Proseminar Graphentheorie Vortrag 3 Matching. Inhalt: 1. Grundlagen 2. Matchings in bipatiten Graphen 3. Matchings in allgemeinen Graphen

Größe: px
Ab Seite anzeigen:

Download "Proseminar Graphentheorie Vortrag 3 Matching. Inhalt: 1. Grundlagen 2. Matchings in bipatiten Graphen 3. Matchings in allgemeinen Graphen"

Transkript

1 Proseminar Graphentheorie Vortrag 3 Matching Inhalt: 1. Grundlagen 2. Matchings in bipatiten Graphen 3. Matchings in allgemeinen Graphen

2 1. Grundlagen Definition Matching: Eine Menge M von unabhängigen Kanten in einem Graphen G = (V,E) nennt man ein Matching. Man nennt M ein Matching von U V, wenn jeder Knoten aus U mit einer Kante aus M inzident ist. v 2 v 1 v 7 v 6 v 5 In Bild 1 ist M ein Matching von U = {v 2, v 3, v 4, v 5, v 6, v 7 }. v 3 v 4 Bild 1 - Matching v 1 v 6 Definition k-faktor: Einen k-regulären spannenden Subgraphen nennt man k-faktor. v 7 v 5 v 2 v 3 v 4 Bild 2-2-Faktor v 2 v 1 v 6 v 5 v 4 Definition "Perfektes Matching": Ein perfektes Matching ist Matching von V(G), also ein Matching, das alle Punkte des Graphen überdeckt. Daraus folgt, daß ein perfektes Matching ein 1-Faktor sein muß. v 3 Bild 3 - Perfektes Matching (1-Faktor) Seite 2

3 2. Matchings in bipartiten Graphen Der Graph G = (V, E) sei für dieses Kapitel bipartit. Problem: Wie findet man ein Matching mit maximal vielen Kanten? v 1 v 2 v 4 v 7 v 3 v 6 A B v 5 Bild 4 - bipartiter Graph Definition Alternierender Weg: Ein Weg P der an einem Knoten startet, der nich von M gematcht wird, und dann abwechselnd Kanten aus E\M und aus M enthält heißt alternierender Weg in Bezug auf M. Bild 5 - alternierender Weg Definition Augmentierender Weg: Ein alternierender Weg, der ebenfalls an einem ungemachtem Knoten endet, heißt augmentierender Weg. Bild 6 - augmentierender Weg Seite 3

4 Definition Knotenüberdeckung: Ist jede Kante aus E(G) mit einem Punkt aus U V(G) inzident, so nennt man U Überdeckung von E (bzw. Knotenüberdeckung von G). Satz von König (1931) Der maximale Grad eines Matchings in G ist gleich der minimalen Kardinalität einer Knotenüberdeckung in G. v 2 v 1 v 7 v 6 v 3 v 4 v 5 Bild 10 - Knotenüberdeckung von G Beweis: Sei M ein Matching mit maximaler Kardinalität. Wir wählen uns von jeder Kante aus M eine Ende aus. Das Ende liegt in B, wenn dort ein M-alterniereder Weg endet. Ansonsten wählen wir das Ende, das in A liegt. Die Menge U der ausgewählten M Knoten überdeckt G. Da jede Knotenüberdeckung von G auch unser Matching M überdecken muß, kann es keine mit weniger als M geben. U B U A Bild 11 Seite 4

5 Bleibt zu zeigen, daß unsere Knotenüberdeckung U jede Kante aus G erreicht, daß also bei jeder Kante ab E (G) a oder b in U liegen muß. Fall 1: Ist ab M, so liegt laut Definition von U einer der Punkt schon in U. a b A B Fall 2: Ist ab M, dann gibt es eine Kante a'b' aus M, die mit ab einen Punkt gemeinsam hat, da M ein maximales Matching ist. a a Bild 12 - Fall 1 b Fall 2.1 Wenn a ungemacht ist, dann ist ab eine ungematche Kante aus G, und b = b' U. Fall 2.2 Wenn a gemacht ist und nicht zur Knotenüberdeckung gehört, also a = a' U, muß b' U sein und ein alternierender Weg P endet in b'. Gleichzeitig muß aber auch ein alternierender Weg P' in b enden, für den gilt P' := Pb (wenn b P) oder P' = Pb'a'b. Da M maximal ist, kann P' kein augmentierender Weg sein, weil man sonst durch Invertieren von P' ein Matching höherer Kardinalität erhalten könnte. Also muß in b eine Kante von M enden und b zu U gehören. a A A Bild 13 - Fall 2.1 Bild 14 - Fall 2.2 B b b B Seite 5

6 Heiratstheorem (Hall 1935) Der Graph G enthält genau dann ein Matching von A, wenn N(S) S für alle S A. Beweis: N(S) S kann das Theorem nicht gelten. Enhält G keine Machting von A und sei U eine Knotenüberdeckung U = A' B' mit eine Knotenüberdeckung von G mit minimaler Kardinalität. Aus dem Satz von König folgt dann: A' + B' = U < A Durch umstellen erhalten wir: B' < A - A' = A \ A' A B Bild 15 - Eine Überdeckung mit weniger als A Knoten Aus der Definition von U folgt, daß G keine Kanten zwischen A\A' und B\B' bestehen, also den Knoten die nicht zur Knotenüberdeckung gehören. Gäbe es ein solche Kante wäre U keine Knotenüberdeckung mehr. Also gilt N(A \ A') B' < A \ A' und das Heiratstheorem trifft nicht zu. Korollar Wenn für alle S A gilt N(S) S -d, dann enthält G ein Matching der Kardinaliät A - d. Beweis: Wir fügen d neue Knoten zu B hinzu, von denen jeder mit jedem Knoten aus A verbunden sein soll. Aus dem Heiratstheorem folgt, das der neue Graph ein Matching von A enthält, und mindestens A -d Kanten in diesem Matching gehören zu G. Seite 6

7 3. Matchings in normalen Graphen q(g) sei die Anzahl von ungeraden Komponeten von G, also der Komponenten ungerader Ordnung. K G sei die Menge aller Komponenten von G. Satz von Tutte (1947) Ein Graph G hat ein perfektes Matching (1-Faktor) genau dann, wenn gilt: q(g-s) S für alle S V(G). q(g-s)= 3 S Seite 7

8 Ein Graph G = (V,E) heißt faktor-kritisch, wenn er nicht-leer ist und durch Wegnahme eines beliebigen Knotens aus G ein perfektes Matching möglich wird. Der Graph G kann dann selbst kein perfektes Matching (1-Faktor) enthalten, der er von ungerader Ordnung ist. (Bespiel: Dreieck) Eine Knotenmenge heißt matchbar (engl.:matchable) zu G - S, wenn der Graph H, der aus G durch Kontrahieren aller Komponenten C aus K G-S zu einzelnen Punkten und durch löschen aller Kanten aus S entsteht, eine Matching von S entsteht. Satz Jeder Graph G = (V,E) enthält eine Knotenmenge S für die gilt: i) S ist matchbar zu G-S, ii) jede Komponente aus G-S ist faktor-kritisch, Für jede beliebige solche Knotenmenge S gilt, der Graph G hat eine perfektes Matching genau dann wenn S = K G-S. Seite 8

9 Satz Jeder Graph G = (V,E) enthält eine Knotenmenge S für die gilt: i) S ist matchbar zu G-S, ii) jede Komponente aus G-S ist faktor-kritisch, Für jede beliebige solche Knotenmenge S gilt, der Graph G hat eine perfektes Matching genau dann wenn S = K G-S. Vorgehensweise Beweis: Unter der Anahme i) und ii) sind schon bewiesen: 1. Beweis der letzen Aussage des Satzes 2. Beweis der Satzes von Tutte 3. Ungleichung q(g-t) T + d für jedes T G, mit = für ein T Durch Induktion über G beweisen: 4. Alle Komponenten sind ungerade. 5. Alle Komponenten sind faktor-kritisch (ii) 6. S ist matchbar zu G-S (i) mit Heiratskorollar N(S) S -d Seite 9

10 Satz Jeder Graph G = (V,E) enthält eine Knotenmenge S für die gilt: i) S ist matchbar zu G-S, ii) jede Komponente aus G-S ist faktor-kritisch, 1. Wir wollen zeigen: Für jede beliebige solche Knotenmenge S gilt, der Graph G hat eine perfektes Matching genau dann wenn S = K G-S. a) Hat G ein perfektes Matching, und die faktor-kritischen Komponenten, also alle (ii), mit S verbunden sein müssen muß gelten: Da S matchbar ist (i) muß gelten: K G-S = q(g-s) S. K G-S = q(g-s) S. Daraus folgt: S = K G-S. b) Es gilt S = K G-S. Alle Komponenten sind faktor-kritisch, also ungerade (ii), also: S = K G-S = q(g-s) Da S matchbar ist (i), können alle Punkt von S durch ein Matching abgedeckt werden. Diese Bedingung ist auch erfüllt: q(g-s) S Also muß es ein perfektes Matching geben. Seite 10

11 2. Wir wollen zeigen: SS 99 Proseminar Graphentheorie Vortrag 3 - Matching Satz von Tutte (1947) Ein Graph G hat ein perfektes Matching (1-Faktor) genau dann, wenn gilt: q(g-t) T für alle T V(G). a) Beh.: Wenn 1-Faktor, dann q(g-t) T für alle T: Annhahme des Gegenteils: Wenn 1-Faktor, dann q(g-t) > T. Widerspruch, da für einen 1-Faktor alle ungeraden Komponenten mit T gematcht werden müssen. Behauptung folgt. b) Beh.:Wenn q(g-t) T für alle T, dann1-faktor: Annahme: Es gilt q(g-t) T. Aus unserem Satz folgt: Es gibt in jedem G ein T = S, daß matchbar sein soll zu G-S(i): S K G-S Bei diesem S sind alle Komponenten K G-S faktor-kritisch (ii): K G-S = q(g-s) Nach der Behauptung gilt für dieses S auch: q(g-s) S Also muß für ein S aus G gelten: K G-S = S. Dann existiert ein 1-Faktor. Seite 11

12 3. Wir wollen zeigen: q(g-t) T + d für jedes T G, mit = für ein T (*) d sei minimal. a) (*) gilt für jedes T: Für jedes T gilt entweder: q(g-t) T Dann können wir d = 0 setzen. oder es gilt: q(g-t) > T Dann addieren wir ein d dazu, so daß T + d q(g-t). b) Es exisitiert mindestens ein T für das (*) mit Gleichheit erfüllt ist. Gibt es in G eine Menge T, für das wir d > 0 setzen müssen um (*) zu erfüllen, folgt aus der Minimalität von d, daß (*) mit Gleichheit erfüllt. Nicht alle T können (*) mit d = 0 erfüllen q(g-t) T + 0 da, die für die leere Menge gilt. q(g-θ) > θ + 0. Das maximale T, daß (*) mit Gleichheit erfüllt, sei S. K sei K G-S. Seite 12

13 Zu zeigen: 4.Alle Komponenten sind ungerade. Annahme: Es existiert eine Komponente C aus K G-S, die gerader Ordnung ist. Dann kann ein Knoten c aus C nach S verschoben werden. Man erhält C' := C - c (ungerade) S' := S {c} Dann muß gelten: q(g-s') q(g-s) + 1 da durch das Verschieben von c mindestens eine neue ungerade Komponente enstanden ist. Für S' muß auch die Ungleichung (*) gelten: S' + d q(g-s') Also gilt: q(g-s') q(g-s) +1 = S + d + 1 = S' + d q (G-S') S' erfüllt (*) sogar mit Gleichheit. Da S' > S folgt der Widerspruch zur Maximalität von S. Die Annahme, daß es gerade Komponenten gibt, kann nicht gelten. Es folgt die Behauptung. Seite 13

14 Zu zeigen: 5. Jede Komponente C K ist faktor-kritisch. Annahme: Es gibt eine Komponente C K, die nicht faktor-kritisch ist. Man kann also einen Knoten aus C entfernen, ohne daß ein 1-faktor entsteht: C' = C - c Dann gibt es eine Knotenmenge T' innerhalb C' mit: q(c'-t') > T' (Satz von Tutte) Da C ungerade (aus 4.) und deshalb C' gerade ist, sind q(c'-t') und T' immer gleichzeitig gerade oder ungerade. Sie können sich nie um genau den Wert 1 unterscheiden. Also können wird die Ungleichung verschärfen: q(c'-t') T' +2 Für eine neue Knotenmenge T := S {c} T' gilt dann: q(g-t) q(g-s)-1 + q(c'-t') S +d -1 + T' +2 = T +d q(g-t) Auch T erfüllt (*) mit Gleichheit. Es gilt T > S, also folgt der Widerspruch zur Annahme. Damit müssen alle Komponenten faktor-kritisch sein. Seite 14

15 Zu zeigen: 6. S ist matchbar zu G-S. Ist die Menge S leer, dann ist sie matchbar. Wir nehmen also an, S sein nicht-leer. Die Menge der Komponenten K sei ebenfalls nicht leer, da S (*) mit Gleichheit erfüllt. Wir wenden nun das Korollar, das aus dem Heiratssatz folgt, auf den kontrahierten Graphen H an, mit A = K: Korollar Wenn für alle S A gilt N(S) S -d, dann enthält G ein Matching der Kardinaliät A - d. Sei K' K und S' = N H (K') S. Da jedes C aus K' ungerade bezüglich G-S' (aus 4.) ist, erhalten wir N H (K') = S' q(g-s') - d K' -d Dann enthält H eine Matching der Kardinalität: K -d = q(g-s)-d = S Seite 15

Ausarbeitung über den Satz von Menger und den Satz von König

Ausarbeitung über den Satz von Menger und den Satz von König Ausarbeitung über den Satz von Menger und den Satz von König Myriam Ezzedine, 0326943 Anton Ksernofontov, 0327064 Jürgen Platzer, 0025360 Nataliya Sokolovska, 0326991 1. Beweis des Satzes von Menger Bevor

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007

Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 11. Dezember 2007 1 / 47 2 / 47 wir wenden uns jetzt einem weiteren Optimierungsproblem zu Gliederung Matchings in bipartiten Graphen

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Matchings)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Matchings) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Matchings) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend

Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend Organisatorisches VL-18: Matching (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11:15 12:00 Übungen: Tim Hartmann,

Mehr

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09 Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 = Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls

Mehr

Diskrete Mathematik Graphentheorie (Übersicht)

Diskrete Mathematik Graphentheorie (Übersicht) Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Übungsaufgaben Graphentheorie, Wintersemester 2011/12

Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Frank Göring 25. Januar 2012 Zusammenfassung Übungsaufgaben zur Graphentheorievorlesung. 1 Bis 19.10.2011 1. Wir hatten einen Graphen G als zusammenhängend

Mehr

Globalübungsaufgabe1 (All Pair Shortest Path):

Globalübungsaufgabe1 (All Pair Shortest Path): Prof. aa r. Ir. G. Woeginger atenstrukturen und lgorithmen SS7 Tutoriumslösung - Übung 0 (bgabe 2.07.207) T. Hartmann,. Korzeniewski,. Tauer Globalübungsaufgabe (ll Pair Shortest Path): etrachten Sie den

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Minimale aufspannende Bäume und Matchings Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline Minimale aufspannende

Mehr

Formale Grundlagen der Informatik

Formale Grundlagen der Informatik Formale Grundlagen der Informatik / 2015 1 Die Elemente einer (endlichen) Menge sollen den Elementen einer zweiten, gleichmächtigen Menge zugeordnet werden Problemstellung Bipartite Graphen Zuordnungsprobleme

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr Matchings (Paarungen) in Graphen PS Algorithmen auf Graphen SS `06 Steven Birr 1 Gliederung 1) Definitionen und Beispiele 2) Algorithmus des maximalen Matchings 3) Das Personal-Zuteilungsproblem Ungarischer

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching Kap. 1.4: Minimum Weight Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 4. VO 6. November 2006 Überblick kurze Wiederholung: 1.2 Blüten-Schrumpf-Algorithmus für Perfektes Matching

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens Praktikum Algorithmen-Entwurf (Teil 5)..5 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen Endpunkt

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs Algorithmische Mathematik KSL09 Aufgabe. Zeigen oder widerlegen Sie: Es existiert ein Graph mit Valenzsequenz (8,,,,,,,,,). Geben Sie im Falle der Existenz

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

William Rowan Hamilton,

William Rowan Hamilton, 3.2.2 Hamiltonkreise Definition 130. In einem Graph G = (V,E) nennt man einen Kreis, der alle Knoten aus V genau einmal durchläuft, einen Hamiltonkreis. Enthält ein Graph eine Hamiltonkreis, nennt man

Mehr

Minimal spannender Baum

Minimal spannender Baum Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Geraden in der Ebene und Zerlegung von Graphen

Geraden in der Ebene und Zerlegung von Graphen Geraden in der Ebene und Zerlegung von Graphen Proseminar: Beweise aus dem Buch am 17.01.2015 von Ina Seidel 1 Historisches zu Sylvester und Gallai James Joseph Sylvester * 1814, 1897 war britischer Mathematiker.Unter

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008 Graphentheorie Rainer Schrader Färbungen Zentrum für Angewandte Informatik Köln 28. Januar 2008 1 / 57 2 / 57 wir wollen versuchen, die Knoten eines Graphen zu färben dabei dürfen keine zwei benachbarten

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 2: Einführung in die Graphentheorie - Teil 2 Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. März 2018 1/48 OPERATIONEN

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung Kapitel : Fallstudie Bipartite Graphen Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und. Minimal spannende Bäume. Kürzeste Wege 6. Traveling Salesman

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

1. Einige Begriffe aus der Graphentheorie

1. Einige Begriffe aus der Graphentheorie . Einige Begriffe aus der Graphentheorie Notation. Sei M eine Menge, n N 0. Dann bezeichnet P n (M) die Menge aller n- elementigen Teilmengen von M, und P(M) die Menge aller Teilmengen von M, d.h. die

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

Achilles und die Schildkröte Sommersemester 2008

Achilles und die Schildkröte Sommersemester 2008 Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S Minimale Formale Grundlagen Graphentheorie Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt Minimale

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

Graphen und Algorithmen

Graphen und Algorithmen Graphen und Algorithmen Vorlesung #7: Matchingtheorie Dr. Armin Fügenschuh Technische Universität Darmstadt WS 2007/2008 Übersicht Matchings und erweiternde Wege Satz von Berge Das Heiratsproblem und der

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni CHAPTER. GRAPHEN.. B Ä UME.. Bäume Ein schlichter Graph ohne Kreise heisst Wald, ist er noch zusätzlich zusammenhängend so wird er Baum genannt. Bevor wir Bäume genauer beschreiben ein kleines LEMMA...

Mehr

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht 1. Einführung Kapitelübersicht 1. Einführung Grundbegriffe und Bezeichnungen Beispiele Bäume gerichtete Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 15 Das Königsberger Brückenproblem Beispiel

Mehr

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 13. November 2007 1 / 84 2 / 84 Gliederung stest und Schnittkanten älder und Bäume minimal aufspannende Bäume Der Satz von Menger 2-zusammenhängende

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt.

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt. Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 5. Musterlösung Problem : Vitale Kanten * In einem Netzwerk (D = (V, E); s, t; c) mit Maximalfluß f heißen Kanten e

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Graphenalgorithmen Maximaler Fluss Einleitung Flussnetzwerke Ford-Fulkerson Fulkerson Methode Maximales bipartites Matching

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Klausur zum Modul Einführung in die Diskrete Mathematik

Klausur zum Modul Einführung in die Diskrete Mathematik Klausur zum Modul Einführung in die Diskrete Mathematik 11.2.2014 Aufgabe 1 [10 Punkte] Sei G ein ungerichteter Graph, k N und x, y, z V (G). Zeigen Sie: Gibt es k paarweise kantendisjunkte x-y-wege und

Mehr

Systems of Distinct Representatives

Systems of Distinct Representatives Systems of Distinct Representatives Seminar: Extremal Combinatorics Peter Fritz Lehr- und Forschungsgebiet Theoretische Informatik RWTH Aachen Systems of Distinct Representatives p. 1/41 Gliederung Einführung

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Die. Ramsey-Zahlen

Die. Ramsey-Zahlen Westfälische Willhelms-Universität Münster Fachbereich 10 Mathematik und Informatik Seminar Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Die Ramsey-Zahlen 01.06.15 Kirsten Voß k_voss11@uni-muenster.de

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des

Mehr

Die Vermutungen von Hadwiger und

Die Vermutungen von Hadwiger und Die Vermutungen von Hadwiger und Hajós David Müßig Seminar zur Graphentheorie, WS 09/10 Wir alle kennen die Gleichung χ(x) ω(x). Diese Gleichung ist nicht nur einläuchtend, sondern auch mehr oder weniger

Mehr

Wiederholung

Wiederholung Wiederholung Knotenfärbung von Graphen Chromatische Zahl χ(g) Beweis: Jeder planare Graph ist 5-färbbar Vierfarbensatz: Jeder planare Graph ist 4-färbbar. Kantenfärbung: χ (G) = (G) oder (G)+1 Matchings

Mehr

Seminar: Einladung in die Mathematik

Seminar: Einladung in die Mathematik Seminar: Einladung in die Mathematik Marius Kling 11.11.2013 Übersicht 1. Königsberger Brückenproblem 2. Diskrete Optimierung 3. Graphentheorie in der Informatik 4. Zufällige Graphen 5. Anwendungen von

Mehr

2 Tiefen- und Breitensuche

2 Tiefen- und Breitensuche 2 Tiefen- und Breitensuche Übersicht 2.1 SpannendeBäume... 21 2.2 WiefindetmanspannendeBäume?... 24 2.3 AnwendungenvonBFSundDFS... 29 2.4 Aufgaben... 33 2.1 Spannende Bäume Vor nicht allzu langer Zeit

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Grundbegri e der Graphentheorie: Eckengrad, Wege und Kreise, Zusammenhang

Grundbegri e der Graphentheorie: Eckengrad, Wege und Kreise, Zusammenhang raphen- und Berechenbarkeitstheorie rundbegri e der raphentheorie: Eckengrad, Wege und Kreise, Zusammenhang 0.1 raphen Ein raph ist ein aar = (V, E) disjunkter Mengen mit E [V ]2, wobei [V ]2 die Menge

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Fliegende Cops: Charakterisierung der Baumweite

Fliegende Cops: Charakterisierung der Baumweite Fliegende Universität Leipzig, Universität Paborn Das Spiel endlicher, ungerichteter Graph G = (V, E) alle Teilnehmer sehen sich 1 Räuber: befindet sich auf Knoten bewegt sich entlang Kanten mit großer

Mehr

Lineare Algebra II Lösungen der Aufgaben 42 und 43

Lineare Algebra II Lösungen der Aufgaben 42 und 43 D Blottière SS 7 P Schützdeller Universität Paderborn Lineare Algebra II Lösungen der Aufgaben 4 und 43 Aufgabe 4 : Bemerkungen : Es sei V ein n-dimensionaler Vektorraum über einem Körper K und β : V V

Mehr

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E

Mehr

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Schnittebenenverfahren für das symmetrische

Schnittebenenverfahren für das symmetrische Schnittebenenverfahren für das symmetrische TSP Sebastian Peetz Mathematisches Institut Universität Bayreuth 19. Januar 2007 / Blockseminar Ganzzahlige Optimierung, Bayreuth Gliederung 1 Das symmetrische

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19 Fünfzehnte Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 19 Definition

Mehr

Populäre Matchings und stabile Paarungen

Populäre Matchings und stabile Paarungen Hauptseminar Algorithmen und Komplexität Wintersemester 2011/12 Populäre Matchings und stabile Paarungen Felix Neumann Version zur Veröffentlichung 19. Januar 2012 1 Einführung Ein in der Informatik häufig

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr