WANDERUNGSGESCHWINDIGKEIT

Größe: px
Ab Seite anzeigen:

Download "WANDERUNGSGESCHWINDIGKEIT"

Transkript

1 Praktikum Tei A und B 1a. WANDRUNGSGSCHWINDIGKIT Stand 11/0/01 WANDRUNGSGSCHWINDIGKIT 1. Versuchspatz Komponenten: URohr Vorratsgefäß zum Unterschichten mit der KLösung ektroden K Lösung K Lösung. Agemeines zum Versuch Besteht zwischen zwei ektroden, die voneinander den Abstand 1 haben, die eektrische Potentiadifferenz ϕ, so kann man, Homogenität des eektrischen Fedes vorausgesetzt, für die Fedstärke formuieren: ϕ Befindet sich zwischen den ektroden eine ektroytösung, so erfahren die Ionen nach dem inschaten des Stromes eine Kraft in Richtung auf die ektroden. Die Lösung übt aufgrund ihrer Viskosität eine der Reativgeschwindigkeit proportionae Gegenkraft aus. Die sich einsteende Geschwindigkeit ist dann von der Potentiadifferenz abhängig. Das bedeutet, dass die Bremskraft (Reibungskraft) F R den geichen Betrag wie die auf das Ion mit der Ladung q wirkende eektrische Kraft F e hat und dieser entgegengerichtet ist. s git aso: F R R (R Reibungskonstante) r F e r q Im stationären Fa (zeitich konstante Driftgeschwindigkeit) git F R F e und daher: r q u R Demzufoge ist im stationären Zustand die mittere Wanderungsgeschwindigkeit r der Ionen dem angeegten eektrischen Fed r proportiona. Der Proportionaitätsfaktor u wird as Ionenbewegichkeit bezeichnet und hat die inheit [u] cm s 1 V 1. 1

2 Praktikum Tei A und B 1a. WANDRUNGSGSCHWINDIGKIT Stand 11/0/01 Im inheitsfed von 1 V cm 1 ist die Bewegichkeit u zahenmäßig geich der Wanderungsgeschwindigkeit. Da die Bewegichkeiten der verschiedenen Ionenarten eines ektroyten und damit deren Wanderungsgeschwindigkeiten im Agemeinem nicht geich sind, ist für jede Ionensorte gesondert zu formuieren: u u + + Bei hinreichend niedrigen Fedstärken ist die Ionenbewegichkeit unabhängig von der Fedstärke, jedoch eine Funktion von Druck, Temperatur und Konzentration. Über die Ionenbewegichkeit wird mit der Faradaykonstante F und der Ladungszah z des betreffenden Ions die moare Ioneneitfähigkeit λ ± F u ± z ± (mit [λ] cm Ω 1 mo 1 cm S mo 1 ) eingeführt und das Kohrauschsche Gesetz der unabhängigen Ionenwanderung formuiert: Λ ν λ +ν λ ν ist dabei der stöchiometrische Koeffizient der betreffenden Ionensorte (siehe Praktikumsversuch LITFÄHIGKIT ). Das Gesetz der unabhängigen Ionenwanderung besagt, dass sich die moare Leitfähigkeit Λ 0 eines ektroyten additiv aus den Leitfähigkeitsanteien λ + der einzenen Ionensorten zusammensetzt. Der Index weist jedoch auf die inschränkung hin: Das Gesetz ist nur für idea verdünnte Lösungen gütig. Bei einem ektroyten mit derart geringer Konzentration assen sich eektrostatische Wechsewirkungen zwischen den Ionen vernachässigen, so dass die Bremskraft F R aein auf die Reibung zurückzuführen ist. Für kugeförmige Teichen git in diesem ideaisierten Fa das Reibungsgesetz von Stokes:. F 6πηr R hyd η ist die Viskosität des Lösungsmittes und r hyd der hydrodynamische Radius. Für eine ideae Kuge ist der hydrodynamische Radius geich dem geometrischen Radius. Hat das Ion die Ladung ze, so git für die Ionenbewegichkeit ze u πηr 6 hyd Damit ist der hydrodynamische Ionenradius r hyd experimente zugängich. Der hydrodynamische Radius ist oft größer as der Ionenradius, wecher sich durch Röntgenbeugung an den entsprechenden Sazkristaen ergibt. Dies ist darauf zurückzuführen, dass die Ionen hydratisiert sind und die Hydrathüe bei der Wanderung mitgeführt wird. s so der Wanderungsgeschwindigkeit von PermanganatIonen bestimmt werden, indem man die zeitiche Verschiebung der Grenzfäche zwischen einer K Lösung und einer

3 Praktikum Tei A und B 1a. WANDRUNGSGSCHWINDIGKIT Stand 11/0/01 K Lösung im eektrischen Fed misst. Dabei kommt es darauf an, dass sich eine scharfe Grenzfäche zwischen den beiden Lösungen ausbidet, die gut zu beobachten ist. Voraussetzung dafür sind zum einen ein hinreichend großer Dichteunterschied und zum anderen etwa geiche Wanderungsgeschwindigkeit der Anionen. Aufgrund der unterschiedichen Bewegichkeiten der und Anionen ässt sich dies nur bewerksteigen, wenn die Fedstärken in den beiden Lösungen verschieden sind: u u u u Das Verhätnis der Fedstärken ist jedoch durch das Verhätnis der Konzentrationen in den beiden Lösungen bestimmt, da die konzentrationsabhängige spezifische Leitfähigkeit über den Spannungsabfa im ektroyten die Fedstärke beeinfusst (Abb. 1). s kann formuiert werden: Δϕ Δϕ 1 Durch Konzentrationsänderungen werden aso die Leitfähigkeit und dadurch der Spannungsabfa und etztich die Fedstärke beeinfusst. Die oben angesprochene Grenzfächenstabiität wird demnach durch die richtige Wah der Konzentrationen der ektroyse gewähreistet. Um die Durchführung des Versuches zu vereinfachen, wurden zwei ektroyte gewäht, bei denen die Bewegichkeiten der Anionen annähernd geich groß sind, so dass geiche Konzentrationen verwendet werden können. Dennoch sind in der Praxis die Wanderungsgeschwindigkeiten der beiden Anionen meist + nicht exakt geich groß. Deshab wird der Versuch in einem URohr durchgeführt, in dem zwei Grenzfächen auftreten. Δϕ Auch wenn die Wanderungsgeschwindigkeiten geringfügig 1 differieren, wird sich in einem Schenke eine reativ scharfe Δϕ Grenzfäche ausbiden, (dort nämich, wo die schneen Anionen vorauseien). Im übrigen haben exakte Messungen ergeben, dass auch eine mehr oder weniger diffuse Grenzschicht die Genauigkeit der Messung nicht Abb. 1 beeinträchtigt, wenn nur gewähreistet ist, dass an den beiden

4 Praktikum Tei A und B 1a. WANDRUNGSGSCHWINDIGKIT Stand 11/0/01 ndpunkten der Messstrecke immer die geiche Stee innerhab der Grenzschicht zur Messung herangezogen wird.. Orientieren Sie sich über: ektrische Leitfähigkeit Ionenbewegichkeit im eektrischen Fed Faradaysche Gesetze Viskosität von Füssigkeiten. Literatur Atkins P.W. Weder G. Physikaischen Chemie,. Auf. Kap. 1..: Leitfähigkeit von ektroytösungen Lehrbuch der Physikaischen Chemie, 5. Auf. Kap. 1.6: inführung in die ektrochemie Hamann C.H, Viestich W. ektrochemie, Kap Aufgabe s ist die Wanderungsgeschwindigkeit des PermanganatIons zu messen. Daraus sind die Ionenbewegichkeit u, die moare Ioneneitfähigkeit λ und der Ionenradius r hyd zu bestimmen. 6. Versuchsdurchführung Man füt das Uförmige ektroysiergefäß zunächst bis etwa zur Häfte mit 0.00 n K Lösung. Diese unterschichtet man dann angsam durch sehr vorsichtiges Öffnen des Hahnes mit der im Trichter befindichen K Lösung. Die Schichtgrenzen müssen sich dabei mögichst scharf ausbiden. Nach Anegen einer Geichspannung von 110V wird die eine Grenzschicht sich heben (weche?), die andere sich senken. Man iest 0 min ang ae 5 min die Verschiebungen ab und bidet deren Mittewert. Schießich misst man mit Hife eines entsprechend gebogenen Drahtes außen am Gefäß den Abstand d der ektroden voneinander.

5 Praktikum Tei A und B 1a. WANDRUNGSGSCHWINDIGKIT Stand 11/0/01 7. Auswertung Aus den beobachteten Verschiebungen werden die Wanderungsgeschwindigkeiten v berechnet. Aus diesen 8 Werten wird nun die mittere Wanderungsgeschwindigkeit v bestimmt. Daraus assen sich mit Hife der angegebenen Formen die zu bestimmenden Größen errechnen (ementaradung e C, Viskosität des Wassers η 10 Pa s). Der Feher für die mittere Wanderungsgeschwindigkeit ergibt sich nach rmittung der Standardabweichung Δv, ausgehend von den 8 einzenen Wanderungsgeschwindigkeiten. Feher für die Ionenbewegichkeit Δu, die moare Ioneneitfähigkeit Δλ und den Ionenradius Δr hyd berechnen sich mit Hife des Feherfortpfanzungsgesetzes u u Δ u Δ v + Δd v d d, ϕ v, ϕ Hierbei wurde angenommen, dass die verschiedenen Feherqueen unkorreiert sind. Δd beschreibt den mitteren Feher bei der Messung der Drahtänge. Weiterhin git λ Δλ Δu, u rhyd Δ rhyd Δu u 8. Wichtige Hinweise Die ektroden sind zunächst auf die Apparatur aufzustecken, bevor sie mit den Poen der Spannungsquee (Vorsicht!!! 110 V Geichstrom) verbunden werden. Bei der Poung ist zu beachten, dass die ektrode auf der Seite der ungünstiger ausgebideten Grenzschicht mit (+) verbunden sein sote. Nach Beendigung der Messung ist zunächst die Spannungsquee auszuschaten! (T AUS, roter Knopf) 9. R/S Sätze der verwendeten Chemikaien K Lösung: R: 5 Giftig für Wasserorganismen 5 Kann in Gewässern ängerfristig schädiche Wirkungen haben S: 61 Freisetzung in die Umwet vermeiden 5

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure von NaCl ist zu ermitteln

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure von NaCl ist zu ermitteln Hochschue Emden/Leer Physikaische Chemie Praktikum Vers. Nr. 16 pri 015 Eektroyte: Dissoziationskonstante von Essigsäure von NaC ist zu ermitten In diesem Versuch so die Dissoziationskonstante einer schwachen

Mehr

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN INSIU FÜR ANGEWANDE PHYSIK Physikaisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße WÄRMELEIFÄHIGKEI UND ELEKRISCHE LEIFÄHIGKEI VON MEALLEN Eineitung In diesem

Mehr

WANDERUNGSGESCHWINDIGKEIT

WANDERUNGSGESCHWINDIGKEIT Institt fü Physikaische Chemie Paktikm Tei A nd B 1. WANDRUNGSGSCHWINDIGKIT Stand 17/10/007 WANDRUNGSGSCHWINDIGKIT 1. Veschspatz Komponenten: URoh Voatsgefäß zm Unteschichten mit de KMnOLösng ektoden K

Mehr

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005 PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende

Mehr

Ioduhr Oxidation von Iodid mit Peroxodisulfat

Ioduhr Oxidation von Iodid mit Peroxodisulfat Knoch, Anastasiya Datum der Durchführung: Petri, Guido 19.01.2016 (Gruppe C11) Praktikum Physikaische Chemie II Reaktionskinetik Ioduhr Oxidation von Iodid mit Peroxodisufat 1. Aufgabensteung Es so für

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-1 (ABS) Optische Absorptionsspektroskopie Versuchs-Datum: 13. Juni 2012 Gruppenummer: 8 Gruppenmitgieder: Domenico Paone Patrick Küssner

Mehr

Elektrolytische Leitfähigkeit

Elektrolytische Leitfähigkeit Elektrolytische Leitfähigkeit 1 Elektrolytische Leitfähigkeit Gegenstand dieses Versuches ist der Zusammenhang der elektrolytischen Leitfähigkeit starker und schwacher Elektrolyten mit deren Konzentration.

Mehr

Interferenz an einer CD

Interferenz an einer CD Interferenz an einer CD Oaf Merkert (Manue Sitter) 18. Dezember 2005 1 Versuchsaufbau Abbidung 1: Versuchsanordnung mit Laser und CD [1] Ein auf einem Tisch aufgesteter Laser mit der Weenänge λ wird im

Mehr

4 Flaschen mit Stammlösung (0,001 M HCl, 0,001 M NaCl, 0,1 M Essigsäure, 0,001 M Natriumacetat), demineralisiertes Wasser.

4 Flaschen mit Stammlösung (0,001 M HCl, 0,001 M NaCl, 0,1 M Essigsäure, 0,001 M Natriumacetat), demineralisiertes Wasser. Juni 29, 2017 Physikalisch-Chemisches Praktikum Versuch Nr. 9 Thema: Aufgabenstellung: Material: Substanzen: Ablauf: 1: 2: 3: 4: 5: 6: 7: 8: Ladungstransport in Elektrolytlösungen Ermittlung der Dissoziationskonstanten

Mehr

Elektrolytlösungen: Wanderungsgeschwindigkeit, Ionenbeweglichkeit, spezifische und molare Leitfähigkeit

Elektrolytlösungen: Wanderungsgeschwindigkeit, Ionenbeweglichkeit, spezifische und molare Leitfähigkeit III.9.1 Elektrolytlösungen: Wanderungsgeschwindigkeit, Ionenbeweglichkeit, spezifische und molare Leitfähigkeit Versuchsziel: Im Versuch sollen Kenntnisse von Grundeigenschaften von Elektrolytlösungen

Mehr

a) Zeigen Sie, dass sich für eine lange Spule die magn. Flussdichte in der Mitte mit der Näherungsformel berechnen lässt.

a) Zeigen Sie, dass sich für eine lange Spule die magn. Flussdichte in der Mitte mit der Näherungsformel berechnen lässt. Aufgaben Magnetfed einer Spue 83. In einer Spue(N = 3, =,5m), die in Ost-West-Richtung iegt, wird eine Magnetnade gegen die Nord-Süd-Richtung um 11 ausgeenkt. Berechnen Sie die Stärke des Stromes in 5

Mehr

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R:

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R: Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 205/206 Prof. Dr. Eckhard Bartsch / M. Werner M.Sc. Aufgabenblatt 3 vom 3..5 Aufgabe 3 (L) Leitfähigkeiten

Mehr

Berechnung von Wurzeln

Berechnung von Wurzeln Sieginde Fürst Berechnung von Wurzen Rekursive Fogen Zinseszinsforme; Heronverfahren Inhate Berechnung eines mit Zinsesezins verzinsten Kapitas auf zwei Arten Heronforme Einschranken von Wurzen Ziee Erernen

Mehr

Leitfähigkeitstitrationen

Leitfähigkeitstitrationen . Leitfähigkeitstitration. Leitfähigkeitstitrationen Einführung Übicherweise werden bei Säure-Base-Titrationen zur Erkennung des Äquivaenzpunktes Farbindikatoren eingesetzt. Wenn aerdings die Lösungen

Mehr

405. Ein Strommesser hat einen Messwiderstand von 200 Ohm und einen Endausschlag. Aufgaben zur E-Lehre (Widerstand)

405. Ein Strommesser hat einen Messwiderstand von 200 Ohm und einen Endausschlag. Aufgaben zur E-Lehre (Widerstand) ufgaben zur E-Lehre (Widerstand) 6. In eine aten Haus wurden die uiniueitungen durch Kupfereitungen ersetzt; insgesat wurden 50 Kabe veregt. Jedes Kabe besteht aus einer Hin- und einer ückeitung und hat

Mehr

Kritischer Punkt von CO 2

Kritischer Punkt von CO 2 Kritischer Punkt von CO 2 Praktikanten: Mirjam Eisee und Matthias Jasch Gruppennummer: 129 Versuchsdatum: 9. September 2009 Betreuer: Christof Gessner 1 Aufgabensteung Es werden für verschiedene Movoumina

Mehr

Pharmakokinetik-Grundlagen, Teil 1

Pharmakokinetik-Grundlagen, Teil 1 Pharmakokinetik-Grundagen, Tei 1 Thomas Schnider 29. ärz 2016 1 Grundbegriffe Die kassische Pharmakokinetik beschreibt u.a Begriffe wie Verteiungsvoumen, Cearance und Habwertszeit. Es ist wichtig diese

Mehr

Versuch 2. Hydrolyse eines Esters

Versuch 2. Hydrolyse eines Esters Grundpraktikum Physikalische Chemie Versuch 2 Hydrolyse eines Esters Reaktionskinetik Überarbeitetes Versuchsskript, 27.11.2014 Kolloquiumsthemen Reaktionskinetik der Hydrolyse von Essigsäureethylester

Mehr

Zwei Uhren, die in einem Bezugssystem synchronisiert sind, gehen in keinem relativ zum ersten Bezugssystem synchron.

Zwei Uhren, die in einem Bezugssystem synchronisiert sind, gehen in keinem relativ zum ersten Bezugssystem synchron. Die Geichzeitigkeit von Ereignissen Man war bis 1905 überzeugt, dass es eine absoute, für ae Systeme geichmäßig abaufende Zeit gibt. EINSTEIN unterzog den Zeitbegriff einer kritischen Betrachtung. Dazu

Mehr

Quantitative Analyse mittels Titration

Quantitative Analyse mittels Titration Quantitative Anayse mittes Titration - Ermittung des Säuregehats in Speiseessig - Hausarbeit im Seminarfach Chemie Patrick Heinecke 25. November 2008 Inhatsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Titration.......................................

Mehr

Das Trägheitsmoment und der Satz von Steiner

Das Trägheitsmoment und der Satz von Steiner Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders

Mehr

Physik und Umwelt I Lösungen der Übungen Nr. 6. ρ v

Physik und Umwelt I Lösungen der Übungen Nr. 6. ρ v Aufgabe 6. Physik un Umwet I Daten: Innenurchmesser = 5 mm Länge = m Fui: Ergas H ( =,78kg / m a) =,76 m/s = b) =,76 m/s = c) = 8,8 m/s = ; η =,8 6 Pa s ) Rohrreibungsgesetz: a) = < krit = Laminare Strömung

Mehr

A1: Das zweidimensionale makroskopische Modell des idealen Gases

A1: Das zweidimensionale makroskopische Modell des idealen Gases A: Das zweidimensionae makroskopische ode des ideaen Gases. Ziee des Experiments Der Versuch so die Grundagen der kinetischen Gastheorie an einem zweidimensionaen makroskopischen ode des ideaen Gases eranschauichen.

Mehr

7. Innere Reibung von Flüssigkeiten

7. Innere Reibung von Flüssigkeiten 7. Innere Reibung von Füssigkeiten Zie: Kennenernen einer Methode zur Bestimmung der dynamischen Viskosität. Aufgaben:. Bestimmen Sie die dynamische Viskosität η von Wasser und von Akoho.. Ermitten Sie

Mehr

Grundpraktikum Physikalische Chemie V 13. Wanderungsgeschwindigkeit eines Ions

Grundpraktikum Physikalische Chemie V 13. Wanderungsgeschwindigkeit eines Ions Grundpraktikum Physikalische Chemie V 13 Wanderungsgeschwindigkeit eines Ions Kurzbeschreibung: Anhand der Bewegungsgeschwindigkeit einer optisch gut sichtbaren Schichtgrenze zwischen einer Kaliumpermanganat-

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

E > 0. V eff (r) r. V eff,min < E < 0. r min. V (r)

E > 0. V eff (r) r. V eff,min < E < 0. r min. V (r) II.2 Zwei-Körper-Systeme 43 2 2µr 2 r min E > 0 r V eff (r) r max r min V eff,min < E < 0 V (r) E < V eff,min Abbidung II.4 Effektives Potentia V eff (r) für das Keper-Probem. Mit dem newtonschen Gravitationspotentia

Mehr

Bericht zum Versuch Induktion

Bericht zum Versuch Induktion Bericht zum Versuch Induktion Anton Haase, Michae Goerz 12. September 2005 GP II Tutor: W. Theis 1 Einführung Das Farraday sche Induktionsgesetz gibt die durch einen zeitich veränderichen magnetischeuss

Mehr

Grundpraktikum Physikalische Chemie

Grundpraktikum Physikalische Chemie Grundpraktikum Physikalische Chemie Versuch 14: Ladungstransport überarbeitet: Tobias Staut, 013.04 Inhaltsverzeichnis 1 Vorbereitung und Eingangskolloquium 3 Theorie 5.1 Ladungstransport in starken Elektrolytlösungen................

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Widerstand eins Drahtes; Widerstandmessung mit der Wheatstone-Brücke Kasse : Name : Datum : Versuchszie : Wir woen untersuchen, von wechen Größen der Widerstand eines Drahtes abhängig ist. Vermutung: Wir

Mehr

9 Vorlesung: Auswertung von Messungen Fehlerrechnung

9 Vorlesung: Auswertung von Messungen Fehlerrechnung 9 Voresung: 3.. 005 Auswertung von Messungen Feherrechnung Ein wissenschaftiches Ergebnis git erst ann as gesichert, wenn es von einer zweiten Arbeitsgruppe experimente bestätigt wure. Um ie Reprouzierbarkeit

Mehr

= p u. Ul x 0 U r x > 0

= p u. Ul x 0 U r x > 0 Das Riemann-Probem Das zu ösende Geichungssystem besteht aus den eindimensionaen hydrodynamischen Geichungen ohne Viskosität und externe Kräfte, den Euer-Geichungen. Beschränkung auf eine Dimension (x)

Mehr

(1) und ist bei unserem Versuch eine Funktion der Temperatur, nicht aber der Konzentration.

(1) und ist bei unserem Versuch eine Funktion der Temperatur, nicht aber der Konzentration. Praktikum Teil A und B 15. AUFLÖSUNGSGESCHWINDIGKEIT Stand 11/4/1 AUFLÖSUNGSGESCHWINDIGKEIT EINES SALZES 1. ersuchsplatz Komponenten: - Thermostat - Reaktionsgefäß mit Rührer - Leitfähigkeitsmessgerät

Mehr

Versuch 2: Kinetik der Esterverseifung Bestimmung der Geschwindigkeit einer chemischen Reaktion durch Leitfähigkeitsmessung

Versuch 2: Kinetik der Esterverseifung Bestimmung der Geschwindigkeit einer chemischen Reaktion durch Leitfähigkeitsmessung PC-Grundpraktikum - Versuch 2: Kinetik der Esterverseifung vom 25..999 Versuch 2: Kinetik der Esterverseifung Bestimmung der Geschwindigkeit einer chemischen Reaktion durch Leitfähigkeitsmessung. Theorie

Mehr

1.3 Elektrothermische Energiewandlungsvorgänge in Gleichstromkreisen

1.3 Elektrothermische Energiewandlungsvorgänge in Gleichstromkreisen 6 Vorgänge in eektrischen Netzwerken bei Geichstrom.3 Eektrothermische Energiewandungsvorgänge in Geichstromkreisen.3. Grundgesetze der Erwärmung und des ärmeaustauschs Erwärmung So ein örper der Masse

Mehr

3.2 Gleitreibung und Haftreibung 95

3.2 Gleitreibung und Haftreibung 95 3.2 Geitreibung und Haftreibung 5 Lehrbeispie: Reibung in Ruhe und Bewegung Aufgabensteung: Zwei Körper A und B mit den Gewichtskräften F G1 und F G2 iegen übereinander auf einer ebenen Unterage. n den

Mehr

Lösungen zu den Aufgaben

Lösungen zu den Aufgaben Lösungen zu den Aufgaben 1. Zahnbürste a) Bestimmung der Induktionsspannung: Die Induktionsspannung fogt dirket aus dem Induktionsgesetz: U ind = N Φ Da es sich um eine Spue handet git für den Fuss der

Mehr

AUFLÖSUNGSGESCHWINDIGKEIT EINES SALZES. 1. Versuchsplatz. 2. Allgemeines zum Versuch

AUFLÖSUNGSGESCHWINDIGKEIT EINES SALZES. 1. Versuchsplatz. 2. Allgemeines zum Versuch Pratium Teil A und B 17. AUFLÖSUNGSGESCHWINDIGKEIT Stand 17/1/7 AUFLÖSUNGSGESCHWINDIGKEIT EINES SALZES 1. ersuchsplatz Komponenten: - Thermostat - Reationsgefäß mit Rührer - Leitfähigeitsmessgerät mit

Mehr

Ionentransport in Elektrolyten

Ionentransport in Elektrolyten Ionentransport in Elektrolyten 1 Ionentransport in Elektrolyten Aus der direkt beobachtbaren Wanderungsgeschwindigkeit gefärbter Ionen in einem elektrischen Feld werden die Ionenbeweglichkeiten u, die

Mehr

Einführung in die Elektrochemie

Einführung in die Elektrochemie Einführung in die Elektrochemie > Grundlagen, Methoden > Leitfähigkeit von Elektrolytlösungen, Konduktometrie > Elektroden Metall-Elektroden 1. und 2. Art Redox-Elektroden Membran-Elektroden > Potentiometrie

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Institut für Mechanische Verfahrenstechnik und Mechanik Bereich Angewandte Mechanik Vorprüfung Technische Mechanik III (Dynamik) Montag, 31.08.009, 9:00 11:00 Uhr Bearbeitungszeit: h Aufgabe 1 (6 Punkte)

Mehr

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I Elektrolytlösungen, Leitfähigkeit, Ionentransport Teil I 1. Einführende Überlegungen 2. Solvatation, Hydratation 3. Ionenbeweglichkeiten und Leitfähigkeiten Literatur: Wedler 1.6.2-1.6.7 Teil II 4. Schwache

Mehr

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene K. B. Datum des Praktikumstags: 6.11.7 Matthias Ernst Protokoll-Datum: 11.11.7 Gruppe 11 Assistent: A. Busch estat: 4. Versuch (F 44) - Auflösungsgeschwindigkeit von Gips (CaSO 4 ) Aufgabenstellung - Messung

Mehr

1 PdvV für ein System aus starren Körpern

1 PdvV für ein System aus starren Körpern Materiatheorie - LKM, Sekr. MS PdvV und PdvK Energiemethoden 06. Übungsbatt, WS 01/13, S. 1 1 PdvV für ein System aus starren Körpern Zur Bestimmung der fünf gesuchten Lagerreaktionen muss das System auf

Mehr

314 Wechselstrombrücke

314 Wechselstrombrücke 314 Wechsestrombrücke 1. Aufgaben Mit Hife einer Wechsestrombrücke soen fogende Parameter bestimmt werden: 1.1 Messung der Induktivität von zwei Spuen. 1. Messung der Gesamtinduktivität zweier Spuen in

Mehr

R R. l Es gilt: R = ρ, da es sich für beide Widerstände um den gleichen Draht handelt folgt: Rx l. / Widerstandswürfel

R R. l Es gilt: R = ρ, da es sich für beide Widerstände um den gleichen Draht handelt folgt: Rx l. / Widerstandswürfel Zie: Kennenernen von Methoden zur Widerstandsmessung. Brückenschatung. Bestimmen Sie mit der Wheatstone-Brücke a) die Größe eines Widerstandes b) den Kemmwiderstand eines Netzwerkes Grundagen: Bei einfachen

Mehr

Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course

Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course Technische Universität Berin Abt. I Studierenden Service Studienkoeg / Preparatory Course Schriftiche Prüfung zur Feststeung der Eignung ausändischer Studienbewerber zum Hochschustudium im Lande Berin

Mehr

Kleine Formelsammlung Chemie

Kleine Formelsammlung Chemie Karl Schwister Kleine Forelsalung Cheie ISBN-1: 3-446-41545-9 ISBN-13: 978-3-446-41545-4 Leseprobe Weitere Inforationen oder Bestellungen unter http://www.hanser.de/978-3-446-41545-4 sowie i Buchhandel.

Mehr

Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course

Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course Technische Universität Berin Abt. I Studierenden Service Studienkoeg / Preparatory Course Schriftiche Prüfung zur Feststeung der Eignung ausändischer Studienbewerber zum Hochschustudium im Lande Berin

Mehr

1 Aufgabenstellung 2. 3 Experimente Schwingende Quecksilbersäule Messmethode Methode von Clément Desormes...

1 Aufgabenstellung 2. 3 Experimente Schwingende Quecksilbersäule Messmethode Methode von Clément Desormes... Technische Universität Dresden Fachrichtung Physik Physikaisches Grundpraktikum Erstet: ersuch: AZ L. Jahn K.-F. Wiehe Bearbeitet: M. Kreer J. Keing F. Lemke S. Majewsky i. A. Dr. Escher Aktuaisiert: am

Mehr

C Mathematische Grundlagen

C Mathematische Grundlagen C Mathematische Grundagen C.1 Summen Mit dem Summenzeichen werden Rechenanweisungen zum Addieren kompakt geschrieben. Sie assen sich oft mit Hife der Summenregen vereinfachen. C.1 Gibt es insgesamt n Werte

Mehr

Mathematisches Pendel und Federpendel

Mathematisches Pendel und Federpendel INSIU FÜR ANGEWANE PHYSIK Physikaisches Praktiku für Studierende der Ingenieurswissenschaften Universität Haburg, Jungiusstraße 11 Matheatisches Pende und Federpende 1 Zie In zwei Versuchsteien soen die

Mehr

Biochemie-Praktikum: Programm E

Biochemie-Praktikum: Programm E Gruppe Nr. 0 Tübingen, den XXIX. Mai Anno Domini 00 Gero Schwenk, Forian Waker Biochemie-Praktikum: Programm E Versuch : Lactatkonzentration im Serum Enzyme Decies repetita pacebit. Aufgabensteung: Mit

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Donnerstag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v.2 203/0/22 5:58:28 hk Exp $ 3 Konvexgeometrie 3.2 Die patonischen Körper Ein patonischer Körper von Typ (n, m) ist ein konvexer Poyeder dessen Seitenfäche ae geichseitige n-ecke und in

Mehr

E7 Elektrolyse. Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

E7 Elektrolyse. Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E7 Elektrolyse Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 18.12.2000 INHALTSVERZEICHNIS 1. Einleitung 2. Theoretische Grundlagen 2.1 Elektrolyse 2.2 Die FARADAYschen Gesetze der

Mehr

Die Transaktionskasse

Die Transaktionskasse z z ˆ =.4 Prof. Dr. Johann Graf Labsdorff Uniersität Passau 4. Transaktionskasse und Vorsichtskasse WS 007/08 F n Pfichtektüre: Jarchow, H.-J.: Theorie und Poitik des Gedes, 11. überarb. und wesent. erw.

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. ng. Joachim Böcker Kausur Grundagen der Eektrotechnik B 23.09.2005 ame: Matrike-r: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: 2 3 4 5 Σ ote Zugeassene Hifsmitte: eine sebsterstete, handgeschriebene

Mehr

Schaltzeichen: Q k = U Die Konstante k ist vom Aufbau des Kondensators abhängig. Sie wird Kapazität C genannt:

Schaltzeichen: Q k = U Die Konstante k ist vom Aufbau des Kondensators abhängig. Sie wird Kapazität C genannt: Kapazität und nduktivität - KOMPKT. Der Kondensator. ufbau Ein Kondensator besteht aus zwei eitfähigen Patten, den Eektroden und einem dazwischen iegenden soierstoff, dem Dieektrikum. Schatzeichen: Wird

Mehr

1. Temperaturabhängige Widerstände

1. Temperaturabhängige Widerstände V e r s u c h. Temperaturabhängige Widerstände. Einführung Im Technikbereich finden oft Prozesse statt, bei denen die Messung, Steuerung und egeung von Temperaturen eine wichtige oe spieen. Temperaturabhängige

Mehr

C Säure-Base-Reaktionen

C Säure-Base-Reaktionen -V.C1- C Säure-Base-Reaktionen 1 Autoprotolyse des Wassers und ph-wert 1.1 Stoffmengenkonzentration Die Stoffmengenkonzentration eines gelösten Stoffes ist der Quotient aus der Stoffmenge und dem Volumen

Mehr

Berechnung magnetischer Kreise

Berechnung magnetischer Kreise TU ergakademie Freiberg nstitut für Eektrotechnik Prof. Dr.-ng. habi. U. eckert G:\beckert\voresung\grd_et\er_magn_Kreise 2- erechnung magnetischer Kreise Der magnetische Kreis vieer technischer nwendungen

Mehr

Lösung zu Übungsblatt 1

Lösung zu Übungsblatt 1 Technische Universität München Fakutät für Physik Ferienkurs Theoretische Physik 1 Lösung zu Übungsbatt 1 Grundagen der Newton schen Mechanik, Zweiteichensysteme 1. Vektoranaysis (*) (a) Der Gradient eines

Mehr

Mechanische Schwingungen

Mechanische Schwingungen Dorn-Bader 12/13 S. 97 ff Mechanische Schwingungen 1. Beschreibung von Schwingungsvorgängen Versuch: Federpende Ein einfaches Federpende zeigt die typischen Merkmae einer Schwingung: An das untere Ende

Mehr

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz)

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Versuch Nr. 58 Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Stichworte: Kinetische Gastheorie, ideales Gas, charakteristische Größen zur Beschreibung von Gasen (s.u.), Hagen-Poiseuille'sches

Mehr

LF - Leitfähigkeit / Überführung

LF - Leitfähigkeit / Überführung Verfasser: Matthias Ernst, Tobias Schabel Gruppe: A 11 Betreuer: G. Heusel Datum: 18.11.2005 Aufgabenstellung LF - Leitfähigkeit / Überführung 1) Es sind die Leitfähigkeiten von zwei unbekanten Elektrolyten

Mehr

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen 8 Methoen zur Lösung er Lapace-Geichung Gesucht: Lösung er Lapace-Geichung für gegebene Ranbeingungen. Strategie: φ = 0. Ermitte ie Symmetrien er Ranbeingungen. Diese bestimmen as geeignete Koorinatensystem.

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.:

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Fakutät Maschinenbau Prof. Dr.-Ing. A. Menze Prof. Dr.-Ing. J. Moser Aufgabe 1 (Seite 1 von 3) a) Die nebenstehend skizzierte, inks eingespannte Konsoe wird wie dargestet durch Traktionen (eingeprägte

Mehr

Viskosität und Dichte von wässrigen n-propanollösungen

Viskosität und Dichte von wässrigen n-propanollösungen Viskosität und Dichte von wässrigen n-propanollösungen Zusammenfassung Die Viskositäten von n-propanollösungen wurden mit Hilfe eines Ubbelohde-Viskosimeters bei einer Temperatur von 30 C bestimmt. Dabei

Mehr

Lösungsvorschläge zu den abschließenden Aufgaben (Thema: NERNSTsche Gleichung)

Lösungsvorschläge zu den abschließenden Aufgaben (Thema: NERNSTsche Gleichung) Lösungsvorschäge zu den abschießenden Aufgaben (Thema: NERNSTsche Geichung Nr. : Eisen reduziert as unederes Meta die Siber-Ionen. Das Siber schägt sich auf der Eisenwoe nieder. Fe Fe e Ag e Ag Nr. In

Mehr

Geschichte und Theorie

Geschichte und Theorie Eektrotechnikprotoko 1 rspannung (EMK) und innerer Widerstand Moser Guido eines Gavanischem Eements Fuda, den 9.03.00 Geschichte und Theorie Die ersten Spannungsqueen, die gebaut wurden, waren gavanische

Mehr

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum:

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch M11 - Viskosität von Flüssigkeiten Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik Beispiee zur Identifikation von Fehvorsteungen in der Technischen Mechanik Urike Zwiers, Andrea Dederichs-Koch 9. Ingenieurpädagogische Regionatagung 6. 8. November 2014, Universität Siegen Giederung 1.

Mehr

Gefahrenstoffe H:

Gefahrenstoffe H: V1 Verseifungsgeschwindigkeit eines Esters In diesem Versuch wird die Reaktionsgeschwindigkeit quantitativ ermittelt. Da dies anhand einer Verseifung eines Esters geschieht, sollten die Schülerinnen und

Mehr

Biophysik für Pharmazeuten

Biophysik für Pharmazeuten Transportprozesse II. III. Diffusion (Volumentransport) (Stofftransport) Biophysik für Pharmazeuten 11. 4. 016. Transportprozesse Elektrischer Strom en I. Elektrischer Strom (el. Ladungstransport) IV.

Mehr

Übung 6 - Musterlösung

Übung 6 - Musterlösung Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte

Mehr

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage Baustatik Berechnung statisch unbestimmter Tragwerke von Raimond Damann 1. Aufage Baustatik Damann schne und portofrei erhätich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 006 Verag C.H. Beck

Mehr

Projekt Experimentelle Mathematik mit GeoGebra

Projekt Experimentelle Mathematik mit GeoGebra Projekt Experimentee Mathematik mit GeoGebra (Projekt für Q1, G. vom Stein) Gefäße mit unterschiedichen Formen werden mit einer variaben, aber konstanten Wasserzufuhr befüt. Es so jeweis die Funktion Zeit

Mehr

Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate

Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate Zeitbedarf für die Versuchsdurchführung: ca. 10 Min. Geräte: Magnetrührer mit Magnetrührstäbchen Thermometer (min. 0,5 C Genauigkeit)

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Verbrennungsenergie und Bildungsenthalpie

Verbrennungsenergie und Bildungsenthalpie Praktikum Physikalische Chemie I 1. Januar 2016 Verbrennungsenergie und Bildungsenthalpie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Bildungsenthalpie von Salicylsäure wurde

Mehr

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und Elektrolyte Teil III Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Thermodynamik von Elektrolytlösungen

Mehr

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 009/0, 606 VO+UE Univ Prof Dr Christoph Dellago ) Berechnen Sie cos (06) ohne Verwendung der Winkelfunktionen des Taschenrechners auf 4

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Chemie Protokoll. Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung. Stuttgart, Sommersemester 2012

Chemie Protokoll. Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung. Stuttgart, Sommersemester 2012 Chemie Protokoll Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung Stuttgart, Sommersemester 202 Gruppe 0 Jan Schnabel Maximilian Möckel Henri Menke Assistent: Durmus 20. Mai 202 Inhaltsverzeichnis Theorie

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

503 Spezifische Ladung e/m des Elektrons

503 Spezifische Ladung e/m des Elektrons 503 Spezifische Ladung e/m des Elektrons 1. Aufgaben 1.1 Bestimmen Sie mit Hilfe einer Fadenstrahlröhre die spezifische Ladung e/m des Elektrons! 1.2 (Zusatzaufgabe) Untersuchen Sie die Homogenität des

Mehr

4.3 Elektromagnetische Induktion

4.3 Elektromagnetische Induktion Eektromagnetische nduktion 293 4.3 Eektromagnetische nduktion 1819 fand HAN CHRTAN OERTED (1777 1851) den Zusammenhang zwischen eektrischem trom und agnetismus: Jeder stromdurchfossene Leiter ist von einem

Mehr

Grundpraktikum Physikalische Chemie

Grundpraktikum Physikalische Chemie Grundpraktikum Physikalische Chemie Versuch 10: Elektrische Leitfähigkeit von Elektrolyten überarbeitet: Tobias Staut, 2014.07 Inhaltsverzeichnis 1 Vorbereitung und Eingangskolloquium 3 2 Messung der Überführungszahlen

Mehr