Kapitel 3. Transformationen

Größe: px
Ab Seite anzeigen:

Download "Kapitel 3. Transformationen"

Transkript

1 Oyun Namdag Am WS 07/08 Proseminar Numerik: Mathematics for 3D game programming & computer graphics Dozenten: Prof. Dr. V. Schulz, C. Schillings Universität Trier Kapitel 3 Transformationen

2 3.1 Lineare Transformationen 3.2 Scaling Transformationen 3.3 Rotationstransformationen 3.4 Homogene Koordinatensysteme 3.5 Normal Vektor Transformationen 3.6 Quaternionen

3 3.1 Lineare Transformationen C C' P=(x, y, z) (x, y, z )

4 Lineare Transformation C auf C x '( xyz,, ) = Ux+ Vy+ Wz+ T y'( x, y, z) = U x+ V y+ W z+ T z '( xyz,, ) = Ux+ Vy+ Wz+ T Vektor T: Translationsvektor vom Ursprung von C zum Ursprung C Matrix M: zeigt wie die Orientierung der Koordinatenachse verändert wird

5 In Matrixform x ' U1 V1 W1 x T1 y' = U V W y + T z ' U3 V3 W 3 z T 3 Lineare Transformationen sind invertierbar: 1 x U1 V1 W1 x' T1 y = U V W y' T z U3 V3 W 3 z' T 3

6 3.1.1 Orthogonale Matrizen Definition 3.1 Eine invertierbare nxn Matrix M wird orthogonal genannt, wenn und nur wenn Theorem T M =M gilt. Wenn die Vektoren V, V,..., V eine orthonormale Menge 1 2 n bilden, dann ist die nxn Matrix, die konstruiert wird, indem die j-te Spalte gleich V j gesetzt wird, für alle 1 j n orthogonal. Beweis: Die Vektoren V 1, V 2,...,Vn sollen eine orthogonale Menge bilden und M sei eine nxn Matrix, deren Spalten von den V j s gegeben werden. Da die V j s orthonormal sind, gilt Vi V j =δij. T Weil der (i, j)-te Eintrag des MatrixproduktsMM gleich dem T Skalarprodukt Vi Vj ist, haben wir MM=I -1 T Deshalb ist M =M

7 Orthogonale Matrizen besitzen die Eigenschaften Längen und Winkel beizubehalten. P,P für alle Vektoren 1 2 MP = P (MP )(MP ) = P P

8 Rechthändiges Koordinatensystem Handedness Linkshändiges Koordinatensystem (V V ) V < 0 (V V ) V >

9 3.2 Scaling Transformationen Um einen Vektor P durch einen Faktor von a zu skalieren, rechnen wir einfach P ' = ap. a 0 0 Px P' = 0 a 0 P y 0 0 a P z Dies wird einheitliche Skalierung (uniform scale) genannt.

10 Wenn wir einen Vektor durch verschiedene Beträge entlang der x-, y-, und z-achsen skalieren möchten, benutzen wir P' a 0 0 Px = 0 b 0 P y 0 0 c P z

11 3.3 Rotationstransformationen y y, x xy, x

12 y Q = P, P y x P cosθ P θ Q sinθ P = P, P x y x

13 P resultiert aus der Rotation des Vektor P durch einen Winkel θ. Für die Komponenten von P : P' = Pcosθ + Qsin P ' = P cosθ P sinθ x x y P ' = P cosθ + P sinθ y y x Wir können dies in Matrixform umschreiben. θ P' cosθ sinθ = sinθ cos θ P

14 Diese 2D Rotationsmatrix kann zu einer Rotation um die z-, x-, und y-achse in 3D erweitert werden. R R R z x y cosθ sinθ 0 θ = sinθ cosθ ( ) θ = 0 cosθ sinθ 0 sinθ cosθ ( ) ( θ ) cosθ 0 sinθ = sinθ 0 cosθ

15 3.3.1 Rotation um eine beliebige A Achse P sin α P A ist ein Einheitsvektor (A P)A proj P= A P A A ( ) perpa P=P- A P A ( ) α P- (A P)A

16 Wir können jetzt die Rotation auf durch eine Winkel θ als ( ) cosθ + ( ) P- A P A A P formulieren. Addiert man projap dazu, bekommen wir die Rotation des Vektors P um die A-Achse. ( ) Ersetzt man AxP und A(A P) durch perp P sinθ P' = Pcosθ + A P sin θ + A(A P) (1 cos θ) A A P 0 Az A y Px = Az 0 A x P y, Ay Ax 0 P z

17 A(A P) A AA AA P 2 = x x y x z x 1 2 A 2 x Ay Ay AyA z P y A 2 Ax Az AyAz A z P z dann bekommen wir Az A y P' = P cosθ + Az 0 AxP sinθ Ay Ax 0 2 Ax AxAy AxA z 2 + AA x y Ay AA y zp(1 cos θ ) 2 AA x z AA y z A z

18 Setzt man c=cosθ und s= sinθ, dann bekommen wir die folgende Formel für die Matrix R A ( θ ), die einen Vektor durch einen Winkel θ um die A-Achse rotiert. R A c+ c A c A A sa c A A + sa ( θ ) = (1 caa ) + sa c+ (1 ca ) (1 caa ) sa (1 caa ) sa (1 caa ) + sa c+ (1 ca ) (1 ) 2 x (1 ) x y z (1 ) x z y 2 x y z y y z x 2 x z y y z x z

19 3.4 Homogene Koordinaten Eine wichtige Transformation ist die Translationsoperation. Diese kann nicht in Form einer 3x3 Matrix ausgedrückt werden. P' = MP + T M: 3x3 invertierbare Matrix T: ein 3D Translationsvektor Für zwei Operationen: P'=M 2(M1P+T)+T 1 2 =(M2M 1)P+M2T 1 +T2

20 3.4.1 Vierdimensionale Transformationen Wir erweitern unsere Vektoren zu 4D homogenen Koordinaten und verwenden 4x4 Matrizen, um sie zu transformieren. Ein 3D Punkt P wird zu vier Dimensionen erweitert, indem man seine vierte Koordinate, welche wir w-koordinate nennen, gleich 1 setzt. Wobei F: 4x4 Transformationsmatrix T: 3D Translation M: 3x3 Matrix F= M 0 T 1 M11 M12 M3 T M M M T y = M 31 M32 M33 Tz x

21 3.5 Normalen-Vektor Transformationen Transformation des Normalen-Vektors mit einer nicht orthogonalen Matrix M MN N

22 Finde eine Matrix G, mit der der Vektor N transformiert werden soll. Ein wenig algebraische Umordnug führt zu Da ist, gilt, wenn ist. daraus folgt T' = MT N' T' = (GN) (MT) =0 T T T (GN) (MT) = (GN) (MT) = N G MT T T T NT= 0 NGMT= 0-1 T G=(M ) T GM=I Die Vektoren werden contravariant vectors genannt.

23 3.6 Quaternionen - Rotationen darstellen - Benötigen wenig Speicherplatz - Verknüpfungen von Quaternionen benötigen weniger arithmetische Operationen als die Rotationsmatrizen Ring of Hamiltonian Quaternions q = ( wxyz,,, ) = w+ xi+ yj+ zk

24 in der Form eines Skalarvektors: q = s + v wobei s-skalar, v-vektor, der den x-, y-, und z-komponenten von q entspricht Die Rechenregeln: i = j = k = i j k = 1 i j = k j k = i k i = j j i = k k j = i i k = j

25 Multiplikation ist nicht Kommutativ! Es seien q = w + xi+ y j+ zk und q = w + x i+ y j+ zk qq = ( ww xx y y zz ) ( ) ( ) ( ) + wx + xw + yz zy i + wx xw + yz + zy j + wx + xw yz + zy k Wenn q = + v s 1 1, q = s + v sind qq = ss v v + sv + sv + v v

26 Die Konjugation einer Quaternion q = s v qq = qq = q q = q 2 2 = q Theorem 3.5 Die Inverse einer nonzero Quaternion q bezeichnet man als 1 q, ist gegeben durch q 1 = q q 2 Einheitsquaternion: q w x y z = + i+ j+ k q q q q q, q 0

27 3.6.2 Rotation mit Quaternionen Die Rotation durch einen Winkel von θ um die Einheitsachse A ist gegeben durch θ θ q= cos + Asin 2 2 Die Rotationsmatrix, die der Quaternion q entspricht, ist gegeben durch: R q y 2z 2xy 2wz 2xz + 2wy 2 2 = 2xy + 2wz 1 2x 2z 2yz 2wx 2xz 2wy 2yz+ 2wx 1 2x 2y 2 2

28 Vielen Dank für Ihre Aufmerksamkeit!

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE YOUNG SCIENTISTS 4 dimensionale komplexe in der Computergrafik Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE Programm Vorbereitung (Wiederholung) Komplexe Vektoren Quaternionen Quaternionen

Mehr

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences Computer graphics Vektoren und Matrizen Dr. Ernst Kruijff Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences 3 Dm group Einführung Transformationen Sources Online:

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Zusammenfassung Dieser Text entstand im Frühjahr 2001 im Rahmen des Computergrafik-Seminars bei Prof. Giesen, angeboten im Wintersemester 2000/2001 an

Zusammenfassung Dieser Text entstand im Frühjahr 2001 im Rahmen des Computergrafik-Seminars bei Prof. Giesen, angeboten im Wintersemester 2000/2001 an Quaternionen - mathematischer Hintergrund und ihre Interpretation als Rotationen Markus Lust Februar 2001 Computergrafik-Seminar Universität Koblenz-Landau 21. Februar 2001 i Zusammenfassung Dieser Text

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Was ist Robotik? Robotik heute:

Was ist Robotik? Robotik heute: Grundlagen Was ist Robotik? Das Wort Robot / Roboter entstand 92 in einer Geschichte von Karel Ċapek und geht auf das tschechische Wort robota (rbeit, Fronarbeit) zurück. Dessen Ursprung ist das altkirchenslawische

Mehr

Projektive Geometrie

Projektive Geometrie Projektive Geometrie Einleitung Was ist projektive Geometrie? eine alternative algebraische Repräsentation von geometrischen Objekten (Punkt, Gerade,...) und Transformationen (Translation, Rotation,...)

Mehr

Affine Koordinatentransformationen

Affine Koordinatentransformationen Affine Koordinatentransformationen Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 017/18 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Transformation - Homogene Koordinaten. y + b )

Transformation - Homogene Koordinaten. y + b ) Transformation - Homogene Koordinaten In der "üblichen" Behandlung werden für die Verschiebung (Translation) und die Drehung (Rotation) verschiedene Rechenvorschriften benutzt - einmal Addition von Vektoren

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 4 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Wir betrachten

Mehr

Blatt 06.3: Matrizen

Blatt 06.3: Matrizen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt 06.3:

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Projektion. Ebene geometrische Projektionen

Projektion. Ebene geometrische Projektionen Projektion - 1 - Ebene geometrische Projektionen Die ebenen geometrischen Projektionen sind dadurch charakterisiert, daß mit Projektionsstrahlen konstanter Richtung, d.h. entlang von Geraden, auf Ebenen

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Position und Orientierung

Position und Orientierung Position und Orientierung Grundlagen Koordinatensysteme, Punkte und Körper, Position und Orientierung Allgemeine Transformationen Rotation, homogene Koodinaten, Translation, Transformation 2D-Transformationen

Mehr

Koordinaten, Transformationen und Roboter

Koordinaten, Transformationen und Roboter Koordinaten, Transformationen und Roboter Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 48 Einleitung Seit Anbeginn der

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Stefan K. 4.Übungsblatt Algebra I Aufgabe 1 gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler von G zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Beweis: Seien

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

Einführung in die Robotik. Jianwei Zhang

Einführung in die Robotik. Jianwei Zhang - Jianwei Zhang [email protected] Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 20. April 2010 J. Zhang 63 Gliederung Allgemeine Informationen

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany [email protected]. Zachmann

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Helmuts Kochrezept Nummer 5:

Helmuts Kochrezept Nummer 5: Helmuts Kochrezept Nummer : Lokale Koordinatentransformation von Vektorfedern Version 2, 19.03.2018) Dieses Kochrezept erklärt Dir, wie du ein Vektorfeld von einem orthonormalen Koordinatensystem z.b.

Mehr

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 0 Tom Ilmanen Musterlösung 2. Falls b := (v,,v n ) eine Orthonormalbasis von V ist, dann lassen sich die Komponenten von einem Vektor v = n i= t i v i bezüglich

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

Teil 3 Bewegung in 2D und 3D

Teil 3 Bewegung in 2D und 3D Tipler-Mosca 3. Motion in two and three dimensions 3.1 Der Verschiebungsvektor (The displacement vector) 3.2 Allgemeine Eigenschaften von Vektoren (General properties of vectors) 3.3 Ort, Geschwindigkeit,

Mehr

Matrix- Algorithmen Householder- und Givens- Matrizen

Matrix- Algorithmen Householder- und Givens- Matrizen Fast und 20. Mai 2011 und Inhaltsverzeichnis Fast 1 2 Fast und Fast ist eine eines Vektors an der Hyperebene durch die Null im euklidischen Raum Ein zur Spiegelebene orthogonaler Vektor v R n \ {0} wird

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Computergrafik 1 Übung

Computergrafik 1 Übung Prof. Dr. Andreas Butz Dipl.-Medieninf. Hendrik Richter Dipl.-Medieninf. Raphael Wimmer Computergrafik Übung Wiederholung Lineare Algebra: Vektoren, Matrizen, Transformationen in D und 3D Computergrafik

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Die multivariate Statistik behandelt statistische Eigenschaften und Zusammenhänge mehrerer Variablen, im Gegensatz zu univariaten Statistik, die in der Regel nur eine Variable untersucht.

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt Lineare Abbildungen Lineare Abbildungen De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt (L. ) f ist homogen; d.h. f( ~v) = f(~v) für alle 2 R, ~v 2 V, (L. ) f ist additiv;

Mehr

Bernhard Strigel Gymnasium Kollegstufe 2009/11 Leistungskurs Mathematik M2 Klemens Schölhorn. Facharbeit

Bernhard Strigel Gymnasium Kollegstufe 2009/11 Leistungskurs Mathematik M2 Klemens Schölhorn. Facharbeit Bernhard Strigel Gymnasium Kollegstufe 2009/11 Memmingen Leistungskurs Mathematik M2 Klemens Schölhorn Facharbeit Das Rechnen mit Matrizen und Anwendungen in der Abbildungsgeometrie (Mathematische Grundlagen

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind.

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind. . Vektorräume.. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind. Physikalische Beispiele fur Vektoren: Kraft, Geschwindigkeit, Beschleunigung,

Mehr

7. Großübung. Ax =QRx = b Rx =Q 1 b = Q T b. Wir behandeln im Folgenden zwei Verfahren zur Erzeugung der QR-Zerlegung:

7. Großübung. Ax =QRx = b Rx =Q 1 b = Q T b. Wir behandeln im Folgenden zwei Verfahren zur Erzeugung der QR-Zerlegung: 7. Großüung 1 QR-Zerlegung Als QR-Zerlegung wird die Zerlegung A QR der Matrix A R m n in die rechte oere Dreiecksmatrix R R m n und die orthogonale Matrix Q R m m ezeichnet. Die Lösung des Gleichungssystems

Mehr

Skalarprodukt und Orthogonalität

Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität in R n Wir erinnern an das euklidische Skalarprodukt im R 2 : Wir erinnern an das euklidische Skalarprodukt im R 2 : < a, b >:= α 1 β 1

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

Fragen zur Selbstkontrolle

Fragen zur Selbstkontrolle Lineare Algebra und Geometrie I SS 2015 Thema 0 Grundlagen Fragen zur Selbstkontrolle Was ist eine Primzahl? Wie finde ich die Primfaktoren einer natürlichen Zahl? Wie bestimme ich den größten gemeinsamen

Mehr

Kapitel 2. Mathematische Grundlagen. Koordinatensystem

Kapitel 2. Mathematische Grundlagen. Koordinatensystem Kapitel 2 Mathematische Grundlagen 2.1 Koordinatensystem Zumeist werden in diesem Buch rechtwinkelige kartesische Koordinatensysteme verwendet. Sie sind durch drei zueinander orthogonale Koordinatenachsen

Mehr

(0, 3, 4) (3, 3, 4) (3, 3, 0)

(0, 3, 4) (3, 3, 4) (3, 3, 0) Übungsmaterial 1 2 Vektoren im Raum 2.1 Das räumliche Koordinatensystem Abbildung 1 zeigt das Koordinatensystem im R 3, dem dreidimensionalen Raum, mit eingefügtem Quader. Die Koordinaten einiger Eckpunkte

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

6. Vektor- und Koordinaten-Geometrie.

6. Vektor- und Koordinaten-Geometrie. 6. Vektor- und Koordinaten-Geometrie. Jeder endlichen Menge, etwa der Menge kann man durch M = {,,, }. R 4 (M) = { a 1 + a 2 + a 3 + a 4 a i R } die Menge der formalen Linearkombinationen zuordnen. Es

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr