2 Inhaltsverzeichnis
|
|
|
- Britta Peters
- vor 8 Jahren
- Abrufe
Transkript
1 Inhaltsverzeichnis 1 Elektro- und Magnetostatik 1.1 Kräfte zwischen elektrischen Ladungen und Magnetpolen Das Coulombsche Gesetz ( ) Die dielektrische Maßsystemkonstante und die elektrostatische Ladungseinheit Das Coulombsche Gesetz für Magnetpole Die magnetische Maßsystemkonstante Kräfte und Drehmomente zwischen magnetischen Dipolen Der Magnet und sein magnetisches Moment Kraftwirkung des Magneten auf eine magnetische Ladung Drehmomentwirkung des Magneten auf eine Kompaßnadel Anziehungskraft zwischen parallel orientierten Magneten Die Einheit des magnetischen Momentes Magnet* und elektrostatische Felder Das Magnetfeld der Erde Das Magnetfeld des Stabmagneten Die Einheit der Magnetfeldstärke Das Gaußsche Verfahren zur Messung magnetischer Momente und des Magnetfeldes Elektrostatische Felder Die Berechnung des Feldes aus dem Potential Das Potential der Punktladung (Coulomb-Potential) Das Potential von Ladungsverteilungen Feld eines geraden geladenen Drahtes Feld einer gleichmäßig geladenen Rechteckscheibe Feld einer gleichmäßig geladenen Kreisscheibe Feld einer gleichmäßig geladenen Kugeloberfläche Feld einer kugelformigen, homogenen Ladungswolke Kondensatoren Kugel- und Zylinderkondensator Kugelpaar und Doppelleitung Der Kondensator als Energiespeicher Die Auswirkung des Dielektrikums Die Differentialgleichung des Potentials...
2 2 Inhaltsverzeichnis Die Strömungsanalogie für das elektrische Feld Differentialoperation,Divergenzu und Laplace-Operator Potentiale und Hertzvektoren von Dipolen und Dipol-Verteilungen Feld des Magneten Feld einer magnetisierten Scheibe Der Hertz-Vektor des magnetischen und des elektrischen Dipols Polarisation und Magnetisierung Beispiel: Die homogen polarisierte bzw. magnetisierte Kugel Anhang: Berechnung der Felder einfacher Ladungsverteilungen Feld des geraden, geladenen Drahtes (Gleichung ) Feld der geladenen Rechteckscheibe (Gleichung ) Feld einer geladenen Kreisscheibe (Gleichung )... 2 Das Magnetfeld des Elektrischen Stromes 2.1 Die Erzeugung elektrischen Stromes durch die Voltasche Säule Das Oersted-Feld Die Entdeckung der magnetischen Wirkung des Stromes (1820) Die mathematische Formulierung des,,oerste d.feldesu durch Biot und Savart Die elektromagnetische und die elektrostatische Stromeinheit Das Gesetz von Biot und Savart Das Magnetfeld des Stromelementes Das Magnetfeld eines geschlossenen Stromkreises Die Äquivalenz zwischen Stromkreisen und Magneten Das Feld der Spule Die Kraftwirkitngen zwischen elektrischen Strömen Amperes Versuche zu den magnetischen Wirkungen des elektrischen Stromes ( ) Kraftwirkung eines Magnetfeldes auf ein Stromelement Kraftwirkung zwischen parallelen stromführenden Drähten Kraftwirkung eines Stromkreises auf einen anderen Stromkreis Das Vektorpotential Strömungsanalogie für das magnetische Feld des elektrischen Stromes Die Differentialoperation,Rotationu Das Vektorpotential eines Stromelementes Das Vektorpotential des langen, geraden Drahtes Das Vekt~r~otential des Kreisstromes Die Gesetze von Ohm und Joule Das Ohmsche Gesetz Das Joulesche Gesetz Anhang: Berechnung des Integrals in Näherungsweise Berechnung der Kraft zwischen zwei Kreisströmen..
3 Inhaltsverzeichnis 3 3 Die elektromagnetische Induktion Entdeckung der Induktion und der Selbstinduktion durch M. Faraday Erregung von Elektrizität durch MagnetismusU Induktion im Feld eines Stabmagneten W. Webers Beitrag zur Definition elektromagnetischer Mafisysteme Die Konstanten des Induktionsgesetzes und die elektromagnetische Spannungseinheiten Die Feldlinien des induzierten elektrischen Feldes Die Induktion im Felde eines Stromkreises Induktion im Feld eines langen, geraden Drahtes Induktion im Feld eines Kreisstromes Die Beziehung zwischen Induktions- und Kraftwirkung Die Selbstinduktion Die Induktivität des Kreisstromes Induktivitäten der Doppelleitung, des Koaxialkabels und der Spule Induktivität der Doppelleitung Induktivität des Koaxialkabels Induktivität der langgestreckten Spule Die Auswirkung eines Spulenkerns Die Selbstinduktionsspannung und die magnetische Energie Anhang Näherungsrechnung für die Gegeninduktivität eng benachbarter Kreisströme Von der Fern- zur Nahewirkungs-Theorie Materie im elektrischen und im magnetischen Feld Die Polarisation des Dielektrikums Die im Dielektrikum gespeicherte Energie Die Magnetisierung des Spulenkerns Die im Spulenkern gespeicherte Energie Die Maxwellschen Gleichungen Der Polarisationsstrorn Der dielektrische Verschiebungsstrom im Vakuum Maxwells Deutung der magnetischen Kraftflußdichte im Vakuum Wo steckt die Energie? Das System der Feldgleichungen in Maxwells Darstellung und in heutiger Form Elektromagnetische Wellen Grundbegriffe der Wellenausbreitung Eine Erinnerung an die elementare Einführung der Gleichung der ebenen Welle Elektromagnetische Wellen auf homogenen Leitungen Der Wellenwiderstand und der Reflexionsfaktor
4 5.1.4 Die Ausbreitung einer Gleichspannung über eine Leitung Harmonische Wellen Ebene elektromagnetische Wellen im Raum Herleitung der Wellengleichung für den elektrischen und magnetischen Vektor Lösung der Wellengleichung durch ebene Wellen Energietransport in der ebenen Welle Maßsystemkonstanten und Vakuum-Lichtgeschwindigkeit Harmonische Wellen Erzeugung und Nachweis elektromagnetischer Wellen durch Heinrich Hertz. 5.4 Elektromagnetisches Feld des Hertzschen Dipols und der Iireisstrom-Antenne Vorbereitung: Die Kugelwelle und das retardierte Potential Die Differentialgleichung der Kugelwelle Das retardierte Potential und das Fernfeld Feld des Hertzschen Dipols im Vakuum Feld des zeitlich veränderlichen Kreisstromes im Vakuum Richtcharakteristik und Energieabstrahlung des Dipols und des Kreisstromes Beispiele Entladung eines Kugelpaar-Kondensators Einschaltung eines Kreisstromes Die Felder harmonisch schwingender Sender Anhang Herleitung der in 5.4 verwendeten Vektor-Differentiations-Formeln Die Felder räumlich kontinuierlich verteilter Ladungen, Ströme, elektrischer und magnetischer Dipole... 6 Vorn Äther zum Raum-Zeit-Kontinuum 6.1 Die Lorentz-Transformation Seilwelle im bewegten Bezugssystem: Galilei-Transformation Anwendung der Galilei-Transformation auf Leitungswellen Die Lorentz-Transformation und ihre Anwendung auf Leitungswellen Lorentz-Transformation angewandt auf elektromagnetische Wellen Das Prinzip der Relativität Die,absolute Zeit" in einem ruhenden SystemU Zeit und Längenmaß im bewegten System" Folgerungen aus der Lorentztransformation Lorentzkontraktion und Relativität Zeitdilatation Dopplereffekt Gleichzeitigkeit Invarianz der Gleichung für eine Kugelwellenffäche Addition der Geschwindigkeiten...
5 Inhaltsverzeichnis Hintereinanderschaltung" zweier Lorentz-Transformationen Verallgemeinerte Addition der Geschwindigkeiten Ein Blick in die relativistische Dynamik Transformation der Beschleunigung Das Elektronu im elektromagnetischen Feld, seine Masse und die relativistische Energiefunktion Der relativistische Impuls Die Transformation des relativistischen Impulses Vierer- und Sechservektoren Die Rückführung magnetischer Kräfte auf elektrische Die Transformation der Ladungsdichte Das Modell des Stromes im metallischen Leiter Die Wirkung des Stromes auf eine bewegte Probeladung Anhang: Die magnetische Wirkung bewegter Ladungen von Carl Ramsauer Die Anwendung der Lorentz-Transformation auf die Maxwellschen Gleichungen
Klassische Elektrodynamik
Theoretische Physik Band 3 Walter Greiner Klassische Elektrodynamik Institut für Festkörperphysik Fachgebiet Theoretische Physik Technische Hochschule Darmstadt Hochschulstr. 6 1P iu Verlag Harri Deutsch
Elektrische und magnetische Felder
Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes
Elektromagnetische Felder
Manfred Heino Henke Elektromagnetische Felder 2., bearbeitete Auflage Springer 1. Elektrostatische Felder 1 Zusammenfassung wichtiger Formeln 1 Grundgleichungen im Vakuum 1 Elementare Feldquellen 2 Superposition
Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg
Physik-Skript Teil II Melanchthon-Gymnasium Nürnberg Volker Dickel 3. überarbeitete Auflage, 2014 2. überarbeitete Auflage, 2012 1. Auflage 2009 Inhaltsverzeichnis EINLEITUNG: ELEMENTARTEILCHEN UND WECHSELWIRKUNGEN...
Elektrische und ^magnetische Felder
Marlene Marinescu Elektrische und ^magnetische Felder Eine praxisorientierte Einführung Zweite, vollständig neu bearbeitete Auflage * j Springer I nhaltsverzeichnis 1 Elektrostatische Felder 1 1.1 Wesen
Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel
11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen
12. Elektrodynamik. 12. Elektrodynamik
12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik
Physik II. SS 2006 Vorlesung Karsten Danzmann
Physik II SS 2006 Vorlesung 1 13.4.2006 Karsten Danzmann Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut) und Universität Hannover Physik bis zum Vordiplom Physik I RdP I Mechanik,
Elektrische und magnetische Felder
Elektrische und magnetische Felder Eine praxisorientierte Einführung Bearbeitet von Marlene Marinescu 1. Auflage 2012. Buch. xiv, 343 S. Hardcover ISBN 978 3 642 24219 9 Format (B x L): 15,5 x 23,5 cm
Inhaltsverzeichnis Elektrostatische Felder
Inhaltsverzeichnis 1. Elektrostatische Felder... 1 Zusammenfassung wichtiger Formeln.......................... 1 GrundgleichungenimVakuum... 1 ElementareFeldquellen... 2 Superposition..........................................
Felder und Komponenten I [FuK I]
Felder und Komponenten I [FuK I] Folien zur Vorlesung Dr. P. Leuchtmann Prof. Dr. R. Vahldieck Institut für Feldtheorie und Höchstfrequenztechnik (IFH) Übersicht Klären der Begriffe "Feld" und "Komponente"
Klassische Experimentalphysik II
Klassische Experimentalphysik II SS 2014 Dozent: Prof. Übungsleitung: Dr. Martin Weides Modul 5520 Beschreibung Lernziele: Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung
Übungsbuch Elektromagnetische Felder
Übungsbuch Elektromagnetische Felder von Manfred Filtz, Heino Henke 1. Auflage Übungsbuch Elektromagnetische Felder Filtz / Henke schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG
ELEKTRIZITÄT & MAGNETISMUS
ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung
Einführung in die elektromagnetische Feldtheorie
Pascal Leuchtmann Einführung in die elektromagnetische Feldtheorie ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam
Walter Greiner. Theoretische Physik. Ein Lehr- und Übungsbuch für Anfangssemester. Band 3: Klassische Elektrodynamik
Walter Greiner Theoretische Physik Ein Lehr- und Übungsbuch für Anfangssemester Band 3: Klassische Elektrodynamik Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen Lösungen 3., überarbeitete
Inhaltsverzeichnis Elektrostatische Felder
Inhaltsverzeichnis 1. Elektrostatische Felder... 1 ZusammenfassungwichtigerFormeln... 1 GrundgleichungenimVakuum... 1 ElementareFeldquellen... 2 Superposition... 2 MaterieimelektrischenFeld... 3 DifferentialgleichungenfürdasPotential...
Grundgebiete der Elektrotechnik 1 Elektrische Netze bei Gleichstrom, elektrische und magnetische Felder
Grundgebiete der Elektrotechnik 1 Elektrische Netze bei Gleichstrom, elektrische und magnetische Felder von Prof. Dr.-Ing. Horst Clausert, TH Darmstadt Prof. Dr.-Ing. Günther Wiesemann, FH Braunschweig/Wolfenbüttel
Stoffplan PH Wintersemester
Stoffplan PH Wintersemester 1 Mechanik 1.1 Eindimensionale Bewegungen 1.1.1 Geschwindigkeit 1.1.2 Beschleunigung 1.1.3 Integration 1.1.4 Zusammenfassung 1.2 Bewegung in 2 und 3 Dimensionen 1.2.1 Vektoren
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009
Physik für Ingenieure
Friedhelm Kuypers Helmut Hummel Jürgen Kempf Ernst Wild Physik für Ingenieure Band 2: Elektrizität und Magnetismus, Wellen, Atom- und Kernphysik Mit 78 Beispielen und 103 Aufgaben mit ausführlichen Lösungen
Zusammenfassung EPII. Elektromagnetismus
Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:
Elektromagnetismus und Optik
Elektromagnetismus und Optik Bilder, Diagramme und Tabellen zur Vorlesung PHYSIK-II -Elektromagnetismus und Optik- SS 2004, Universität Freiburg Prof. Dr. K. Jakobs Physikalisches Institut Universität
15.Magnetostatik, 16. Induktionsgesetz
Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v
Elektromagnetische Felder und Wellen: Lösung zur Klausur
Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und
Elektrische und magnetische Felder
Elektrische und magnetische Felder Von Dr.-Ing. Heinrich Frohne Professor an der Universität Hannover Mit 247 Bildern, 5 Tafeln und 140 Beispielen B.G. Teubner Stuttgart 1994 Inhalt s Verzeichnis 1 Wesen
Hinweise zur mündlichen Prüfung Experimentalphysik
Hinweise zur mündlichen Prüfung Experimentalphysik Um ein Gefühl dafür zu bekommen, was von Ihnen in der mündlichen Examensprüfung erwartet wird, hat Herr Matzdorf für die Experimentalphysik II eine Zusammenstellung
Inhaltsverzeichnis. Kurz, G�nther Strà mungslehre, Optik, Elektrizit�tslehre, Magnetismus digitalisiert durch: IDS Basel Bern
Inhaltsverzeichnis I Strömungslehre 11 1 Ruhende Flüssigkeiten (und Gase) - Hydrostatik 11 1.1 Charakterisierung von Flüssigkeiten 11 1.2 Druck - Definition und abgeleitete 11 1.3 Druckänderungen in ruhenden
Rotation, Divergenz und Gradient
Gottlieb Strassacker, Roland Süße Rotation, Divergenz und Gradient Einführung in die elektromagnetische Feldtheorie 6. durchgesehene und ergänzte Auflage Mit 151 Abbildungen, 17 Tabellen und 70 Beispielen
Rotation, Divergenz und das Drumherum
Rotation, Divergenz und das Drumherum Eine Einführung in die elektromagnetische Feldtheorie Von Akad. Direktor i. R. Dr.-Ing. Gottlieb Strassacker Universität Fridericiana (TH) Karlsruhe 4., vollständig
Ubungsbuch Elektromagnetische Felder
Manfred Filtz Heino Henke Ubungsbuch Elektromagnetische Felder Mit 162 Abbildungen Springer Inhaltsverzeichnis 1. Elektrostatische Felder 1 Zusammenfassung wichtiger Formeln 1 Grundgleichungen im Vakuum
Grundgebiete der. Elektrotechnik. Ludwig Brabetz, Oliver Haas und Christian Spieker. Operationsverstärkerschaltungen, elektrische und
Horst Clausert, Gunther Wiesemann, Ludwig Brabetz, Oliver Haas und Christian Spieker Grundgebiete der Elektrotechnik Band 1: Gleichstromnetze, Operationsverstärkerschaltungen, elektrische und magnetische
Elektrodynamik Geschichte
Elektrodynamik Geschichte Daniel Grumiller Institut für Theoretische Physik (FH, 10. Stock) TU Wien http://www.itp.tuwien.ac.at/index.php/elektrodynamik I Sommersemester 2014 [email protected]
Grundlagen der Elektrotechnik 1
Manfred Albach Grundlagen der Elektrotechnik 1 Erfahrungssätze, Bauelemente, Gleichstromschaltungen 3., aktualisierte Auflage Inhaltsverzeichnis Vorwort 11 Kapitel 1 Das elektrostatische Feld 15 1.1 Die
df B = d Φ(F), F = C. (7.1)
Kapitel 7 Maxwell-Gleichungen 7.1 Induktionsgesetz araday beobachtete 1831, dass in einer Leiterschleife C ein elektrischer Strom entsteht, wenn ein in der Nähe befindlicher Magnet bewegt oder die Leiterschleife
Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern
Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16
3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre
3. N I Einführung in die Mechanik Kennen die Begriffe Kraft und Arbeit Erläutern von Vektoren und Skalaren Lösen von maßstäblichen Konstruktionsaufgaben mit dem Kräfteparallelogramm Können Kräfte messen
Grundlagen der Elektrotechnik 1
Manfred Albach Grundlagen der Elektrotechnik 1 Erfahrungssätze, Bauelemente, Gleichstromschaltungen PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für
Steffen Paul Reinhold Paul. Grundlagen der Elektrotechnik. und Elektronik 2. Elektromagnetische Felder. und ihre Anwendungen.
Steffen Paul Reinhold Paul Grundlagen der Elektrotechnik und Elektronik 2 Elektromagnetische Felder und ihre Anwendungen ^ Springer Vieweg 1 Das elektrische Feld 1 1.1 Felder 3 1.1.1 Feldbegriffe 4 1.1.2
Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)
Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?
Elektrotechnik und Elektronik für Informatiker
Elektrotechnik und Elektronik für Informatiker Band 1 Grundgebiete der Elektrotechnik Von Prof. Dr.-Ing. Reinhold Paul Technische Universität Hamburg-Harburg 2., durchgesehene Auflage Mit 282 Bildern und
Elektrostatik Elektrische Ladungen; Coulomb-Gesetz p. 1 Das elektrische Feld p. 5 Elektrische Feldstärke p. 5 Elektrischer Fluss; Ladungen als
Elektrostatik Elektrische Ladungen; Coulomb-Gesetz p. 1 Das elektrische Feld p. 5 Elektrische Feldstärke p. 5 Elektrischer Fluss; Ladungen als Quellen des elektrischen Feldes p. 7 Elektrostatisches Potential
12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft
12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein
Physik 2 Elektrodynamik und Optik
Physik 2 Elektrodynamik und Optik Notizen zur Vorlesung im Sommersemester 2013 Peter Schleper 6. Juni 2013 Institut für Experimentalphysik, Universität Hamburg [email protected] http://www.desy.de/~schleper/lehre/physik2/ss_2013
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche
Schulinterner Lehrplan Qualifikationsphase Q1. Präambel
Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
Grundlagen der Elektrotechnik
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Ingo Wolff Grundlagen der Elektrotechnik Einführung in die elektrischen
Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27
Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 Elektrische Ladung... 5 Aufbau eines Atom... 6 Ein kurzer Abstecher in die Quantenmechanik... 6 Elektrischer Strom... 7 Elektrische Spannung... 9 Widerstand...
B oder H Die magnetische Ladung
B oder H Die magnetische Ladung Holger Hauptmann Europa-Gymnasium, Wörth am Rhein [email protected] Felder zum Anfassen: B oder H 1 Physikalische Größen der Elektrodynamik elektrische Ladung Q elektrische
Einführung in die Physik
Paul Wagner Georg Reischl Gerhard Steiner Einführung in die Physik 3., erweiterte Auflage facultas.wuv Inhaltsverzeichnis 1 Einleitung 13 1.1 Entwicklung des physikalischen Weltbildes 13 1.2 Bedeutung
Bewegter Leiter im Magnetfeld
Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1
Elektromagnetische Felder
Heino Henke Elektromagnetische Felder Theorie und Anwendung 3., erweiterte Auflage Mit 212 Abbildungen und 7 Tabellen * J Springer Inhaltsverzeichnis Zur Bedeutung der elektromagnetischen Theorie 1 1.
Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)
Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
Prüfungsfragen zur Mechanik 1998/1999
Prüfungsfragen zur Mechanik 1998/1999 1. Kinematik der Punktmasse (PM): Bewegungsarten freier Fall Kreisbewegung einer PM Vergleich Translation Rotation der PM 2. Dynamik der PM: NEWTONsche Axiome schwere
Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz
Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt
Übungsstunde 2 Montag, 28. September :05
Übungsstunde 2 Montag, 28. September 2015 19:05 Lernziele: Elektrostatik in Materie Grundgrößen der Elektrostatik: Elektrisches Potential Spannung Elektrostatische Energie Leiter & Nichtleiter Elektrostatik
11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker
11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter
Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.
Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit
Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators
Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport
Grundlagen der Elektrotechnik
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Reinhold Pregla Grundlagen der Elektrotechnik 7., überarbeitete und
16 Elektromagnetische Wellen
16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass
Wolfgang Nolting. Grundkurs Theoretische Physik 3 Elektrodynamik
Wolfgang Nolting Grundkurs Theoretische Physik 3 Elektrodynamik Grundkurs Theoretische Physik Von Wolfgang Nolting 1 Klassische Mechanik Mathematische Vorbereitung - Mechanik des freien Massenpunktes -Mechanik
1 Felder bewegter Ladungen
Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 16.10.2008 1 Felder
Helmut Haase Heyno Garbe. Elektrotechnik. Theorie und Grundlagen. Mit 206 Abbildungen. Springer
Helmut Haase Heyno Garbe Elektrotechnik Theorie und Grundlagen Mit 206 Abbildungen Springer Inhaltsverzeichnis Vorwort Symbole und Hinweise V VII 1 Grundbegriffe 3 1.1 Ladung als elektrisches Grundphänomen
Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.
Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a
Elektrizität und Magnetismus - Einführung
Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz
Basiswissen Physik Jahrgangsstufe (G9)
Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.
Physik für Ingenieure
Physik für Ingenieure von Prof. Dr. Ulrich Hahn OldenbourgVerlag München Wien 1 Einführung 1 1.1 Wie wird das Wissen gewonnen? 2 1.1.1 Gültigkeitsbereiche physikalischer Gesetze 4 1.1.2 Prinzipien der
Hinweise zur Vorbereitung auf die Abiturprüfung 2011 Prüfungsschwerpunkte Physik
Grundkurs 1. Schwerpunkte Die Angaben sind im Zusammenhang mit den Einheitlichen Prüfungsanforderungen (EPA) vom 01.12.1989 in der Fassung vom 05.02.2004 und dem Rahmenlehrplan für den Unterricht in der
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.
1. Statisches elektrisches Feld
. Statisches elektrisches Feld. Grundlagen der Elektrizitätslehre.. Elektrizität in Natur, Technik und Alltag Altertum: Bernstein reiben Staubteilchen und Wollfasern werden angezogen 794 Coulomb: Gesetz
Elektrische Schwingungen und Wellen
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen
Einführung Einleitung Grundlagen Bewegung und Energie. 1.1 Grundbegriffe... 16
3 Inhaltsverzeichnis Einführung..................................................... 12 Einleitung..................................................... 12 Grundlagen.....................................................
4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule,
4 Induktion Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, induziert eine Spannung ( Stromfluss U=RI) in der Spule. Caren Hagner / PHYSIK 2 / Sommersemester 2015
1 Gesetz von Biot-Savart
1 1 Gesetz von Biot-Savart d l: Längenelement entlang der Stromrichtung für eine beliebige Anordnung von Strömen gilt: L I = B( r 2 ) = µ 4π I L A I d l = j d A L ( B( r 2 ) = µ 4π A d l r 12 r12 3 dv
Was machen wir heute?
Ortsverband München-Süd des Deutschen Amateur-Radio-Club e.v. Was machen wir heute? Technik E-08 Das elektromagnetische Feld Das Elektromagnetische Feld Mit Hilfe der Funktechnik sollen Informationen drahtlos
Informationen zur Grundlagenausbildung Elektrotechnik
Informationen zur Grundlagenausbildung Elektrotechnik Kontakt: Fakultät für ET und IT Professur für Hochfrequenztechnik und Theoretische ET Vorlesungen und Übungen: Dr.-Ing. Weber, [email protected]
Grundlagen der Elektrotechnik 1
Grundlagen der Elektrotechnik 1 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien Vorwort V VII 1 Einleitung 1 2 Grundbegriffe 3 2.1 Elektrische Ladung 3 2.2 Leiter und Nichtleiter 4 2.3 Elektrischer
ELEKTRODYNAMIK VON. ARNOLD SOMMERFELDf 5. AUFLAGE REVIDIERT VON FRITZ BOPP. o. PROFESSOR DER THEORETISCHEN PHYSIK AN DER UNIVERSITÄT MÜNCHEN UND
60676 ELEKTRODYNAMIK VON ARNOLD SOMMERFELDf 5. AUFLAGE REVIDIERT VON FRITZ BOPP o. PROFESSOR DER THEORETISCHEN PHYSIK AN DER UNIVERSITÄT MÜNCHEN UND JOSEF MEIXNER o. PROFESSOR DER THEORETISCHEN PHYSIK
Physik - Der Grundkurs
Physik - Der Grundkurs von Rudolf Pitka, Steffen Bohrmann, Horst Stöcker, Georg Terlecki, Hartmut Zetsche überarbeitet Physik - Der Grundkurs Pitka / Bohrmann / Stöcker / et al. schnell und portofrei erhältlich
Abbildung 3.1: Kraftwirkungen zwischen zwei Stabmagneten
Kapitel 3 Magnetostatik 3.1 Einführende Versuche Wir beginnen die Magnetostatik mit einigen einführenden Versuchen. Wenn wir - als für uns neues und noch unbekanntes Material - zwei Stabmagnete wie in
Historische physikalische Versuche
- 3 - Historische physikalische Versuche Von Hans-Joachim Wilke (Herausgeber) * Ht)Cl ' schtj(8 Aulis Verlag Deubner & Co KG Inhalt Vorwort 1. Notwendigkeit und Möglichkeiten des Einsatzes historisch bedeutsamer
Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie
Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation
5.1 Statische und zeitlich veränderliche
5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante
2 Elektromagnetische Wellen
2 Elektromagnetische Wellen 21 2 Elektromagnetische Wellen In diesem Kapitel tauchen wir erstmals tiefer ein in die Wellennatur des Lichts. Wir werden sehen, dass elektrische Felder sowohl von elektrischen
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011
2 Grundgrößen und -gesetze der Elektrodynamik
Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:
III Elektrizität und Magnetismus
20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.
Physik 8. Jahrgang Übersicht
Physik. Jahrgang Übersicht Inhaltsfelder Mechanik - Physik und Sport (Geschwindigkeit, Weg-Zeit- Diagramm, Kraft, Kraftmessung) - Der Mensch auf dem Mond (Gewichtskraft, Reibung, Newtonsche Gesetze) -
Grundlagen der Elektrotechnik
Helmut Haase Heyno Garbe Hendrik Gerth Grundlagen der Elektrotechnik Mit 228 Abbildungen Inhaltsverzeichnis Symbole und Hinweise VII 1 Grundbegriffe 1 1.1 Ladung als elektrisches Grundphänomen 1 1.2 Elektrische
Zusammenfassung. Maxwellgleichungen und elektromagnetische Wellen
Zusammenfassung Maxwellgleichungen und elektromagnetische Wellen nach dem uch Physik von Paul A. Tipler pektrum Akademischer Verlag Datum:.. von Michael Wack ) http://www.skriptweb.de Hinweise z.. auf
3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.
- 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten
