Fourier-Transformation

Größe: px
Ab Seite anzeigen:

Download "Fourier-Transformation"

Transkript

1 Fourier-Transformation Existiert zu einer Funktion f das Parameterintegral ˆf (y) = f (x)e iyx dx für alle y R, so heißt f Fourier-transformierbar und die Funktion ˆf Fourier-Transformierte von f. Fourier-Transformation 1-1

2 Fourier-Transformation Existiert zu einer Funktion f das Parameterintegral ˆf (y) = f (x)e iyx dx für alle y R, so heißt f Fourier-transformierbar und die Funktion ˆf Fourier-Transformierte von f. Man schreibt ˆf = Ff, bzw. f (x) F ˆf (y). Fourier-Transformation 1-2

3 Entsprechend ist die inverse Fourier-Transformation F 1 durch ˆf (y) F 1 f (x) = 1 2π ˆf (y)e iyx dy, definiert und es gilt f = F 1 Ff für absolut integrierbare, stetig differenzierbare Funktionen f. Fourier-Transformation 1-3

4 Entsprechend ist die inverse Fourier-Transformation F 1 durch ˆf (y) F 1 f (x) = 1 2π ˆf (y)e iyx dy, definiert und es gilt f = F 1 Ff für absolut integrierbare, stetig differenzierbare Funktionen f. Die Fourier-Transformation und die inverse Fourier-Transformation sind linear. Sie unterscheiden sich nur unwesentlich. Es ist F f = 2πF 1 f. Fourier-Transformation 1-4

5 Beweis: Idee: Fourier-Transformation 2-1

6 Beweis: Idee: Fourier-Transformation als Grenzfall der Fourier-Reihe, d.h. eine kontinuierliche Entwicklung nach Exponentialfunktionen e k (x) = e ikx Fourier-Transformation 2-2

7 Beweis: Idee: Fourier-Transformation als Grenzfall der Fourier-Reihe, d.h. eine kontinuierliche Entwicklung nach Exponentialfunktionen e k (x) = e ikx Annahme: f = außerhalb von [ h, h] Fourier-Transformation 2-3

8 Beweis: Idee: Fourier-Transformation als Grenzfall der Fourier-Reihe, d.h. eine kontinuierliche Entwicklung nach Exponentialfunktionen e k (x) = e ikx Annahme: f = außerhalb von [ h, h] Fourier-Reihe für x [ h, h], Definition der Fourier-Transformation f (x) = k= 1 2h h h f (t)e k (tπ/h) dt e k (xπ/h) Fourier-Transformation 2-4

9 Beweis: Idee: Fourier-Transformation als Grenzfall der Fourier-Reihe, d.h. eine kontinuierliche Entwicklung nach Exponentialfunktionen e k (x) = e ikx Annahme: f = außerhalb von [ h, h] Fourier-Reihe für x [ h, h], Definition der Fourier-Transformation f (x) = k= = 1 π 2π h 1 2h k= h h f (t)e k (tπ/h) dt e k (xπ/h) ˆf (kπ/h)e i(kπ/h)x Fourier-Transformation 2-5

10 Beweis: Idee: Fourier-Transformation als Grenzfall der Fourier-Reihe, d.h. eine kontinuierliche Entwicklung nach Exponentialfunktionen e k (x) = e ikx Annahme: f = außerhalb von [ h, h] Fourier-Reihe für x [ h, h], Definition der Fourier-Transformation f (x) = k= = 1 π 2π h 1 2h k= h h f (t)e k (tπ/h) dt e k (xπ/h) ˆf (kπ/h)e i(kπ/h)x Riemann-Summe der inversen Fourier-Transformation Fourier-Transformation 2-6

11 Beweis: Idee: Fourier-Transformation als Grenzfall der Fourier-Reihe, d.h. eine kontinuierliche Entwicklung nach Exponentialfunktionen e k (x) = e ikx Annahme: f = außerhalb von [ h, h] Fourier-Reihe für x [ h, h], Definition der Fourier-Transformation f (x) = k= = 1 π 2π h 1 2h k= h h f (t)e k (tπ/h) dt e k (xπ/h) ˆf (kπ/h)e i(kπ/h)x Riemann-Summe der inversen Fourier-Transformation konvergent bei hinreichend glattem ˆf für y = π/h Fourier-Transformation 2-7

12 Beweis: Idee: Fourier-Transformation als Grenzfall der Fourier-Reihe, d.h. eine kontinuierliche Entwicklung nach Exponentialfunktionen e k (x) = e ikx Annahme: f = außerhalb von [ h, h] Fourier-Reihe für x [ h, h], Definition der Fourier-Transformation f (x) = k= = 1 π 2π h 1 2h k= h h f (t)e k (tπ/h) dt e k (xπ/h) ˆf (kπ/h)e i(kπ/h)x Riemann-Summe der inversen Fourier-Transformation konvergent bei hinreichend glattem ˆf für y = π/h Fourier-Transformation 2-8

13 Beispiel: Fourier-Transformation der Impuls-Funktion { 1, x 1/2 χ(x) =, sonst Fourier-Transformation 3-1

14 Beispiel: Fourier-Transformation der Impuls-Funktion { 1, x 1/2 χ(x) =, sonst Definition, Formel von Euler-Moivre ˆχ(y) = 1/2 1/2 = sin(y/2) y/2 [ e e iyx iyx dx = iy = sinc(y/2) ] 1/2 1/2 = e iy/2 e iy/2 iy Fourier-Transformation 3-2

15 Beispiel: Fourier-Transformation der Funktion f (x) = e x Fourier-Transformation 4-1

16 Beispiel: Fourier-Transformation der Funktion f (x) = e x Formel von Euler-Moivre = e ixy = cos(xy) i sin(xy) Fourier-Transformation 4-2

17 Beispiel: Fourier-Transformation der Funktion f (x) = e x Formel von Euler-Moivre = e ixy = cos(xy) i sin(xy) f gerade = f (x) sin(xy) dx = und ˆf (y) = 2 e x cos(yx) dx = part. Int. + 2 x sin(yx) e dx y Fourier-Transformation 4-3

18 Beispiel: Fourier-Transformation der Funktion f (x) = e x Formel von Euler-Moivre = e ixy = cos(xy) i sin(xy) f gerade = f (x) sin(xy) dx = und ˆf (y) = 2 = part. Int. 2 e x cos(yx) dx = part. Int. + 2 ( [e x cos(yx) )] y 2 2 x sin(yx) e dx y x cos(yx) e y 2 dx Fourier-Transformation 4-4

19 Beispiel: Fourier-Transformation der Funktion f (x) = e x Formel von Euler-Moivre = e ixy = cos(xy) i sin(xy) f gerade = f (x) sin(xy) dx = und ˆf (y) = 2 = part. Int. = 2 e x cos(yx) dx = part. Int. + 2 ( [e x cos(yx) )] y 2 2 y 2 ˆf (y) y 2 2 x sin(yx) e dx y x cos(yx) e y 2 dx Fourier-Transformation 4-5

20 Beispiel: Fourier-Transformation der Funktion f (x) = e x Formel von Euler-Moivre = e ixy = cos(xy) i sin(xy) f gerade = f (x) sin(xy) dx = und ˆf (y) = 2 = part. Int. = 2 e x cos(yx) dx = part. Int. + 2 ( [e x cos(yx) )] y 2 2 y 2 ˆf (y) y 2 2 x sin(yx) e dx y x cos(yx) e y 2 dx Umformung ˆf (y) = 2/(1 + y 2 ) Fourier-Transformation 4-6

21 Beispiel: Die Gauß-Funktion ist eine Eigenfunktion der Fourier-Transformation: f (x) = exp( x 2 /2) ˆf (y) = 2π exp( y 2 /2). Fourier-Transformation 5-1

22 Beispiel: Die Gauß-Funktion ist eine Eigenfunktion der Fourier-Transformation: f (x) = exp( x 2 /2) ˆf (y) = 2π exp( y 2 /2). Definition ˆf (y) = exp( y 2 /2) exp( x 2 /2 iyx + y 2 /2) dx Fourier-Transformation 5-2

23 Beispiel: Die Gauß-Funktion ist eine Eigenfunktion der Fourier-Transformation: f (x) = exp( x 2 /2) ˆf (y) = 2π exp( y 2 /2). Definition setze ˆf (y) = exp( y 2 /2) exp( x 2 /2 iyx + y 2 /2) dx z 2 /2 = (x + iy) 2 /2, dz = dx Fourier-Transformation 5-3

24 Beispiel: Die Gauß-Funktion ist eine Eigenfunktion der Fourier-Transformation: Definition setze f (x) = exp( x 2 /2) ˆf (y) = 2π exp( y 2 /2). ˆf (y) = exp( y 2 /2) exp( x 2 /2 iyx + y 2 /2) dx z 2 /2 = (x + iy) 2 /2, dz = dx Verschiebung des Integrationswegs (Komplexe Analysis), z R + iy z R ˆf (y) = f (y) exp( z 2 /2) dz = f (y) 2π Fourier-Transformation 5-4

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS

EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS WERNER MÜLLER Sommersemester 205 Inhaltsverzeichnis 0. Die komplexen Zahlen 3. Holomorphe Funktionen 6 2. Die Cauchy-Riemannschen Differentialgleichungen 9 3. Potenzreihen

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Einführung in die Funktionentheorie

Einführung in die Funktionentheorie Einführung in die Funktionentheorie Andreas Gathmann Vorlesungsskript TU Kaiserslautern 204/5 Inhaltsverzeichnis 0. Einleitung und Motivation..................... 3. Komplexe Zahlen.......................

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Diplomarbeit 2005 Markus Fraczek Institut für Theoretische Physik Technische Universität Clausthal Abteilung Statistische

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN JOSEF TEICHMANN 1. Ein motivierendes Beispiel aus der Anwendung Das SABR-Modell spielt in der Modellierung von stochastischer Volatilität eine herausragende

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Lösungen und Lösungshinweise zum Grundkurs Analysis 2

Lösungen und Lösungshinweise zum Grundkurs Analysis 2 Lösungen und Lösungshinweise zum Grundkurs Analysis 2 Vorbemerkung: Bei einem Buchprojekt dauert meist alles etwas länger als geplant. So ging es mir mit dem Erscheinungdatum des zweiten Bandes, der sich

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Klaus Lichtenegger. Komplexe Analysis

Klaus Lichtenegger. Komplexe Analysis Klaus Lichtenegger Komplexe Analysis Eine Einführung in die Funktionentheorie im Rahmen der Analysis Telematik. Auflage, Mai/Juni M. C. Escher: Drei Welten (Lithographie, 955) ii Inhaltsverzeichnis Die

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Anwendung von Computational Fluid Dynamics bei der Auslegung von Industrieöfen

Anwendung von Computational Fluid Dynamics bei der Auslegung von Industrieöfen Anwendung von Computational Fluid Dynamics bei der Auslegung von Industrieöfen Roman Weber 18. November 2014 Informationsveranstaltung Verfahrenstechnik und Chemieingenieurwesen in der Stahlindustrie und

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Apfelmännchen Theorie und Programmierung

Apfelmännchen Theorie und Programmierung Apfelmännchen Theorie und Programmierung Das Thema "Apfelmännchen" gehört zum Oberthema "Chaos und Ordnung in dynamischen Systemen". Es ist ein relativ neues Forschungsgebiete der Mathematik ( ab ca. 1980

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt.

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt. PARAMETERFUNKTIONEN Zwei Beispiele: gsave currentpoint translate 21 4 div setlin 1 1 x = 2t 2 1 y = t < t

Mehr

Komplexe Analysis und Geometrie

Komplexe Analysis und Geometrie Fakultät für Mathematik Universität Bielefeld Reine Mathematik Komplexe Analysis und Geometrie Dozent: Hsch.-Doz. PhD. Kim A. Frøyshov SS 2004, WS 2004/05, SS 2005 Stand: März 2006 Komplexe Analysis und

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

ν = z Hy, S = HPH + R, W = PH S 1 Q 1 = P 1 + H R 1 H. independent of x Interpret N ( z; Hx, R ) N ( x; y, P ) as a joint density: ) ( ) )!

ν = z Hy, S = HPH + R, W = PH S 1 Q 1 = P 1 + H R 1 H. independent of x Interpret N ( z; Hx, R ) N ( x; y, P ) as a joint density: ) ( ) )! = N ( z; Hy, S independent of x N ( z; Hx, R N ( x; y, P N ( x; y + Wν, P WSW N ( x; Q(P 1 y + H R 1 z, Q ν = z Hy, S = HPH + R, W = PH S 1 Q 1 = P 1 + H R 1 H. Interpret N ( z; Hx, R N ( x; y, P as a

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Markov-Prozesse mit stetigem Zustands- und Parameterraum

Markov-Prozesse mit stetigem Zustands- und Parameterraum Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Mathematik für Physiker III/Analysis III

Mathematik für Physiker III/Analysis III Mathematik für Physiker III/Analysis III Ausarbeitung einer Vorlesung vom Wintersemester 26/7 Joachim Weidmann Fachbereich Informatik und Mathematik der Universität Frankfurt Stand 9. Februar 27 2 Teil

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Inhaltsverzeichnis. 3 Ableitung stückweise glatter Funktionen 16 3.1 PolynomemitSprungstellen... 16 3.2 StückweiseglatteFunktionen...

Inhaltsverzeichnis. 3 Ableitung stückweise glatter Funktionen 16 3.1 PolynomemitSprungstellen... 16 3.2 StückweiseglatteFunktionen... DISTRIBUTIONEN Inhaltsverzeichnis 1 Axiome der Distributionentheorie 2 1.1 Notation... 2 1.2 Äquivalenzklassen... 3 1.3 Axiome... 5 1.4 Ein die Axiome erfüllendesmodell... 6 1.5 DieEindeutigkeitdesModells...

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Fourier-Zerlegung, Fourier-Synthese

Fourier-Zerlegung, Fourier-Synthese Fourier-Zerlegung, Fourier-Synthese Periodische Funktionen wiederholen sich nach einer Zeit T, der Periode. Eine periodische Funktion f(t) mit der Periode T genügt der Beziehung: f( t+ n T) = f( t) für

Mehr

Vorkurs Mathematik für Ingenieure. Aufgaben und Lösungsvorschläge

Vorkurs Mathematik für Ingenieure. Aufgaben und Lösungsvorschläge Universität Duisburg-Essen, Campus Duisburg herausgegeben von der Fakultät für Ingenieurwissenschaften Vorkurs Mathematik für Ingenieure Aufgaben und Lösungsvorschläge Wintersemester 0/03 von Wolfgang

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

Kybernetik Laplace Transformation

Kybernetik Laplace Transformation Kybernetik Laplace Transformation Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 08. 05. 202 Laplace Transformation Was ist eine Transformation? Was ist

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen)

Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Priv.-Doz. Dr. Reinhard Mahnke Institut für Physik Lehrveranstaltung Nr. 12557 (Wintersemester 2013/14: 1 SWS

Mehr

Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen)

Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Priv.-Doz. Dr. Reinhard Mahnke Institut für Physik Lehrveranstaltung Nr. 12557 (Wintersemester 2012/13: 1 SWS

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Aufgaben zur Klausur. Aerodynamik 17. 02. 2009

Aufgaben zur Klausur. Aerodynamik 17. 02. 2009 AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Aufgaben zur Klausur Aerodynamik 17. 02. 2009 Matr.-Nr. :... Name :... Unterschrift

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Partielle Differentialgleichungen in der Finanzmathematik

Partielle Differentialgleichungen in der Finanzmathematik Partielle Differentialgleichungen in der Finanzmathematik Vorlesung gehalten im Sommersemester 6 am Mathematischen Seminar der Christian-Albrechts-Universität zu Kiel Alexander Ullmann Kiel 6 INHALTSVERZEICHNIS

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Notizen zur Vorlesung Gewöhnliche Differentialgleichungen G Sweers Wintersemester 08/09 ii Inhaltsverzeichnis Einführung Modelle 2 Explizite Lösungen 4 2 Trennbar 5 22 Linear erster Ordnung 6 23 Homogen

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

Klausur Analysis II (SS 2005)

Klausur Analysis II (SS 2005) Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die

Mehr

HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG. Das Luzifer-Rätsel. Prof. Dr. Hartmut Plesske Wintersemester 2008/09. von.

HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG. Das Luzifer-Rätsel. Prof. Dr. Hartmut Plesske Wintersemester 2008/09. von. HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG Fakultät Informatik Das Luzifer-Rätsel Prof. Dr. Hartmut Plesske Wintersemester 2008/09 von Max Nagl nagl@fh-konstanz.de Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Wave-Datei-Analyse via FFT

Wave-Datei-Analyse via FFT Wave-Datei-Analyse via FFT Wave-Dateien enthalten gesampelte Daten, die in bestimmten Zeitabständen gespeichert wurden. Eine Fourier-Transformation über diesen Daten verrät das Frequenz-Spektrum der zugrunde

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind Monte Carlo Simulationen? 3 Zufallszahlen 3

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator)

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator) Seydel: Skript umerische Finanzmathematik, Kap. 2 (Version 20) 33 ¾º Ö ÒÙÒ ÚÓÒ Ù ÐÐ Þ Ð Ò Definition (Stichprobe einer Verteilung) Eine Folge von Zahlen heißt Stichprobe (sample) von einer Verteilungsfunktion

Mehr

Über den Autor 9 Einleitung 21

Über den Autor 9 Einleitung 21 Inhaltsverzeichnis Über den Autor 9 Einleitung 21 Zu diesem Buch 21 Konventionen in diesem Buch 22 Wie Sie dieses Buch einsetzen 22 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

3. Modelle in stetiger Zeit, Black Scholes

3. Modelle in stetiger Zeit, Black Scholes 3. Modelle in stetiger Zeit, Black Scholes Nach einführenden Bemerkungen werden kurz die Brownsche Bewegung und Martingale in stetiger Zeit besprochen. Dann folgen die Entwicklung des stochastischen Integrals

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

12. Bivariate Datenanalyse. In den Kapiteln 4-11 wurden univariate Daten betrachtet:

12. Bivariate Datenanalyse. In den Kapiteln 4-11 wurden univariate Daten betrachtet: 12. Bivariate Datenanalyse Während einer nur Zahlen im Kopf hat, kann er nicht auf den Kausalzusammenhang kommen Anonymus In den Kapiteln 4-11 wurden univariate Daten betrachtet: Von univariaten Daten

Mehr

Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung:

Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung: 1 Die Eulersche Zahl Euler war als Mathematiker ein großer Experimentator. Er spielte mit Formeln so, wie ein Kind mit seinem Spielzeug und führte alle möglichen Substitutionen durch, bis er etwas Interessantes

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

HAMBURG BANKVERBINDUNG PANTAENIUS ONLINE

HAMBURG BANKVERBINDUNG PANTAENIUS ONLINE ! "#$% &'()&'*+,&,++-.! % ! &'/'*+,0*+()12,&+3&+&''+*+,&+ "#$##%&&##' ()*+&&#,#*# ()*,#- "./-0#"/./0#-12./ +##1.##2 -.& &*3 "##4 5-6# 7& (898&&#$ +&%#0 3:#*"*$0$& &#$#3 4&++&+&+&'3&',&+++5&+&''+*+,&+&3&+23&',&55&+)&+

Mehr