Analyse 2: Hypothesentests
|
|
|
- Heiko Schuler
- vor 8 Jahren
- Abrufe
Transkript
1 Analyse 2: Hypothesentests Ashkan Taassob Andreas Reisch
2 Inhalt Motivation Statistischer Hintergrund Hypothese Nullhypothesen Alternativhypothesen Fehler beim Hypothesentesten Signifikanz-LEVEL und P-value Statistik Test Theorie t-test F-Test Chi-squre-Test ANOVA (Analysis of variance) Wilcoxon-Vorzeichen-Rang-Test Zusammenfassung 2
3 Motivation Idee Operation Preparation Definition Experiment design Execution Data validation Planing Experiment definition Context selection Hypthesis.. Variables selection Experiment data Experiment report Selection.. Experiment desing Instrumentation Analysis & Interpretation Descriptive statistics Data set reduction Präsentation & package Validy evaluation Hypthesis testing Conclusion 3
4 Motivation Vermutung: Je länger ein Fehler in einer Software unentdeckt bleibt, desto aufwändiger ist dessen Beseitigung. H 0 : Die Zeit, die ein Fehler unentdeckt bleibt ist unabhängig von dem Aufwand, diesen Fehler zu beseitigen. H 1 : Zwischen der Endeckzeit und dem Aufwand besteht ein Zusammenhang 4
5 Statistischer Hintergrund Hypothese Unter Hypothese versteht man in der statistik eine anhand Stichproben zu prüfende Annhame. Nullhypothese: Es gibt keine Mittelwertsunterschied, BZW keine Zusammenhänge in der Population. Bezeichnet als H 0 Alternativhypothese: Es existiert ein Unterschied oder ein Zusammenhang in der Population. Bezeichnet als H 1 5
6 Statistischer Hintergrund Fehler beim Hypothesentests Fehler Typ I: Ablehnung der richtigen Nullhypothese bei gültiger Nullhypothese. P( Ablehnung H 0 H 0 ist richtig)= α Fehler Typ II: Beibehaltung der falschen Nullhypothese beo gültiger Alternativhypothese P( nicht Ablehnung H 0 H 0 ist falsch)= β Teststärke: Die Wahrscheinlichkeit, dass ein in der Population vorhandener unterschied bei statistischer Testung entdeckt wird brechnet als 1-β 6
7 Statistischer Hintergrund 7
8 Statistischer Hintergrund Signifikanz-Niveau P-value Es steht in enger Beziehung mit Signifikanzniveau. Wenn p-value kleiner als Signifikanzniveau ist, lehnnen wir H 0 ab. 8
9 Statistischer Hintergrund Statistik Funktion, die einer Stichprobe einen Wert zuordnet. Beispiel: t n 1 = x µ s Der Freiheitsgrad(df) beschreibt die Anzahl der frei wählbaren Werte, welche in die Brechnung eines statistischen Kennwerts eingehen. n 9
10 Statistischer Hintergrund Histogram 6 Frequency ,54 2,46 3,38 More Bin Frequency 10
11 Statistischer Hintergrund Normal Probability Plot 4 3 Y Sample Percentile 11
12 Überblick über parametrik und nicht parametrik tests Design parametric Non parametric One factor, one treatment One factor, two treatment, compeletly randomized design One factor, two treatments, paired comparison One factor, more than two treatments t-test F-test Paired t-test ANOVA Chi-sqaure Binomialtest Mann-whitney Chi-square Wilcoxon Sign-test Kruskal wallis Chi-square 12
13 t-test Vorraussetzungen Stichproben sind normalverteilt, unabhängig und haben gleiche Varianz H 0 µ t0 = x =µ y Ewartete Mittelwerte sind gleich s p x y n m Rechnenweg x y t 0 =,sp = 1 1 sp + m n (n 1)s + (m 1)s 2 2 x y m+ n 2 Kriterium H 0 : µ x =µ y wird abgelehnt, wenn t 0 > t α/2,n+m-2 13
14 t-test für f r gepaarte Stichproben Vorraussetzungen Stichproben sind normalverteilt H 0 µ d =0,d i =x i -y i Ewartete Mittelwert ist in differenz gleich null Rechnenweg d t 0 =,sd = s / n d n 2 (di d) i= 1 n 1 Kriterium H 0 : µ d =0 wird ablgelehnet, wenn t 0 > t α/2,n-1 14
15 F-Test Vorraussetzungen Stichproben sind normalverteilt und unabhängig H 0 σ 2 x=σ 2 y varianzen sind gleich Rechnenweg F 0 =S 2 x / S 2 y Kriterium H 0 : σ 1 x=σ 2 y wird abgelehnt, wenn F 0 >F α/2,n-1,m-1 15
16 Chi-square mit K unbahängige ngige Stichproben(Gruppen) Vorraussetz ungen H 0 Nicht parametrische Daten Homogenität des Materials Rechnenweg r k 2 (n E ) R C 2 X =,E ij = E N i= 1 j= 1 ij ij ij i j In diese Tabelle n ij zeigt die Häufigkeit der variable i in der Gruppe j,c i zeigt die Summe der Häufigkeit der Gruppe i und R i zeigt die Summe von Variable i. Kriterium H 0 wird abgelehnt, wenn X 2 >X 2 α,f, Wobei f=df=(r-1)(k-1), r ist die Anzahl der Variables und k ist die Anzahl der Gruppen 16
17 ANOVA Vorraussetzungen H 0 Rechnenweg Stichproben sind normalverteilt,unabhängig µ x1 =µ x2 =...=µ xa Ewartete Mittelwerte sind gleich n a i x S S x.. 2 T = å å ij -, i= 1 j= 1 N a x 2 x 2 S S i... Treatm ent = å - i= 1 n i N SS Error =SS T -SS Treatment, MS Traetment = SS Treatment /(a-1), MS Error =SS Error / (N-a), F0=MS Treatment /MS Error Kriterium H 0 wird abgelehnt, wenn F 0 >F α/2,a-1,n-a 17
18 Wilcoxon-Vorzeichen Vorzeichen-Rang-Test Vorraussetzungen Die beiden Populationen sollen stetig verteilumgen von gleicher Form haben H 0 T + =T -, wobei T + ist die Summe der Ränge aller Veränderungen mit positivem Vorzeichen und T - die Summe der Ränge aller Veränderungen mit negativen Vorzeichen Rechnenweg Kriterium H0 wird abgelehnt, wenn T=min(T +,T - ) kleiner als den Wert aus Wicoxon s Tabelle 18
19 Zusammenfassung t-test handelt sich um mehrere verfahren zur Prüfung von Mittelwertsdifferenzen. F-Test kann zur Prüfung der Varianzhomogenität benutzt werden. Bei der Prüfung der Vereinbarkeit von Mittelwerten aus unabhängigen Stichproben muss zunächst mit einem F-Test entschieden werden. Chi-square test handelt es sich um eine Verfahrenklasse zur Auswertung von Nominaldaten. Wilcoxon-vorzeichen-Rang-Test berücksichtigt neben der Richtung des Unterschieds auch noch die größe des Unterschieds bei einer ordinalskalierten Variablen. 19
ANalysis Of VAriance (ANOVA) 2/2
ANalysis Of VAriance (ANOVA) 2/2 Markus Kalisch 22.10.2014 1 Wdh: ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor X). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich
1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.
Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden
Schließende Statistik
Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.
Hypothesentests mit SPSS. Beispiel für einen t-test
Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle
Statistik II: Signifikanztests /1
Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =
Angewandte Statistik 3. Semester
Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen
Nicht-parametrische Statistik Eine kleine Einführung
Nicht-parametrische Statistik Eine kleine Einführung Überblick Anwendung nicht-parametrischer Statistik Behandelte Tests Mann-Whitney U Test Kolmogorov-Smirnov Test Wilcoxon Test Binomialtest Chi-squared
Hypothesenbasierende Untersuchungen. Hypothesenbasierende Untersuchungen
Hypothesenbasierende Untersuchungen Hypothesenbasierende Untersuchungen Unterschiedshypothesen Zusammenhangshypothesen Veränderungshypothesen Äquivalenzhypothesen PD Dr. Sven Reese, LMU München 1 Definition:
Mögliche Fehler beim Testen
Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.
9 Prinzipien der statistischen Hypothesenprüfung
9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn
Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1
Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1 Inhalt Programmiersprache R Syntax Umgang mit Dateien Tests t Test F Test Wilcoxon Test 2 Test Zusammenfassung 2 Programmiersprache R Programmiersprache
Überblick über die Verfahren für Ordinaldaten
Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische
10 Der statistische Test
10 Der statistische Test 10.1 Was soll ein statistischer Test? 10.2 Nullhypothese und Alternativen 10.3 Fehler 1. und 2. Art 10.4 Parametrische und nichtparametrische Tests 10.1 Was soll ein statistischer
Allgemeines zu Tests. Statistische Hypothesentests
Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer
Analyse von Querschnittsdaten. Signifikanztests I Basics
Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004
SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben
SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen
ANalysis Of VAriance (ANOVA) 1/2
ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/
Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen
Statistische Überprüfung von Hypothesen Hypothesen sind allgemeine Aussagen über Zusammenhänge zwischen empirischen und logischen Sachverhalten.Allgemein bezeichnet man diejenigen Aussagen als Hypothesen,
Statistik. Jan Müller
Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen
KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert
KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!
Statistics, Data Analysis, and Simulation SS 2015
Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler
Lösungen zu den Übungsaufgaben in Kapitel 10
Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert
STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik
Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von
Einführung in die Induktive Statistik: Testen von Hypothesen
Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte
Testen von Hypothesen, Beurteilende Statistik
Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer
Prüfen von Mittelwertsunterschieden: t-test
Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik 1 S. Garbade (SRH Heidelberg) t-test
3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft
3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)
Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller
Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06
Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:
Jost Reinecke. 7. Juni 2005
Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung
Pflichtlektüre: Kapitel 12 - Signifikanztest Wie funktioniert ein Signifikanztest? Vorgehensweise nach R. A. Fisher.
Pflichtlektüre: Kapitel 12 - Signifikanztest Überblick Signifikanztest Populationsparameter Ein Verfahren zur Überprüfung von Hypothesen, Grundlage bilden auch hier Stichprobenverteilungen, das Ergebnis
Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08
Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung
Mathematische und statistische Methoden II
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]
methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests
Möglichkeiten und Grenzen des Signifikanztests Thomas Schäfer SS 29 1 Grenzen des Signifikanztests Sie haben zur Untersuchung Ihrer Fragestellung eine Experimental und eine Kontrollgruppe mit jeweils 2
Business Value Launch 2006
Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung
Mathematische und statistische Methoden II
Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte
Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen
Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann
Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel
Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)
Mann-Whitney-U-Test für zwei unabhängige Stichproben
Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung
Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.
Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )
Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).
Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen
11. Nichtparametrische Tests
11. Nichtparametrische Tests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 In Kapitel 8 und 9 haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann
Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)
Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7
Testen von Hypothesen:
Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch
1 Dichte- und Verteilungsfunktion
Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die
2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:
2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer
Ausarbeitung Prüfung Statistik und Wahrscheinlichkeitstheorie (Universität Wien)
Ausarbeitung Prüfung Statistik und Wahrscheinlichkeitstheorie (Universität Wien) Prüfung 28.0.03 Ausgearbeitet von Murmel ([email protected]) Beispiel : Theorie Welche grafischen Darstellungsformen
Modul G.1 WS 07/08: Statistik
Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen
Biostatistik Erne Einfuhrung fur Biowissenschaftler
Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher
WB 11 Aufgabe: Hypothesentest 1
WB 11 Aufgabe: Hypothesentest 1 Ein Medikament, das das Überleben eines Patienten sichern soll, wird getestet. Stelle Null- und Alternativhypothese auf und beschreibe die Fehler 1. Art und 2. Art. Welcher
Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz
Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis
Metrische und kategoriale Merkmale
Kapitel 6 Metrische und kategoriale Merkmale 6.1 Wie kann man metrische und kategoriale Merkmale numerisch beschreiben? Typischerweise will man geeignete Maßzahlen (beispielsweise Lage- oder Streuungsmaße)
Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren
Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei
Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests
Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung
Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO
Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/
Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.
Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Academic Skills - Befragung und Auswertung
Otto-von-Guericke University Magdeburg Allgemein Befragung Eine Befragung ist eine wissenschaftliche Maßnahme zur Erforschung von Verhalten, Einstellung oder Wissen Des Weiteren können auch demographische
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests
ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen
Ablaufschema beim Testen
Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Kapitel 5: Einfaktorielle Varianzanalyse
Rasch, Friese, Hofmann & Naumann (010). Quantitative Methoden. Band (3. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung
Grundlagen der Statistik
Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Kapitel 3 Schließende Statistik
Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit
Überblick Hypothesentests bei Binomialverteilungen (Ac)
Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung
Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft
Einfache Varianzanalyse für unabhängige Stichproben
Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,
Statistik für Psychologen und Sozialwissenschaftler
Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen PEARSON Studium Ein Imprint von Pearson Education München Boston San Francisco Harlow, England
Grundlagen der Statistik
Grundlagen der Statistik Übung 13 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe
Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,
Auswertung mit dem Statistikprogramm SPSS: 30.11.05
Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne
Beurteilende Statistik
Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten
Statistisches Testen: Signifikanz und Relevanz Christiane Spiel
Fakultät für Psychologie Statistisches Testen: Signifikanz und Relevanz Christiane Spiel Themen Wissenschaftstheoretischer Hintergrund Statistische Hypothesenprüfung Der Signifikanztest Probleme des Signifikanztests
Inferenzstatistik Vortrag: Alpha und Beta Fehler
Inferenzstatistik Vortrag: Alpha und Beta Fehler Dresden, 18.11.08 01 Fehlerquelle Hypothesen Unbekannte Wirklichkeit H0 ist richtig H0 ist falsch Schlussfolgerung aus dem Test unserer Stichprobe Ho annehmen
Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten
Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:
11 Tests zur Überprüfung von Mittelwertsunterschieden
11 Tests zur Überprüfung von Mittelwertsunterschieden 11.1 Der z Test (t Test) für verbundene Stichproben 11.2 Der z Test (t Test) für unabhängige Stichproben 11.3 Fehler 1. Art und 2. Art 11.4 Typische
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Schließende Statistik: Hypothesentests (Forts.)
Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER
METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede
Biostatistik, Winter 2011/12
Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament
Einflussfaktoren auf die Macht der Hypothesenprüfung
Einflussfaktoren auf die Macht der Hypothesenprüfung Einflussfaktoren auf die Macht Die Jagd nach den Sternen In der Wissenschaft gilt der Blick oft nur den Sternen * p
STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.
STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse
Statistik für Psychologen und Sozialwissenschaftler
Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen Ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario
Analytische Statistik II
Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,
