheinlichkeiten Unterschiede zwischen Quantenphysik und klassischen Wahrscheinlichkeiten Quanten Teilchen und klassische Teilchen Quanten Teilchen klassische Teilchen
Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung
Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie
Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen
Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin
Wiederholung Film Brownsche Bewegung in Milch (Fettröpfchen in Wasser)
2.Vorlesung Wiederholung Film Brownsche Bewegung in Milch (Fettröpfchen in Wasser) P.F.: Man weiß heute, dass das Brownsche Teilchen ein Perpetuum mobile zweiter Art ist, und dass sein Vorhandensein den
Die Geschichte der Quantentheorie Mythen und Fakten
0 von 12 DPG Lehrerfortbildung 25.6.-29.6.2018 Bad Honnef Die Geschichte der Quantentheorie Mythen und Fakten Oliver Passon Bergische Universität Wuppertal Fakultät für Mathematik und Naturwissenschaften
Strahlungslose Übergänge. Pumpen Laser
Prof Ch Berger, Physik f Maschinenbauer, WS 02/03 15 Vorlesung 44 Strahlungsprozesse 441 Das Zerfallsgesetz Elektronen aus energetisch hoher liegenden Zustanden gehen in die tieferen Zustande uber, falls
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen
Ein schwarzer Körper und seine Strahlung
Quantenphysik 1. Hohlraumstrahlung und Lichtquanten 2. Max Planck Leben und Persönlichkeit 3. Das Bohrsche Atommodell 4. Niels Bohr Leben und Persönlichkeit 5. Wellenmechanik 6. Doppelspaltexperiment mit
Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.
2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem
Was ist Gravitation?
Was ist Gravitation? Über die Einheit fundamentaler Wechselwirkungen zur Natur schwarzer Löcher Hans Peter Nilles Physikalisches Institut, Universität Bonn Was ist Gravitation, UniClub Bonn, März. 2011
Der Photoelektrische Effekt
Der Photoelektrische Effekt Anna-Maria Klingenböck und Sarah Langer 16.10.2012 Inhaltsverzeichnis 1 Das Licht Welle oder Teilchen? 1 2 Eine einfache Variante 2 3 Versuchsaufbau 3 3.1 1. Versuch...............................
Vorlesung zur klassischen Elektrodynamik
Vorlesung zur klassischen Elektrodynamik Hamburg WS 2003/2004 Daniela Pfannkuche Jungiusstr. 9, Raum 157, Tel: -2391 email: [email protected] Literatur basierend auf: D. J. Griffiths,
Dämpfung in der Quantenmechanik: Mastergleichungen Seminar Quantenoptik und nichtlineare Optik Vortrag von Martin Sturm
Dämpfung in der Quantenmechanik: Mastergleichungen Seminar Quantenoptik und nichtlineare Optik Vortrag von Martin Sturm 16.11.2011 Prof. Dr. Halfmann, Prof. Dr. Walser Quantenoptik und nichtlineare Optik
Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell
Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell 1900: Entdeckung einer neuen Naturkonstanten: Plancksches Wirkungsquantum Was sind Naturkonstanten und welche Bedeutung
ν und λ ausgedrückt in Energie E und Impuls p
phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)
Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums
Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Ein weiterer Zugang zur Physik der Atome, der sich als fundamental erweisen sollte, ergab sich aus der Analyse der elektromagnetischen
c. Bestimme die Gesamtenergie der im Objekt gespeicherten elektromagnetischen Strahlung durch Aufsummieren der Energie der einzelnen Moden.
phys4.05 Page 1 3.5.1 Der 1D schwarze Strahler: Objekt der Länge L und Durchmesser D
Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin
Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13
= 6,63 10 J s 8. (die Plancksche Konstante):
35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese
Relativitätstheorie und Unschärfe Gibt es noch Fakten in der Physik?
Relativitätstheorie und Unschärfe Gibt es noch Fakten in der Physik? Auch der Laie weiß: 1. Relativitätstheorie: Messergebnisse (Längen, Zeiten u.a.) abhängig vom Betrachter 2. Quantentheorie: Länge und
