Die Vorausschau-Tabelle:

Größe: px
Ab Seite anzeigen:

Download "Die Vorausschau-Tabelle:"

Transkript

1 A 0 i 0 A 1 i 1 β 1 A 2 i 2 β 2 B i β γ Die Vorausschau-Tabelle: Wir setzen M[ [A α Bβ, L], w] = i genau dann wenn (B, i) die Regel B γ ist und: w First k (γ) First k (β) L 440

2 ([A 0 α 1 A 1 β 1, L 1 ], uv) ([A 0 α 1 A 1 β 1, L 1 ]...[A m 1 α m A m β m, L m ], v) ([A 0 α 1 A 1 β 1, L 1 ], ǫ)... gilt genau dann wenn: (1) α 1...α m u (2) A m β m...β 1 v (3) L m = First k (β m 1 )... First k (β 1 ) L 1 A 0 i 0 A 1 i 1 β 1 A 2 i 2 β 2 A m i m β m γ 441

3 Satz Die reduzierte kontextfreie Grammatik G ist LL(k) genau dann wenn die k-vorausschau-tabelle für alle benötigten erweiterten Items wohl-definiert ist. Diskussion: Der erweiterte Item-Kellerautomat zusammen mit einer k-vorausschau-tabelle erlaubt die deterministische Rekonstruktion einer Links-Ableitung :-) Die Anzahl der Vorausschau-Mengen L kann sehr groß sein :-(

4 Beispiel: S ǫ a S b Die Übergänge des erweiterten Item-Kellerautomat (k = 1) : 0 [S S, {ǫ}] ǫ [S S, {ǫ}] [S, {ǫ}] 1 [S S, {ǫ}] ǫ [S S, {ǫ}] [S a S b, {ǫ}] 2 [S a S b, {ǫ}] a [S a S b, {ǫ}] [S a S b, {b}] a [S a S b, {b}] 3 [S a S b, {ǫ}] ǫ [S a S b, {ǫ}] [S, {b}] [S a S b, {b}] ǫ [S a S b, {b}] [S, {b}] 4 [S a S b.{ǫ}] ǫ [S a S b.{ǫ}] [S a S b, {b}] [S a S b.{b}] ǫ [S a S b.{b}] [S a S b, {b}] 5 [S a S b, {ǫ}] [S, {b}] ǫ [S a S b, {ǫ}] [S a S b, {b}] [S, {b}] ǫ [S a S b, {b}]

5 [S a S b, {ǫ}] [S a S b, {b}] ǫ [S a S b, {ǫ}] [S a S b, {b}] [S a S b, {b}] ǫ [S a S b, {b}] 7 [S a S b, {ǫ}] b [S a S b, {ǫ}] [S a S b, {b}] b [S a S b, {b}] 8 [S S, {ǫ}] [S, {ǫ}] ǫ [S S, {ǫ}] 9 [S S, {ǫ}] [S a S b, {ǫ}] ǫ [S S, {ǫ}] Die Vorausschau-Tabelle: ǫ a b [S S, {ǫ}] 0 1 [S a S b, {ǫ}] 1 0 [S a S b, {b}]

6 Beobachtung: Die auszuwählende Regel hängt hier ja gar nicht von den Erweiterungen der Items ab!!! Unter dieser Voraussetzung können wir den Item-Kellerautomaten ohne Erweiterung benutzen :-) Hängt die auszuwählende Regel nur von der aktuellen Vorausschau w ab, nennen wir G auch stark LL(k)... Wir definieren: Follow k (A) = {First k (β) S L u Aβ}. Die reduzierte kontextfreie Grammatik G heißt stark LL(k), falls für je zwei verschiedene A α, A α P : First k (α) Follow k (A) First k (α ) Follow k (A) = 445

7 Beobachtung: Die auszuwählende Regel hängt hier ja gar nicht von den Erweiterungen der Items ab!!! Unter dieser Voraussetzung können wir den Item-Kellerautomaten ohne Erweiterung benutzen :-) Hängt die auszuwählende Regel nur von der aktuellen Vorausschau w ab, nennen wir G auch stark LL(k)... Wir definieren: Follow k (A) = {First k (β) S L u Aβ}. Die reduzierte kontextfreie Grammatik G heißt stark LL(k), falls für je zwei verschiedene A α, A α P : First k (α) Follow k (A) First k (α ) Follow k (A) = 446

8 Beobachtung: Die auszuwählende Regel hängt hier ja gar nicht von den Erweiterungen der Items ab!!! Unter dieser Voraussetzung können wir den Item-Kellerautomaten ohne Erweiterung benutzen :-) Hängt die auszuwählende Regel nur von der aktuellen Vorausschau w ab, nennen wir G auch stark LL(k)... Wir definieren: Follow k (A) = {First k (β) S L u Aβ}. Die reduzierte kontextfreie Grammatik G heißt stark LL(k), falls für je zwei verschiedene A α, A α P : First k (α) Follow k (A) First k (α ) Follow k (A) = 447

9 ... im Beispiel: S ǫ a S b Follow 1 (S) = {ǫ, b} First 1 (ǫ) Follow 1 (S) = {ǫ} {ǫ, b} = {ǫ, b} First 1 (a S b) Follow 1 (S) = {a} {ǫ, b} = {a} Wir schließen: Die Grammatik ist in der Tat stark LL(1) :-) 448

10 Ist G eine starke LL(k)-Grammatik, können wir die Vorausschau-Tabelle statt mit (erweiterten) Items mit Nichtterminalen indizieren :-) Wir setzen M[B, w] = i genau dann wenn (B, i) die Regel B γ ist und: w First k (γ) Follow k (B).... im Beispiel: S ǫ a S b ǫ a b S Satz Jede starke LL(k)-Grammatik ist auch LL(k) :-) Jede LL(1)-Grammatik ist bereits stark LL(1) :-)) 449

11 Ist G eine starke LL(k)-Grammatik, können wir die Vorausschau-Tabelle statt mit (erweiterten) Items mit Nichtterminalen indizieren :-) Wir setzen M[B, w] = i genau dann wenn (B, i) die Regel B γ ist und: w First k (γ) Follow k (B).... im Beispiel: S ǫ a S b ǫ a b S Satz Jede starke LL(k)-Grammatik ist auch LL(k) :-) Jede LL(1)-Grammatik ist bereits stark LL(1) :-)) 450

12 Beweis: Sei G stark LL(k). Betrachte eine Ableitung S L u Aβ und Regeln A α, A α P. Dann haben wir: First k (α β) First k (α β) = First k (α) First k (β) First k (α ) First k (β) First k (α) Follow k (A) First k (α ) Follow k (A) = Folglich ist G auch LL(k) :-) 451

13 Sei G LL(1). Betrachte zwei verschiedene Regeln A α, A α P. Fall 1: ǫ First 1 (α) First 1 (α ). Dann kann G nicht LL(1) sein :-) 452

14 Sei G LL(1). Betrachte zwei verschiedene Regeln A α, A α P. Fall 1: ǫ First 1 (α) First 1 (α ). Dann kann G nicht LL(1) sein :-) Fall 2: ǫ First 1 (α) First 1 (α ). Sei S L u Aβ. Da G LL(1) ist, gilt: First 1 (α) Follow 1 (A) First 1 (α ) Follow 1 (A) = First 1 (α) First 1 (α ) = First 1 (α) First 1 (β) First 1 (α ) First 1 (β) = 453

15 Fall 3: ǫ First 1 (α) und ǫ First 1 (α ). Dann gilt: First 1 (α) Follow 1 (A) First 1 (α ) Follow 1 (A) = First 1 (α) Follow 1 (A) First 1 (α ) = First 1 (α) ( {First 1 (β) S L u Aβ}) First 1(α ) = ( {First 1 (α) First 1 (β) S L u Aβ}) First 1(α ) = {First 1 (α) First 1 (β) First 1 (α ) S L u Aβ} = { S L u Aβ} = Fall 4: ǫ First 1 (α) und ǫ First 1 (α ) : analog :-) 454

16 Fall 3: ǫ First 1 (α) und ǫ First 1 (α ). Dann gilt: First 1 (α) Follow 1 (A) First 1 (α ) Follow 1 (A) = First 1 (α) Follow 1 (A) First 1 (α ) = First 1 (α) ( {First 1 (β) S L u Aβ}) First 1(α ) = ( {First 1 (α) First 1 (β) S L u Aβ}) First 1(α ) = {First 1 (α) First 1 (β) First 1 (α ) S L u Aβ} = { S L u Aβ} = Fall 4: ǫ First 1 (α) und ǫ First 1 (α ) : analog :-) 455

17 Beispiel: S a A a a 0 b A b a 1 A b 0 ǫ 1 Offenbar ist die Grammatik LL(2) :-) Andererseits gilt: First 2 (b) Follow 2 (A) First 2 (ǫ) Follow 2 (A) = {b} {a a, b a} {ǫ} {a a, b a} = {b a, b b} {a a, b a} = Folglich ist die Grammatik nicht stark LL(2) :-( Wir schließen: Für k > 1 ist nicht jede LL(k)-Grammatik automatisch stark LL(k). Zu jeder LL(k)-Grammatik kann jedoch eine äquivalente starke LL(k)-Grammatik konstruiert werden RR Übung! 456

18 Beispiel: S a A a a 0 b A b a 1 A b 0 ǫ 1 Offenbar ist die Grammatik LL(2) :-) Andererseits gilt: First 2 (b) Follow 2 (A) First 2 (ǫ) Follow 2 (A) = {b} {a a, b a} {ǫ} {a a, b a} = {b a, b b} {a a, b a} = Folglich ist die Grammatik nicht stark LL(2) :-( Wir schließen: Für k > 1 ist nicht jede LL(k)-Grammatik automatisch stark LL(k). Zu jeder LL(k)-Grammatik kann jedoch eine äquivalente starke LL(k)-Grammatik konstruiert werden == Übung! 457

19 Berechnung von Follow k (B) : S i 0 A 1 i 1 β 1 A 2 i 2 β 2 A i m β m α B Follow k (B) Follow k (A) 458

20 Berechnung von Follow k (B) : Idee: Wir stellen ein Ungleichungssystem auf :-) ǫ ist ein möglicher rechter Kontext von S :-) Mögliche rechte Kontexte der linken Seite einer Regel propagieren wir ans Ende jeder rechten Seite im Beispiel: S ǫ a S b Follow k (S) Follow k (S) {ǫ} {b} Follow k (S) 459

21 Allgemein: Follow k (S) {ǫ} Follow k (B) First k (X 1 )... First k (X m ) Follow k (A) für A α B X 1... X m P Diskussion: Man überzeugt sich, dass die kleinste Lösung dieses Ungleichungssystems tatsächlich die Mengen Follow k (B) liefert :-) Die Größe der auftretenden Mengen steigt mit k rapide :-( In praktischen Systemen wird darum meist nur der Fall k = 1 implementiert

22 2.5 Schnelle Berechnung von Vorausschau-Mengen Im Fall k = 1 lassen sich First, Follow besonders effizient berechnen ;-) Beobachtung: Seien L 1, L 2 T {ǫ} mit L 1 = = L 2. Dann ist: L 1 L 2 = L 1 falls ǫ L 1 (L 1 \{ǫ}) L 2 sonst Ist G reduziert, sind alle Mengen First 1 (A) nichtleer :-) 461

23 Idee: Behandle ǫ separat! Sei empty(x) = true gdw. X ǫ. Definiere die ǫ-freien First 1 -Mengen F ǫ (a) = {a} für a T F ǫ (A) = First 1 (A)\{ǫ} für A N Konstruiere direkt ein Ungleichungssystem für F ǫ (A) : F ǫ (A) F ǫ (X j ) falls A X 1... X m P, empty(x 1 )... empty(x j 1 ) 462

24 ... im Beispiel: E E + T 0 T 1 T T F 0 F 1 F ( E ) 0 name 1 int 2 wobei empty(e) = empty(t) = empty(f) = false. Deshalb erhalten wir: F ǫ (S ) F ǫ (E) F ǫ (E) F ǫ (E) F ǫ (E) F ǫ (T) F ǫ (T) F ǫ (T) F ǫ (T) F ǫ (F) F ǫ (F) { (, name, int} 463

25 Entsprechend konstruieren wir zur Berechnung von Follow 1 : Follow 1 (S) {ǫ} Follow 1 (B) F ǫ (X j ) falls A α B X 1... X m P, empty(x 1 )... empty(x j 1 ) Follow 1 (B) Follow 1 (A) falls A α B X 1... X m P, empty(x 1 )... empty(x m )... im Beispiel:... erhalten wir: 464

26 Entsprechend konstruieren wir zur Berechnung von Follow 1 : Follow 1 (S) {ǫ} Follow 1 (B) F ǫ (X j ) falls A α B X 1... X m P, empty(x 1 )... empty(x j 1 ) Follow 1 (B) Follow 1 (A) falls A α B X 1... X m P, empty(x 1 )... empty(x m )... im Beispiel: E E + T 0 T 1 T T F 0 F 1 F ( E ) 0 name 1 int 2... erhalten wir: 465

27 Entsprechend konstruieren wir zur Berechnung von Follow 1 : Follow 1 (S) {ǫ} Follow 1 (B) F ǫ (X j ) falls A α B X 1... X m P, empty(x 1 )... empty(x j 1 ) Follow 1 (B) Follow 1 (A) falls A α B X 1... X m P, empty(x 1 )... empty(x m )... im Beispiel: E E + T 0 T 1 T T F 0 F 1 F ( E ) 0 name 1 int 2... erhalten wir: Follow 1 (S ) {ǫ} Follow 1 (E) Follow 1 (S ) Follow 1 (E) {+, ) } Follow 1 (T) { } Follow 1 (T) Follow 1 (E) Follow 1 (F) Follow 1 (T) 466

28 Diskussion: Diese Ungleichungssysteme bestehen aus Ungleichungen der Form: x y bzw. x d für Variablen x, y und d D. Solche Ungleichungssysteme heißen reine Vereinigungs-Probleme :-) Diese Probleme können mit linearem Aufwand gelöst werden... Beispiel: D = 2 {a,b,c} x 0 {a} x 1 {b} x 1 x 0 x 1 x 3 x 2 {c} x 2 x 1 a b 0 1 c 3 x 3 {c} x 3 x 2 x 3 x 3 2 c 467

29 a b 0 1 c 3 2 c Vorgehen: Konstruiere den Variablen-Abhängigkeitsgraph zum Ungleichungssystem. Innerhalb einer starken Zusammenhangskomponente haben alle Variablen den gleichen Wert :-) Hat eine SZK keine eingehenden Kanten, erhält man ihren Wert, indem man die kleinste obere Schranke aller Werte in der SZK berechnet :-) Gibt es eingehende Kanten, muss man zusätzlich die Werte an deren Startknoten hinzu fügen :-) 468

30 a b 0 1 c 3 2 c Vorgehen: Konstruiere den Variablen-Abhängigkeitsgraph zum Ungleichungssystem. Innerhalb einer starken Zusammenhangskomponente haben alle Variablen den gleichen Wert :-) Hat eine SZK keine eingehenden Kanten, erhält man ihren Wert, indem man die kleinste obere Schranke aller Werte in der SZK berechnet :-) Gibt es eingehende Kanten, muss man zusätzlich die Werte an deren Startknoten hinzufügen :-) 469

31 a b 0 1 c 3 2 c Vorgehen: Konstruiere den Variablen-Abhängigkeitsgraph zum Ungleichungssystem. Innerhalb einer starken Zusammenhangskomponente haben alle Variablen den gleichen Wert :-) Hat eine SZK keine eingehenden Kanten, erhält man ihren Wert, indem man die kleinste obere Schranke aller Werte in der SZK berechnet :-) Gibt es eingehende Kanten, muss man zusätzlich die Werte an deren Startknoten hinzufügen :-) 470

32 a b c a Vorgehen: Konstruiere den Variablen-Abhängigkeitsgraph zum Ungleichungssystem. Innerhalb einer starken Zusammenhangskomponente haben alle Variablen den gleichen Wert :-) Hat eine SZK keine eingehenden Kanten, erhält man ihren Wert, indem man die kleinste obere Schranke aller Werte in der SZK berechnet :-) Gibt es eingehende Kanten, muss man zusätzlich die Werte an deren Startknoten hinzufügen :-) 471

33 ... für unsere Beispiel-Grammatik: First 1 : S E T F (, int, name Follow 1 : ǫ S +, ) E T F 472

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Beschreibungskomplexität von Grammatiken Definitionen

Beschreibungskomplexität von Grammatiken Definitionen Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

LL(k)-Analyse. (y) folgt α = β. (x) = start k. (=l> ist ein Linksableitungsschritt)

LL(k)-Analyse. (y) folgt α = β. (x) = start k. (=l> ist ein Linksableitungsschritt) LL(k)-Analyse Eine KFG G = (N,T,P,S) heisst LL(k)-Grammatik, wenn für alle w,x,y T*, α,β,σ (N U T)* und A N mit 1. S =l>* waσ =l> wασ =l>* wx, 2. S =l>* waσ = > wβσ =l>* wy, 3. start k (x) = start k (y)

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Dozentin: Wiebke Petersen 13. Foliensatz Wiebke Petersen Einführung CL 1 Formale Grammatik

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automaten, Spiele, und Logik Woche 2 25. April 2014 Inhalt der heutigen Vorlesung 1. Reguläre Ausdrücke 2. der Satz von Kleene 3. Brzozowski Methode 4. grep und perl Reguläre Ausdrücke Rekursive Definition,

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 5: Reguläre Ausdrücke und Grammatiken schulz@eprover.org Software Systems Engineering Reguläre Sprachen Bisher: Charakterisierung von Sprachen über Automaten

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Das Alphabet Σ sei eine endliche

Mehr

2.6 Deterministisches Top-Down-Parsen

2.6 Deterministisches Top-Down-Parsen 48 2.6 Deterministisches Top-Down-Parsen Als nächstes wollen wir uns mit Methoden zur syntaktischen Analyse befassen. Der lexikale canner eines Compilers liest die Eingabe Zeichen für Zeichen und erzeugt

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

LL(1)-Parsing. Ullrich Buschmann, Linda Schaffarczyk, Maurice Schleussinger. Automatische Syntaxanalyse (Parsing)

LL(1)-Parsing. Ullrich Buschmann, Linda Schaffarczyk, Maurice Schleussinger. Automatische Syntaxanalyse (Parsing) LL(1)-Parsing Ullrich Buschmann, Linda Schaffarczyk, Maurice Schleussinger Automatische Syntaxanalyse (Parsing) Heinrich-Heine-Universität Düsseldorf Wintersemester 2012/2013 Aufbau des Referats 1. Einführung,

Mehr

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b}

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} Klausuraufgaben 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} L = {a n b m n > 0, m > 0, n m} a) Ist L kontextfrei? Wenn ja, geben Sie eine kontextfreie Grammatik für L an. Wenn nein,

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Name Vorname Matrikelnummer Universität Karlsruhe Institut für Theoretische Informatik o. Prof. Dr. P. Sanders 26. Feb. 2007 Klausur: Informatik III Aufgabe 1. Multiple Choice 10 Punkte Aufgabe 2. Teilmengenkonstruktion

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

Formale Methoden 1. Gerhard Jäger 12. Dezember Uni Bielefeld, WS 2007/2008 1/22

Formale Methoden 1. Gerhard Jäger 12. Dezember Uni Bielefeld, WS 2007/2008 1/22 1/22 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 12. Dezember 2007 2/22 Bäume Baumdiagramme Ein Baumdiagramm eines Satzes stellt drei Arten von Information

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Kapitel 5: Syntax-Analyse

Kapitel 5: Syntax-Analyse Kapitel 5: Syntax-Analyse Aufgabe Die Token-Folge wird strukturiert in Anweisungen, Ausdrücke etc., um die Semantische Analyse und Code-Erzeugung zu ermöglichen Themen Kontextfreie Grammatik Äquivalente

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

LR(1) Itemmengenkonstruktion

LR(1) Itemmengenkonstruktion LR(1) Itemmengenkonstruktion Grammatik: S A$ xb A aab B B x Sprache: {xb} {anxbn n 0} nicht LL(1) x FIRST(B) x FIRST(A) also: FIRST/FIRST Konflikt bei S A$ xb nicht SLR(1) (Abb. 2.96) betrachte Item B

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München akultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 6 11. Juni 2010 Einführung in die Theoretische

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

Sprachen und Automaten. Tino Hempel

Sprachen und Automaten. Tino Hempel Sprachen und Automaten 11 Tino Hempel Bisherige Automaten Automat mit Ausgabe/Mealy-Automat Akzeptor, Sprache eines Akzeptors Grenze: L = {a n b n } Kellerautomat erkennt L = {a n b n } Grenze:? T. Hempel

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Theorie und Praxis geometrischer Algorithmen

Theorie und Praxis geometrischer Algorithmen 0/36 Theorie und Praxis geometrischer Algorithmen Isolierende Intervalle: Sturmsche Ketten Rico Philipp Motivation 1/36 Was ist eine Sturmsche Kette? Wie berechnet man diese? Durch welche Eigenschaften

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Deterministische Kellerautomaten Von besonderem Interesse sind kontextfreie Sprachen,

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik echnische Universität München Fakultät für Informatik Prof. obias Nipkow, Ph.D. ascha öhme, Lars Noschinski ommersemester 2011 Lösungsblatt 5 6. Juni 2011 Einführung in die heoretische Informatik Hinweis:

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

Motivation natürliche Sprachen

Motivation natürliche Sprachen Motivation natürliche Sprachen (Satz) (Substantivphrase)(Verbphrase) (Satz) (Substantivphrase)(Verbphrase)(Objektphrase) (Substantivphrase) (Artikel)(Substantiv) (Verbphrase) (Verb)(Adverb) (Substantiv)

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Theoretische Informatik. Alphabete, Worte, Sprachen

Theoretische Informatik. Alphabete, Worte, Sprachen Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

6 Kontextfreie Grammatiken

6 Kontextfreie Grammatiken 6 Kontextfreie Grammatiken Reguläre Grammatiken und damit auch reguläre Ausdrücke bzw. endliche Automaten haben bezüglich ihres Sprachumfangs Grenzen. Diese Grenzen resultieren aus den inschränkungen,

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

VU Software Paradigmen / SS 2014

VU Software Paradigmen / SS 2014 VU Software Paradigmen 716.060 / SS 2014 Thorsten Ruprechter ruprechter@tugraz.at Institute for Software Technology 1 Organisatorisches Ausgabe: 25.03. (heute) Fragestunde: 22.04. Abgabe: 29.04 (ausgedruckt)

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Abschluss unter Operationen

Abschluss unter Operationen Abschluss unter Operationen Definition Definition: Es seien L eine Menge von Sprachen und τ eine n-stellige Operation, die über Sprachen definiert ist. Dann heißt L abgeschlossen unter τ, wenn für beliebige

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Theoretische Informatik Testvorbereitung Moritz Resl

Theoretische Informatik Testvorbereitung Moritz Resl Theoretische Informatik Testvorbereitung Moritz Resl Bestandteile einer Programmiersprache: a) Syntax (Form): durch kontextfreie Grammatik beschrieben b) Semantik (Bedeutung) 1.) Kontextfreie Sprachen

Mehr

Fachseminar Compilerbau

Fachseminar Compilerbau Fachseminar Compilerbau WS 08/09 Matthias Schiller Syntaktische Analyse 1. Prinzip der Top-Down-Analyse 2. LL(1)-Grammatiken Modell-Vorstellung Der Scanner liefert als Ergebnis der lexikalischen Analyse,

Mehr

Übersetzungstechnik. Francesco Kriegel. TU Dresden Fakultät Mathematik Institut Algebra WS 2008 / 2009

Übersetzungstechnik. Francesco Kriegel. TU Dresden Fakultät Mathematik Institut Algebra WS 2008 / 2009 Übersetzungstechnik Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra WS 2008 / 2009 10. Januar 2010 Inhaltsverzeichnis Kapitel 1 Automat 3 1.1 endlicher Automat.....................................

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Kontextfreie Grammatiken

Kontextfreie Grammatiken Kontextfreie Grammatiken Bisher haben wir verschiedene Automatenmodelle kennengelernt. Diesen Automaten können Wörter vorgelegt werden, die von den Automaten gelesen und dann akzeptiert oder abgelehnt

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 2. Grammatiken und die Chomsky-Hierarchie Beispiel: Syntaxdefinition in BNF :=

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14. Systeme linearer Ungleichungen in einer Variablen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14. Systeme linearer Ungleichungen in einer Variablen ARBEITSBLATT 14 Systeme linearer Ungleichungen in einer Variablen Zunächst einmal können wir die Lösungen einer Ungleichung auf mehrere Arten angeben. Man kann wählen zwischen einer Ungleichungskette,

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Turingmaschinen Formale Sprachen und Automaten Das Konzept der Turingmaschine wurde von dem Englischen Mathematiker Alan M. Turing (1912-1954) ersonnen. Turingmaschinen, Typ-0- und Typ-1-Grammatiken Der

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

liefern eine nicht maschinenbasierte Charakterisierung der regulären

liefern eine nicht maschinenbasierte Charakterisierung der regulären Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Die Mittelsenkrechte im deduktiven Aufbau

Die Mittelsenkrechte im deduktiven Aufbau Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1

Mehr

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19 1/19 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 16. Januar 2008 2/19 Reguläre Ausdrücke vierte Art (neben Typ-3-Grammatiken, deterministischen und nicht-deterministischen

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr