Didaktik der Analysis
|
|
|
- Dorothea Beltz
- vor 8 Jahren
- Abrufe
Transkript
1 Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 2.1
2 Inhalt Didaktik der Analysis 0 Organisatorisches 1 Ziele und Inhalte 2 Folgen und Vollständigkeit in R 3 Ableitungsbegriff 4 Integralbegriff 2.2
3 Danckwerts & Vogel (2006): Analysis verständlich unterrichten. Heidelberg: Spektrum Akad. Verlag, S Büchter, A.; Henn, H.-W. (2010): Elementare Analysis. Heidelberg: Spektrum Akademischer Verlag Didaktik der Analysis Kapitel 2: Folgen und Vollständigkeit in R 2.3
4 Woher kamen die Folgen, was leisten sie und warum? Danckwerts, Vogel (2006): Analysis verständlich unterrichten. Heidelberg: Spektrum Akademischer Verlag. S Beschreibung iterativer Prozesse Beispiele: Diskrete Modellierung Heron-Verfahren Ist 00, 99 = 11? Komplementarität von Produkt- und Prozessorientierung (Vgl. das Skript Didaktik der Zahlbereichserweiterungen, Kapitel 5: Reelle Zahlen R) Folgen und Konvergenz Intervallschachtellungssatz & Archimedisches Axiom Vollständigkeit von R Grundvorstellung: Lückenlosigkeit der Zahlengeraden Berechnungs- & Beweisinstrument Beispiele: Approximation von 2 Beweise: Zwischenwertsatz Monotoniekriterium operative Fassung 2.4
5 Heron-Verfahren (Wurzelberechnung) Berechnungsgrundlage für Straßenreinigungsgebühren: An die Straße grenzende Grundstückslänge (Frontmetermaßstab). Der Eigentümer von Grundstück B muss mehr bezahlen als der von Grundstück A, obwohl Grundstück A größer ist. Gemeinderat: Für ein größeres Grundstück mehr zahlen. Lösung: Quadratwurzelmaßstab als Bemessungsgrundlage Straßenreinigungsgebühren werden aus der Seitenlänge eines zum Grundstück flächeninhaltsgleichen Quadrats berechnet. Frage: Wie findet man die Seitenlänge dieses Quadrats? A B 2.5
6 Heron-Verfahren (Wurzelberechnung) 2.6
7 Heron-Verfahren (Wurzelberechnung) Gesucht: AA aa 0 = 4 Anfangswert: aa 0 AA = 24 bb nn = AA aa bb 0 = AA = 24 nn aa 0 4 = 6 bb 1 = AA = 4,8 aa 1 aa nn+1 = aa nn + bb nn 2 = aa nn + AA aa nn 2 aa 1 = aa 0 + bb 0 2 = 5 Schnell konvergierende Intervallschachtelung. 2.7
8 Reelle Zahlen Die reellen Zahlen entsprechen eineindeutig den sämtlichen Punkten der Zahlengeraden. Arnold Kirsch
9 Irrationalität von
10 o. B. d. A. heißt ohne Beschränkung der Allgemeinheit. Existenz irrationaler Zahlen Definition Eine reelle Zahl xx heißt Satz rational, wenn sie sich in der Form xx = mm mit mm Z und nn nn N schreiben lässt, andernfalls irrational. Es gibt keine rationale Zahl xx mit xx 2 = 2. Beweis (Widerspruchsbeweis) Wenn xx 2 = 2 ist, dann gilt für alle Lösungen xx dieser Gleichung xx Q. Annahme: pp xx qq(xx) Es gibt o. B. d. A. einen Bruch mm nn mit mm, nn N für den gilt: mm 2 = 2 nn mm 2 = 2nn 2 mm mm = 2 nn nn In der Primfaktorzerlegung von mm mm tritt die Zahl 2 in einer geraden Anzahl auf, in der von 2 nn nn tritt die Zahl 2 dagegen in einer ungeraden Anzahl auf. Widerspruch zur Eindeutigkeit der Primfaktorzerlegung! Es kann keine rationale Zahl xx mit xx 2 = 2 geben. 2.10
11 Eindeutigkeit der Primfaktorzerlegung Beweis Annahme: Es gibt natürliche Zahlen mit mehreren unterschiedlichen Zerlegungen. Dann gibt es darunter eine kleinste Zahl nn. nn kann keine Primzahl sein (Warum?). Zwei Zerlegungen von nn können keinen gemeinsamen Primfaktor pp enthalten, da dann auch nn pp zwei verschiedene Zerlegungen hätte und kleiner als nn wäre. Widerspruch zu nn ist minimal. Es gilt also: nn = pp aa = qq bb mit pp, qq P pp qq aa bb Das letzte Argument ist das Lemma von Euklid: Teilt eine Primzahl ein Produkt, so auch mindestens einen der Faktoren. pp aa bb pp aa pp bb. Da nn durch pp teilbar ist, muss einer der Faktoren der anderen Zerlegung durch pp teilbar sein und das ist bb, denn qq ist prim. Also taucht ein beliebiger Primfaktor stets in beiden Zerlegungen auf und damit sind sie identisch. # 2.11
12 Inkommensurabilität Pentagon Es gibt kein gemeinsames Maß für die Diagonale dd und die Seite aa des regelmäßigen Fünfecks. dd = 1 aa + dd 1 aa = 1 dd 1 + aa 1 Im zweiten Fünfeck: dd 1 = 1 aa 1 + dd 2 aa 1 = 1 dd 2 + aa 2 Im dritten Fünfeck: dd 2 = 1 aa 2 + dd 3 aa 2 = 1 dd 3 + aa 3 dd = 1 aa + dd 1 aa = 1 dd 1 + aa 1 Wäre ee ein gemeinsames Maß von dd und aa, dann auch für jedes Paar dd nn, aa nn. Die Längen nehmen aber bei jedem Schritt um mehr als die Hälfte ab und werden damit sicher kleiner als jedes ee. 2.12
13 Definitionen Definition Eine Folge ist eine Funktion, die jedem Element der Menge der natürlichen Zahlen genau ein Element der Menge der reellen Zahlen zuordnet. N R, nn aa nn Definition Eine Folge aa nn nn N heißt konvergent gegen aa, wenn es zu jeder Toleranz εε > 0 eine Nummer nn 0 gibt, so dass für alle nn nn 0 gilt: aa nn aa < εε aa heißt dann Grenzwert der Folge aa nn nn N und man schreibt: aa = lim nn aa nn 2.13
14 Folge 11 nn nn N und εε-schlauch 2.14
15 Verbalisierungen für Grenzprozesse Konvergenz der Folge 11 nn nn N Sprechweisen (1) 1 kommt mit wachsendem nn nn der 0 beliebig nahe. (2) 1 strebt gegen 0 für nn nn gegen. (3) 1 kommt mit wachsendem nn nn der 0 immer näher. (4) 1 kommt der 0 immer näher nn ohne sie jemals zu erreichen. Verbale Vereinfachung Verfälschung Welche davon sind geeignet? (1) Ohne Einschränkung geeignet. (2) Ohne Einschränkung geeignet. (3) Problematisch! 1 kommt auch nn der 1 immer näher, aber nicht beliebig nahe (vgl. (1))! (4) Grenze zur inhaltlichen Verfälschung deutlich überschritten! Auch konstante Folgen sind konvergent! 2.15
16 Intervallschachtelungen Intervallschachtelungssatz Zu jeder Intervallschachtelung aa 1 aa 2 aa 3 bb 3 bb 2 bb 1 (wobei aa nn, bb nn R und die Intervalllänge bb nn aa nn beliebig klein wird) gibt es ein xx R, das in allen Intervallen enthalten ist. Für alle nn N gilt also: aa nn xx bb nn Archimedisches Axiom Zu je zwei Größen yy > xx > 0 existiert eine natürliche Zahl nn N mit nn xx > yy. Bemerkungen Die Eigenschaft, dass keine Intervallschachtelung auf der Zahlengeraden ins Leere trifft, präzisiert die Vorstellung von der Lückenlosigkeit. Die Intervallschachtelung greift auf die Folgen der Intervallgrenzen zurück und wird zum Werkzeug zur näherungsweisen Berechnung neuer reeller Zahlen. Wird bereits in der Sek. I zu Umfangs, Flächeninhalts- und Volumenberechnung genutzt. 2.16
17 Vollständigkeit von R ist notwendig! Zwischenwertsatz Wechselt eine in einem Intervall stetige Funktion ihr Vorzeichen, dann hat sie dort mindestens eine Nullstelle. Ist ff: aa, bb R stetig und ff aa < 0 < ff(bb) oder ff aa > 0 > ff bb dann gibt es mindestens ein xx 0 [aa, bb] mit ff xx 0 = 0. Beispiel: II = {xx Q 0 xx 2} ff: 0; 2 R, xx xx 2 2 GG ff 2 Q aa xx 0 bb 2.17
18 Vollständigkeit von R ist notwendig! Monotoniekriterium Eine auf einem Intervall differenzierbare Funktion mit überall positiver Ableitung ist dort streng monoton wachsend. Beispiel: II = {xx Q 0 xx 3} ff: II R, xx 1 2 xx 2 ff xx = 2xx > 0 2 xx 2 2 Ist ff: aa, bb R differnzierbar und ff xx > 0 für alle xx [aa, bb], dann folgt für alle xx 1, xx 2 aa, bb mit xx 1 < xx 2, dass gilt: ff xx 1 < ff(xx 2 ) Strenge Monotonie verletzt! 2.18
Didaktik der Zahlbereichserweiterungen
Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche Kapitel 5: Reelle Zahlen R 5.1 Didaktik der Zahlbereichserweiterungen 1 Ziele und Inhalte 2 Natürliche Zahlen N 3 Ganze
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016
Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17
Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut [email protected] 1 / 1 Kapitel 1: Grundlagen 4 / 1 Kap.1
Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper
Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen
Zuordnung von gemeinen Brüchen zu Dezimalbrüchen
Zuordnung von gemeinen Brüchen zu Dezimalbrüchen Durch schriftliche Division kann ein gemeiner Bruch in einen Dezimalbruch umgewandelt werden. Hierbei können zwei verschiedene Fälle betrachtet werden:
Didaktik der Analysis
Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 4.1 Inhalt Didaktik der Analysis 0 Organisatorisches 1 Ziele und Inhalte 2 Folgen und Vollständigkeit in R 3 Ableitungsbegriff 4 Integralbegriff
Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff
47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,
f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.
Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und
1.4 Die rellen Zahlen
1.4 Die rellen Zahlen Die reellen Zahlen R Beobachtung Es gibt physikalische Größen (dh. Abstände, Flächeninhalte... ), die nicht in Q liegen. Beispiele 2 (Diagonale im Quadrat mit Seitenlänge 1) π (Flächeninhalt
Thema 3 Folgen, Grenzwerte
Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
IV. Zahlbereichserweiterung
IV. Zahlbereichserweiterung 5./6. Klasse: Natürliche Zahlen;nach dem neuen Bildungslan auch negative ganze Zahlen 6. Klasse: Bruchzahlen 7. Klasse: Rationale Zahlen 9. Klasse: Reelle Zahlen (3) Z ganze
2 Polynome und rationale Funktionen
Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine
Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen
Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Vorkurs Mathematik Vorlesung 5 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen
Zusammenfassung zur Konvergenz von Folgen
Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei
Kapitel 5 KONVERGENZ
Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz
11. Folgen und Reihen.
- Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a
13 Die trigonometrischen Funktionen
13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion
Einführung in die Analysis
Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel
11 Logarithmus und allgemeine Potenzen
Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den
Kapitel 3. Konvergenz von Folgen und Reihen
Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden
Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)
1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,
Vorkurs Mathematik. Vorlesung 2. Primzahlen
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Vorkurs Mathematik Vorlesung 2 Primzahlen Das Sieb des Eratosthenes liefert eine einfache Methode, eine Liste von Primzahlen unterhalb einer bestimmten Größe
Technische Universität München Zentrum Mathematik. Übungsblatt 5
Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen
Stetigkeit. Definitionen. Beispiele
Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt
1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:
Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere
Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren
Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis
A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )
Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl
Folgen und Reihen. Zahlenfolgen , ,
97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.
Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st
Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche
Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b
Kapitel 4. Folgen 4.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes
Kapitel 6 Folgen und Stetigkeit
Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n
4 Messbare Funktionen
4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und
9 Konvergenz und absolute Konvergenz von Reihen
9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute
Thema 4 Limiten und Stetigkeit von Funktionen
Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.
Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen
Kapitel 5 Iterative Lösung von nichtlinearen Gleichungen und Gleichungssstemen 5.1 Iterationsverfahren zur Lösung einer reellen nichtlinearen Gleichung Es sei g() eine im Intervall I definierte reellwertige
p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt.
p 2istirrational Satz 1.15 Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. Beweis. Annahme: Es existiert x 2 Q mit x 2 = 2. Wegen x 2 Q folgt x = p q und p und q sind teilerfremde ganze Zahlen.
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :
Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900
Unendliche Potenzen. Thomas Peters Thomas Mathe-Seiten 7. August 2010
Unendliche Potenzen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 7. August 00 In diesem Artikel werden wir uns einem zunächst bizarr anmutenden Thema widmen, nämlich den unendlichen Kettenbrüchen,
Mathematik I Herbstsemester 2014
Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer
17 Logarithmus und allgemeine Potenz
7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur
Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543
Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen
Mathematik I. Zusammenhängende Räume
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 21 Die beiden nächsten Vorlesungen kann man unter dem Aspekt sehen, welche topologischen Eigenenschaften die reellen Zahlen gegenüber
Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.
1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu
Vollständigkeit der reellen Zahlen
Vollständigkeit der reellen Zahlen Vorlesung zur Didaktik der Analysis Oliver Passon Vollständigkeit von R 1 take home message I Wollte man mit Zahlen nur rechnen, könnte man mit den rationalen Zahlen
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Humboldt-Universität zu Berlin, Institut für Mathematik. Sommersemester 2009/10
Humboldt-Universität zu Berlin, Institut für Mathematik Abgeordnete Lehrer: R.Giese, U.Hey, B.Maus Sommersemester 2009/10 Internetseite zur Vorlesung: http://didaktik.math.hu-berlin.de/index.php?article_id=351&clang=0
5 Grundlagen der Zahlentheorie
5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk
5 Stetigkeit und Differenzierbarkeit
5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.
Die Lösungen der Gleichung b x = log b (x)
Die Lösungen der Gleichung b = log b () [email protected] 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =
Didaktik der Analysis in der Sek II- Reelle Zahlen. Humboldt-Universität zu Berlin Institut für Mathematik
Humboldt-Universität zu Berlin Institut für Mathematik Abgeordnete Lehrer: G. Neumann, H. Rodner Sommersemester 2011 Rodner/Neumann 1 Die reellen Zahlen Historische Bemerkungen Zugänge zu den reellen Zahlen
13. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben
Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).
Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).
Das Newton Verfahren.
Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren
Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya
Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,
3.5. DIE EXPONENTIALREIHE 73
3.5. DIE EXPONENTIALREIHE 73 wichtigen Formeln auf, ohne diese Zahl ist die Analysis nicht denkbar! Wir werden ihr oft begegnen und dadurch wird diese Bedeutung offenbar werden. Will man diese Zahl mittels
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /16 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 3. Zahlenfolgen und Grenzwerte
Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.
Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die
Analysis I. Skript. von Maximilian Schlund
Analysis I Dozent: Prof. Suris Wintersemester 2006/07 Analysis I Skript von Maximilian Schlund Man beachte bitte, dass dies lediglich die L A TEX-Version meiner Mitschrit ist und kein offizielles Skript
Mathematik Quadratwurzel und reelle Zahlen
Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel
Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1
Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:
eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.
Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...
Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann
Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer
Anwendungen der Differentialrechnung
KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................
2 Rationale und reelle Zahlen
2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +
Mengenlehre. Aufgaben mit Lösungen
Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................
Folgen und endliche Summen
Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen
Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen
Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen
Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543
Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:
Kapitel 5. Stetige Funktionen 5.1. Stetigkeit
Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen
Didaktik der Mathematik der Sekundarstufe II
1 / 31 Didaktik der Mathematik der Sekundarstufe II 3. Folgen und Grenzwerte H. Rodner, G. Neumann Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung:
15 Hauptsätze über stetige Funktionen
15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen
Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler
Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante
5 Die reellen Zahlen. 5.1 Historisches
5 Die reellen Zahlen 5.1 Historisches In der geometrischen Betrachtungsweise der Pythagoreer gab es für beliebige zwei Zahlen, d. h. Strecken, stets ein gemeinsames Maß. Dabei heißt eine Strecke e Maß
Exponentalfunktion und Logarithmus
A. Mentzendorff Geändert: September 2008 Eponentalfunktion und Logarithmus Inhaltsverzeichnis Wachstum und Zerfall 2 2 Der Logarithmus als Stammfunktion 4 3 Eponentialfunktionen 8 3. Die natürliche Eponentialfunktion........................
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen
Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte
REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert
Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen
Grundlagen der Arithmetik und Zahlentheorie
Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend
Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.
Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen
J Quadratwurzeln Reelle Zahlen
J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,
4 Das Vollständigkeitsaxiom und irrationale Zahlen
4 Das Vollständigkeitsaxiom und irrationale Zahlen 4.2 R ist archimedisch geordnet 4.5 Q liegt dicht in R 4.7 Existenz von Wurzeln nicht-negativer reeller Zahlen In diesem Paragraphen werden wir zum ersten
Zahl und Funktion Grundlagen der Analysis aus der Sek I. Oliver Passon Seminar zur Didaktik der Analysis
Grundlagen der Analysis aus der Sek I Seminar zur Didaktik der Analysis Quellen Lehrpläne und Richtlinien des Landes NRW für Gymnasien und Gesamtschulen Lambacher Schweizer: Mathematik für Gymnasien, Klett
Differenzialrechnung
Mathematik bla Differenzialrechnung Ort - Zeit - Geschwindigkeit E:\1_GYMER\_Unterricht\AUFGABEN\0_3 Differenzialrechnung\00_differenzialrechnung.docx 1 Das Weg-Zeit-Diagramm und die Geschwindigkeit Ordne
Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen
Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis
Übungsaufgaben zur Analysis
Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)
Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen
Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N
lim Der Zwischenwertsatz besagt folgendes:
2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert
2 - Konvergenz und Limes
Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die
Stetigkeit von Funktionen
Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte
V.1 Konvergenz, Grenzwert und Häufungspunkte
V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast
3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.
Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz
,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5
3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber
n=1 a n mit reellen Zahlen a n einen
4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die
