Tidedynamik der Jade Systemcharakteristik
|
|
|
- Ferdinand Albert
- vor 9 Jahren
- Abrufe
Transkript
1 Anmerkungen zur Tidedynamik der Jade Systemcharakteristik Bundesanstalt für Wasserbau Abteilung Küste WWW-Server: April 1999 /1 Seite 1
2 Die (Innen-) Jade (einschl. Jadebusen) Länge: 36 km Breite: 4 bis 15 km Tiefe: +1 bis,25 m (NN) Fläche: 368 km 2 Watt: 6 % Charakteristische Erscheinungen der Jade/1 Seite 2
3 Charakteristische Merkmale der Jade Buchtsystem ohne (nennenswertes) Oberwasser Überströmung des Hohe Weg Watts (Jade! Weser) gleichmäßiger Anstieg des Tidehubs (See! Jadebusen) Abnahme der Ebbedauer (See! Jadebusen) Reflexion der Tidewelle Mäandrieren des Flut- und Ebbestromes Charakteristische Erscheinungen der Jade/2 Seite 3
4 Wassermengen Km 25 a : 9 1 Mio. m 3 bei EJ bc : 4 45 Mio. m 3 H. Weg d : 2 6 Mio. m 3 Siele e :,4 Mio. m 3 a Flut-/Ebbestromvolumen b Flut-/Ebbestromvolumen c Lentz (1899): 413,85 Mio. m 3 d je Tide e je Tide Charakteristische Merkmale der Jade (Durchfluß)/1 Seite 4
5 Durchfluss [m**3/s] 1 5 Durchfluesse (oben) und kumulierte Durchfluesse (unten) Jade Km 25 Eingang Jadebusen Durchfluss [Mio. m**3] Jade Km 25 (kumuliert) Eingang Jadebusen (kumuliert) 13 Jun 15 Jun 17 Jun 19 Jun 21 Jun 23 Jun Charakteristische Merkmale der Jade (Durchfluß)/2 Seite 5
6 mittlerer Reststrom mittlerer Restdurchfluß Charakteristische Merkmale der Jade (Durchfluß)/3 Seite 6
7 Verstaerkung A/A_st [ ] Verstaerkung in Abhaengigkeit von Daempfung und Frequenz 6 Daempfung =.1 Daempfung =.2 Daempfung =.4 5 Daempfung =.8 Daempfung = 1.6 Daempfung = f/f [ ].. Resonanz Resonanzlänge L L= Tiefe c λ 4 [m] [m/s] [km] 3 5,42 6,6 5 7, 78,2 1 9,9 11,6 2 14,1 156,6 Periode T = 12 h 25 min Jade: L ' 135 km ab Schillig: l ' :27L ab Wangerooge: l ' :41L Charakteristische Merkmale der Jade (Anstieg des Tidehubs)/1 Seite 7
8 Verhaeltnis der Breiten Bx/B [ ] Einfluss von Tiefen und/oder Breitenaenderungen (Greensches Gesetz) Ax/A < Ax/A =.6 Ax/A =.7 Ax/A =.8 Ax/A =.9 Ax/A = 1. Ax/A = 1.1 Ax/A = 1.2 Ax/A = 1.3 Ax/A = 1.4 Ax/A = 1.5 Gesetz von Green (anno 1837) Annahmen: a x s s b 2 4 h = a b x h x keine Energieverluste.25 B H Bx Hx Ax/A > Verhaeltnis der Tiefen Hx/H [ ] keine Reflexion kleine Amplitude Charakteristische Merkmale der Jade (Anstieg des Tidehubs)/2 Seite 8
9 Reflexion 2 Reflexion bei Tiefen und/oder Breitenaenderungen Verhaeltnis der Breiten B2/B1 [ ] B1 B2 Kr < Kr =.4 Kr =.3 Kr =.2 Kr =.1 Kr =. Kr = +.1 Kr = +.2 Kr = +.3 Kr = +.4 Kr = +.5 K r = K t 1+K = r a t a i = 1+ a r a i Annahmen: p gh1 B 1 gh, 2 B 2 p p gh1 B 1 gh + 2 B p 2 Flachwasserwelle.25 H2 H1 Kr > Verhaeltnis der Tiefen H2/H1 [ ] kleine Amplitude abrupte Änderung der Geometrie Charakteristische Merkmale der Jade (Anstieg des Tidehubs)/3 Seite 9
10 Wasserstand [mnn] Zunahme des Tidenhubs Schillig Alter Vorhafen: +18% Tidenstieg (historisch) 6h15min Tidenfall (historisch) 6h6min Quelle: Hagen (1859) rascher Tnw Fortschritt Tidekurven Innenjade langsamer Thw Fortschritt Whv. Alter Vorhafen mit. Tidenstieg 6h8min 6h31min mit. Tidenfall 6h12min 6h4min mit. Tidenhub 428cm 321cm Zeitunterschiede fuer WAV SLG HW: h27min NW: h1min Quelle: BSH (1999) Jade Km 25 Jade Km 2 Jade Km 15 Jade Km 1 Jade Km 5 Eingang Jadebusen 3 12:: 15:: 18:: 21:: :: 3:: Charakteristische Merkmale der Jade (Anstieg des Tidehubs)/4 Seite 1
11 5 4 Uebertragungsleistung der Tidewelle (auf Querprofilen entlang der Innenjade) Hinweis: die Flaeche unter einer Kurve ent spricht der durch den Querschnitt uebertragenen Energie EIN Jade Km 25 Jade Km 2 Jade Km 15 Jade Km 1 Jade Km 5 Eingang Jadebusen EIN Leistung [MW] 3 2 EIN AUS AUS EIN AUS 1 Residuum gleitendes Mittel 12,5h 12:: 18:: :: 6:: 12:: Charakteristische Merkmale der Jade (Anstieg des Tidehubs)/5 Seite 11
12 h_max/a() [ ] maximaler Wasserstand starke Daempfung schwache Daempfung keine Daempfung THW Eintrittszeitdifferenz zum Reflexionspunkt (x=.) dt_thw/t [ ] A (x)/a() [ ] Amplituden der ein und der auslaufenden Welle starke Daempfung schwache Daempfung keine Daempfung EIN REF EIN REF EIN REF Abstand zum Reflexionspunkt x/l [ ] Erzwungene Schwingung in geradem Rechteckkanal/1 Seite 12
13 [m] reflektierte Welle kleiner Amplitude ohne Daempfung einlaufende Welle reflektierte Welle resultierende Welle Stroemungsmaximum Stroemungskenterung [m/s] Stroemungsgeschwindigkeit einlaufende Welle reflektierte Welle resultierende Welle 1 [W/m] 2 1e+5 5e+4 5e+4 Uebertragungsleistung einlaufende Welle reflektierte Welle resultierende Welle 1e Zeit t/t [ ] Ungedämpft reflektierte Welle/1 Seite 13
14 Diskussion... bitte fragen Sie jetzt! Diskussion/1 Seite 14
Untersuchung zur Wirkung von Flutraumvergrößerungen im Rahmen des Tideelbe-Konzeptes
Untersuchung zur Wirkung von Flutraumvergrößerungen im Rahmen des Tideelbe-Konzeptes Ein Werkstattbericht zur Untersuchung unterschiedlicher Maßnahmen im Hamburger Raum und ihre Wirkung auf die Tidedynamik.
Sturmflutuntersuchungen für den geplanten JadeWeserPort
Previous Next First Last Back Go-To Full-Screen Quit /1 Seite1 BAW-Kolloquium Wasserbauliche Systemanalyse für den JadeWeserPort Sturmflutuntersuchungen für den geplanten JadeWeserPort Elisabeth Rudolph
Vergleichende Analyse der Sturmflutempfindlichkeit für Ems, Jade-Weser und Elbe
Untersuchung regionaler Windwirkung, hydrodynamischer Systemzustände und Oberwassereinflüsse auf das Sturmflutgeschehen in Tideästuarien Vergleichende Analyse der Sturmflutempfindlichkeit für Ems, Jade-Weser
Einleitung von Sole in die Innenjade (Systemtest im bestehenden 3D-HN-Modell der BAW)
BAW Hamburg Bundesanstalt für Wasserbau Ilmenau - Karlsruhe - Hamburg - Ilmenau Dipl.-Ing. Holger Rahlf Karlsruhe http://www.baw.de http://www.baw.de BAW-DH / Januar 21 Folie-Nr. 1 BUNDESANSTALT FÜR WASSERBAU
Der Einfluss der natürlichenvarianz von Tide und Wind auf den Sedimenttransport in der inneren Deutschen Bucht. Dr.-Ing. A. D.
Der Einfluss der natürlichenvarianz von Tide und Wind auf den Sedimenttransport in der inneren Deutschen Bucht Dr.-Ing. A. D. Plüß AK - K3 / 22-11 Folie-Nr. 1 Gliederung Analyse der Varianz auf der Grundlage
4.2 Kennwerte von Wasserstand und Strömung entlang der Elbe
. Kennwerte von Wasserstand und Strömung entlang der Elbe - 9 - Elbe-SF76 m 9. 8.5 8. 7.5 7. 6.5 6. Hochwasserstand HW SF76as Elbe7855 Hochwasserstand HW SF76as Elbe7855 Hochwasserstand HW SF76as Elbe7855
Gewässerkundliche Information Gewässerkundliches Jahr 2017 ( )
Pegel Hamburg-St.Pauli AM Gewässerkunde Hr. Heyenga, 42847-2405 Hydrologie Hr. Strotmann, 42847-2801 Gewässerkundliche Information Gewässerkundliches Jahr ( 01.11.2016-31.10.) 5-5 - 2013 - + 5,48 m (29.10.17)
Systemanalyse zum Sturmflutgeschehen für das Ems- und Jade/Weserästuar
Untersuchung regionaler Windwirkung, hydrodynamischer Systemzustände und Oberwassereinflüsse auf das Sturmflutgeschehen in Tideästuarien Systemanalyse zum Sturmflutgeschehen für das Ems- und Jade/Weserästuar
Welchen Einfluss haben sehr hohe Abflüsse der Elbe auf die Wasserstände der Tideelbe?
Previous Next First Last Back Go-To Full-Screen Quit /1 Seite 1 BAW-Kolloquium Modellierung und Analyse von Strömungs- und Transportprozessen in Ästuaren Welchen Einfluss haben sehr hohe Abflüsse der Elbe
Analyse der Wasserstände der Tideelbe für die Beweissicherung
Analyse der Wasserstände der Tideelbe für die Beweissicherung aktualisierte und erweiterte Ergebnisse Marko Kastens BAW - DH / Folie-Nr. 1 MThb-Entwicklung seit 1998 - Helgoland 244 242 MThb [cm] 24 238
Einfluß von Veränderungen des Flutraumes im Flachwasserbereich auf die Tidedynamik der Elbe
Einfluß von Veränderungen des Flutraumes im Flachwasserbereich auf die Tidedynamik der Elbe Bundesanstalt für Wasserbau Abteilung Küste WWW-Server: http://www.hamburg.baw.de/ Mai 1999 zurück zur Startfolie
Elbe Ästuar. Analyse Ist-Zustand und historische Zustände
Elbe Ästuar Analyse Ist-Zustand und historische Zustände Gemeinsames Kolloquium der Bundesanstalt für Wasserbau, Dienststelle Hamburg und der Bundesanstalt für Gewässerkunde Erfahrungsaustausch zur Untersuchung
Veränderung von Wasserstand und Strömung
Veränderung von Wasserstand und Strömung St. Pauli m Wasserstand 3 2 1 NN -1 1955 1975 1998 3 2 1-1 m/h Steiggeschwindigkeit -2-2 -3 -.1.1.3.5.9 1.1-3.7 Geschiebetransport Indikator für für große Strömungen
Watt wollen wir! Eine Reise über Land mit Wasser
Watt wollen wir! Eine Reise über Land mit Wasser Dänemark bis IJsselmeer 2 Watt ist Wandel Der Ameländer Damm 3 Alle Fahrwasser sind bezeichnet von See her kommend bzw. laufen von W einschl. N ohne S Alle
Erzeugung ungedämpfter Schwingungen
Erzeugung ungedämpfter Schwingungen Jede freie Schwingung ist eine gedämpfte Schwingung. Das System schwingt nach einmaliger Energiezufuhr mit seiner Eigenfrequenz f 0. Um die Dämpfung einer Schwingung
Mögliche Folgen des Klimawandels für die Wasserstraßen
Mögliche Folgen des Klimawandels für die Wasserstraßen Untersuchungen zur Lage der Brackwasserzone in Abhängigkeit vom Oberwasserzufluss Rita Seiffert, Fred Hesser, Ingrid Holzwarth, Elisabeth Rudolph,
Erzeugung ungedämpfter Schwingungen
Erzeugung ungedämpfter Schwingungen Jede freie Schwingung ist eine gedämpfte Schwingung. Das System schwingt nach einmaliger Energiezufuhr mit seiner Eigenfrequenz f 0. Um die Dämpfung einer Schwingung
HARMONISCHE SCHWINGUNGEN
HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T
Sedimentdynamik und morphologische Prozesse der Tideelbe
Sedimentdynamik und morphologische Prozesse der Tideelbe Tideelbesymposium am 6. und 7. Nov. 2006 Integration von verkehrlicher Nutzung und Umweltzielen an der Tideelbe BAW - DH / 2006-11 Folie-Nr. 1 Gezeiten
Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.
Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00
Entwicklung der Wasserstände in der Tideelbe ermittelt durch das Partialtiden(PT)-Verfahren
Entwicklung der Wasserstände in der Tideelbe ermittelt durch das Partialtiden(PT)-Verfahren BAW - DH / 2005-11 Folie-Nr. 1 16.11.2005 [email protected] Was sind Partialtiden und wie entstehen sie? Eine
Auswirkungen des Klimawandels und Fahrrinnenanpassung der Elbe bei Hamburg
Wittenbergen 3.1.1976 Dr. Elisabeth Rudolph Auswirkungen des Klimawandels und Fahrrinnenanpassung der Elbe bei Hamburg Bedeutung für die Wasserstände bei Sturmflut Fachtagung: Sturmflut in Hamburg aber
Hydrologischer Monatsbericht November 2018 für die Schleswig-Holsteinische und Mecklenburg-Vorpommersche Ostseeküste
Abflussjahr 2019, Nr.01 Hydrologischer Monatsbericht November 2018 für die Schleswig-Holsteinische und Mecklenburg-Vorpommersche Ostseeküste 1. Wasserstand Eine Information über niedrige Wasserstände wurde
MR Mechanische Resonanz
MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................
Übung zu Drahtlose Kommunikation. 4. Übung
Übung zu Drahtlose Kommunikation 4. Übung 12.11.2012 Aufgabe 1 Erläutern Sie die Begriffe Nah- und Fernfeld! Nahfeld und Fernfeld beschreiben die elektrischen und magnetischen Felder und deren Wechselwirkungen
Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen
Physik für Oberstufenlehrpersonen Frühjahrssemester 2018 Schwingungen und Wellen Zum Einstieg in das neue Semester Schwingungen Schwingungen spielen bei natürlichen Prozessen bedeutende Rolle: -Hören und
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Interferenz & Wellenfelder - Prof. Dr. Ulrich Hahn WS 2016/17 Interferenz von Wellen mehrere Anregungszentren speisen Wellen ins Medium ein: Wellen breiten sich
Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X
Praktikum Physik Protokoll zum Versuch 3: Drehschwingungen Durchgeführt am 27.10.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das
KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren
KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren Holger Rahlf; Reiner Schubert www.baw.de Künstlich Neuronales Netz Gliederung Einleitung Grundlagen Möglichkeit und Grenzen Anwendung
Hoch- und Niedrigwasser im täglichen Rhythmus der Gezeiten sind in der Tideelbe ein gewohntes und das Leben am Fluss bestimmendes Element.
Pegel Zollenspieker Das Wasser bringt uns Wohlstand, aber auch Gefahr. Zur Mehrung des Wohlstandes und zur Einschränkung der Gefahr, versuchen wir schon Jahrhunderte lang unsere Fähigkeit zur Wasserkontrolle
Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen
Station A Fortschreitende Wellen a) Skizziere ein Wellental. Stelle darin die Schnelle und die Ausbreitungsgeschwindigkeit c dar. b) Die gemessene Ausbreitungsgeschwindigkeit: c = c) Warum kann nicht ein
Wasser- und Schifffahrtsamt Cuxhaven
Wasser- und Schifffahrtsamt Cuxhaven Gewässerkundlicher Bericht Nr. 3/24 Strömungsminderung im Sommer 23 in Unter- und Außenelbe Diplom-Geophysiker Rolf-Dieter Hansen Aufgestellt: Cuxhaven; 11.2.4 Strömungsminderung
3. Erzwungene Schwingungen
3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:
Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2
19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur
Vorlesung Physik für Pharmazeuten und Biologen
Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung
Die Berücksichtigung des Seegangs im Rahmen der Untersuchungen
Die Berücksichtigung des Seegangs im Rahmen der Untersuchungen Sören Joswig, Denise Knoch, Norbert Winkel BAW - DH / 2005-11 Folie-Nr. 1 Deutsche Bucht Elbe JADE Weser Ems BAW - DH / 2005-11 Folie-Nr.
Tidedynamik der Elbe DIPL.-OZEANOGR. MARCUS J. BOEHLICH, BUNDESANSTALT FÜR WASSERBAU, DIENSTSTELLE HAMBURG, REFERAT ÄSTUARSYSTEME II
Tidedynamik der Elbe DIPL.-OZEANOGR. MARCUS J. BOEHLICH, BUNDESANSTALT FÜR WASSERBAU, DIENSTSTELLE HAMBURG, REFERAT ÄSTUARSYSTEME II Viele Flüsse unseres Planeten sind von Gezeiten beeinfl usst. Die durch
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
Deichbau am Jadebusen
Deichbau am Jadebusen Petra Henken GB II AB21 Küstenschutz, Bereich Brake Brake-Oldenburg 1 1. Geografische Lage 2. Veranlassung der Baumaßnahmen 3. Baugrundverhältnisse 4. Variantenuntersuchung zur Deicherhöhung
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28
Experimentalphysik E1
Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +
Physik & Musik. Schallresonanz. 2 Aufträge
Physik & Musik 24 Schallresonanz 2 Aufträge Physik & Musik Schallresonanz Seite 2 Schallresonanz Bearbeitungszeit: 30-45 Minuten Sozialform: Partnerarbeit Voraussetzung: Posten 4 "Stehende Wellen" Einleitung
Übungen zu Physik I für Physiker Serie 12 Musterlösungen
Übungen zu Physik I für Physiker Serie 1 Musterlösungen Allgemeine Fragen 1. Warum hängt der Klang einer Saite davon ab, in welcher Entfernung von der Mitte man sie anspielt? Welche Oberschwingungen fehlen
Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung
Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen
DIFFERENTIALGLEICHUNGEN (DGL)
DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion
Hydrodynamische Belastungen an Seeschifffahrtsstraßen
Hydrodynamische Belastungen an Seeschifffahrtsstraßen Ästuarsysteme I (K2) - Dr.-Ing. K. Uliczka www.baw.de Ufersicherungen an Seeschifffahrts- und Binnenschifffahrtsstraßen BAWKolloquium Dienststelle
Elektromagnetische Schwingungen und Wellen
Elektromagnetische Schwingungen und Wellen Größen des Wechselstromes u max U u t u Momentanwert u max Amplitude U Effektivwert T Periodendauer f Frequenz T Der Wechselstrom ist eine elektrische Schwingung.
Maßnahmen zur Gewinnung von Flutraum Haseldorfer Marsch
Maßnahmen zur Gewinnung von Flutraum Haseldorfer Marsch Ergebnisse Phase 2 Janett Brandt, Uwe Stöber, Marion Dziengel, Monika Donner, Oliver Stoschek, Ines Hiller Zielstellung & Vorgehen Hintergrund/ Zielstellung
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Wellen Eine an einem Draht befestigte Stimmgabel schwinge senkrecht zum Draht und erzeuge so auf diesem eine Transversalwelle. Die Amplitude der Stimmgabelschwingung
Elisabeth Rudolph & Christine Kremp
OPTEL - Windstaustudien und Entwicklung eines operationellen Tideelbemodells Vorstellung KFKI-Projekt OPTEL-C: Entwicklung eines operationellen Tideelbemodells sowie Modellkopplung mit dem BSH Vorhersagemodell
Pappröhre, die an einem Ende offen und am anderen mit einem Plastikdeckel verschlossen ist. Vernier Mikrofon-Sonde, CBL oder LabPro und TI-83.
Stehende Wellen Zielsetzung: In diesem Experiment ist es unser Ziel, die Schallwellen zu untersuchen, die entstehen, wenn der Deckel einer Pappröhre mit dem Finger angeschlagen wird. Das Geräusch wird
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt.
Checkliste Sinus und Cosinus Ich kann Winkel in Grad und in Vielfachen von am Einheitskreis veranschaulichen. Ich kann in einem rechtwinkligen Dreieck die Sinus und Cosinuswerte eines Winkels durch die
Analyse von HN-Modell-Ergebnissen im Tidegebiet
Analyse von HN-Modell-Ergebnissen im Tidegebiet DR.-ING. GÜNTHER LANG, BUNDESANSTALT FÜR WASSERBAU, DIENSTSTELLE HAMBURG, REFERAT ÄSTUARSYSTEME II Einführung und Motivation Moderne mathematische Verfahren
Analysing long-term changes of tidal dynamics in the German Bight (ALADYN)
Analysing long-term changes of tidal dynamics in the German Bight (ALADYN) Jürgen Jensen und die ALADYN-Projektpartner Forschungsinstitut Wasser und Umwelt (fwu) ALADYN-Projektgruppe Universität Siegen
Wellenerzeugung und Wellenvorhersage: Definitionen: Wellen: Schwingungen der Wasseroberfläche (Wasspiegelauslenkungen), die durch meteorologische
Wellenerzeugung und Wellenvorhersage: Definitionen: Wellen: Schwingungen der Wasseroberfläche (Wasspiegelauslenkungen), die durch meteorologische Wirkungen im Seegebiet erzeugt werden. Wind bzw. Sturm
Das Hochwasser der Elbe aus gewässerkundlicher Sicht
Das Hochwasser der Elbe aus gewässerkundlicher Sicht Schwerin, 31. März 2014 Frank Müller Pegel Dömitz am 11.06.2013 Elbe bei Boizenburg am 10.06.2013 Elbe bei Dömitz am 11.06.2013 Dorfrepublik Rüterberg
Bremen an der Nordsee-
Bremen an der Nordsee- Schutz vor Sturmfluten heute, morgen und übermorgen Dr. Michael Schirmer Bremischer Deichverband am rechten Weserufer Ehem. Universität Bremen Die Themen: Die besondere Situation
INHALTSVERZEICHNIS... I ABBILDUNGSVERZEICHNIS... II 1 EINLEITUNG TIDEN SEEGANG STRÖMUNGEN... 13
Inhaltsverzeichnis INHALTSVERZEICHNIS... I ABBILDUNGSVERZEICHNIS... II 1 EINLEITUNG... 1 2 TIDEN... 3 2.1 ALLGEMEINES...3 2.1.1 GRAVITATIONSKRAFT, ZENTRIFUGALKRAFT... 3 2.1.2 CORIOLISKRAFT... 4 2.2 TIDEVERHÄLTNISSE
2. Freie gedämpfte Schwingungen
2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:
Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad
Laborversuche zur Physik I Versuch I-03: Pohlsches Rad Versuchsleiter: Autoren: Kuschel Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 5.12.2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise 2 2.1 Inbetriebnahme...................................
wir-sind-klasse.jimdo.com
1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige
8. Periodische Bewegungen
8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt
Abflussjahr 2017, Nr.11 Hydrologischer Monatsbericht September 2017 für die Schleswig-Holsteinische und Mecklenburg-Vorpommersche Ostseeküste
Abflussjahr 2017, Nr.11 Hydrologischer Monatsbericht September 2017 für die Schleswig-Holsteinische und Mecklenburg-Vorpommersche Ostseeküste 1. Wasserstand Maximum Rostock 575 cm 06.09.2017 Warnemünde
Experimentalphysik E1
Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung
Physik LK 11, 3. Klausur Harmonischer Oszillator Lösung
Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben, wenn Zahlenwerte zu berechnen sind. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
Hydrodynamische Entwicklung der Tideelbe
G. Gönnert, B. Pflüger & J.-A. Bremer Von der Geoarchäologie über die Küstendynamik zum Küstenzonenmanagement Coastline Reports 9 (2007), ISSN 0928-2734, ISBN 978-3-9811839-1-7 S. 59-68 Hydrodynamische
Hydrologische und morphologische Entwicklungen an der Tideelbe
Hydrologische und morphologische Entwicklungen an der Tideelbe Marcus J. Boehlich Bundesanstalt für Wasserbau, Hamburg Zu dieser Zeit konnte eine Schiffsreise von Hamburg bis zur Mündung über 4 Wochen
Übungsaufgaben Physik II
Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen
SCHWINGUNGEN. Version 2.0 Herbert Paukert. Sinusfunktion y = sin(x) [ 03 ]
Schwingungen Herbert Paukert 1 SCHWINGUNGEN Version 2.0 Herbert Paukert Sinusfunktion y = sin(x) [ 03 ] Sinusfunktion y = a*sin(x) [ 08 ] Sinusfunktion y = sin(b*x) [ 09 ] Sinusfunktion y = sin(x+c) [
Einheit 3: Wellen auf Leitungen
& Einheit 3: Wellen auf Leitungen Lösungen a) Führe Strom-Analyse im rot markierten Punkt und Spannungsanalyse in der eingezeichneten Masche aus: L-03_1) Generell: Betrachte für Abschätzung (meist Vakuum-)
Strombaumaßnahmen an der Tideelbe
Strombaumaßnahmen an der Tideelbe Stand aktueller Untersuchungen und Maßnahmen Manfred Meine, HPA Strombaumaßnahmen Warum Strombaumaßnahmen? Was ist im SSMK 2008 aufgelistet? Was wurde bisher angepackt
Physik 2 am
Name: Matrikelnummer: Studienfach: Physik 2 am 28.03.2017 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
2. Banter See Konferenz Ergebnisse der Messprogramme und Perspektive
Nord ~16 Mio. m³ Großer Jadebusen ~11 Mio. m³ Blickrichtung Ost 2. Konferenz Ergebnisse der Messprogramme 2011 2014 und Perspektive Grundlage: IMP-Bericht Nr. 307, 2014 15. Mai 2014 1. BSK 27.01.2012 -
Elektrischer Schwingkreis
Fakultät für Technik Bereich Informationstechnik Elektrischer Schwingkreis Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemeines Im Versuch Mechanischer Schwingkreis haben Sie einen mechanischen Schwingkreis
Haupttabelle für Grundwasserstände EGLFING LEHRER 265B
Bayer Landesamt 25082017 Monatsmittelwerte [m ü NN] Hauptwerte der Abflussjahre [m ü NN] Nov Dez Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Datum HW MW Datum NW 1915 526,73 526,68 526,50 526,29 526,13 526,19
Wirkung schiffserzeugter Belastungen auf den Deich im Altenbrucher Bogen
Wirkung schiffserzeugter Belastungen auf den Deich im Altenbrucher Bogen Dr.-Ing. Holger Schüttrumpf; BAW-DH Dr.-Ing. Martin Pohl; BAW-DH Dipl.-Phys. Rahula Zierach; BAW-Ilmenau Kontakt: [email protected]
Schwingungen und Wellen
Schwingungen Wellen Jochen Trommer [email protected] Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige
Basiskenntnistest - Physik
Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit
m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter
Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche
Gewässerschutz. Schutz und nachhaltige Bewirtschaftung von Gewässern - Grundlagen. Dr.-Ing. O. Sterger: Gewässerschutz Übung #01 1
Gewässerschutz Schutz und nachhaltige Bewirtschaftung von Gewässern - Grundlagen Dr.-Ing. O. Sterger: Gewässerschutz Übung #01 1 Gewässerkundliche Hauptwerte NNQ, MNQ, MQ, MHQ, HHQ, HQ 100 NNW, MNW, MW,
Für c doppelt so lang wie für c = 60 cm. Für C doppelt so lang wie für c = 120 cm.
Auflösung Schallquellen In einem bestimmten Pfeifensatz einer Orgel beträgt die klingende Länge für die Note c (f= 524 Hz) 30cm. Wie lange wird ihrer Meinung nach die Pfeife für den Ton c (f= 262 Hz) sein?
Analyse der Partialtiden
Analyse der Partialtiden Spektrale Wirkung einer Strombaumaßnahme auf das Elbeästuar Vortragender: Dr. Guntram Seiß Ozeanograph BAW, Dienststelle Hamburg email: [email protected] AK - 2001-11 Folie-Nr.
Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1
Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit
