Konstruktionsaufgaben
|
|
|
- Christa Biermann
- vor 7 Jahren
- Abrufe
Transkript
1 Konstruktionsaufgaben Aufgabe 1: Gegeben sind zwei Parallelen p und q (circa 2 cm Abstand), sowie ein Punkt P auf p. Konstruieren Sie alle Punkte, die von P weniger als 2,5 cm Abstand haben und die von p und q je den gleichen Abstand haben. Aufgabe 2: Gegeben sind zwei Punkte A und B im Abstand 4 cm. Konstruieren Sie alle Punkte P, für die gilt: d(ap) 2,5 cm und d(bp) 2,5 cm. Aufgabe 3: Zeichnen Sie ein beliebiges Dreieck. Konstruieren Sie im Innern des Dreiecks denjenigen Punkt, dessen Abstand von allen Seiten möglichst groß ist. Aufgabe 4: Gegeben ist eine Gerade g und zwei Punkte A und B auf verschiedenen Seiten der Geraden. Konstruieren Sie alle Punkte P, die folgende Bedingungen erfüllen: d(pa) > d(pb) und d(pg) 1,5 cm. Aufgabe 5: Gegeben zwei zueinander senkrechte Geraden g und h, die sich in M schneiden. Konstruieren Sie alle Punkte P für die gilt: d(pg) 1 cm und d(ph) 1 cm und d(pm) 3 cm. Aufgabe 6: Gegeben sind zwei Punkte A und B im Abstand 3,5 cm. Konstruieren Sie alle Punkte P für die gilt: d(pa) > 2 cm und d(pb) < 2,5 cm und d(pa) < d(pb). Aufgabe 7: Gegeben ist eine Strecke der Länge 7 cm. Konstruieren Sie alle Punkte P deren Abstand vom dieser Strecke 2 cm beträgt. Aufgabe 8: Gegeben sind zwei sich schneidende Geraden g und h. Konstruieren Sie alle Punkte, die näher bei g als bei h liegen. Aufgabe 9: Drei Dörfer A, B und C mit Entfernungen von 7,5 cm, 4,5 cm und 3,5 cm wollen ein Schulhaus bauen, das der Gerechtigkeit halber von allen Dörfern gleich weit weg liegt. Konstruieren Sie den Ort des Schulhauses. Finden Sie das eine gute Lösung? Aufgabe 10: Gegeben sind eine Gerade g und zwei Punkte A und B. A liegt g, B nicht; d(ab) = 3 cm. gemäss Skizze. Konstruieren Sie alle Punkte P für die gilt: d(pg) > 1 cm und d(pg) < 2 cm und d(pa) = d(pb).
2 Aufgabe 11 Bello kann sich, soweit die Kette reicht, frei bewegen. Das Kettenende E lässt sich zwischen A und B frei verschieben (Laufkette). Konstruieren Sie Bellos Revier, wenn die Kette 6 m lang ist. Aufgabe 12 Zeichnen Sie ein Sechseck mit folgenden Eigenschaften: a) genau eine Symmetrieachse b) nur punktsymmetrisch c) achsen- und punktsymmetrisch d) genau drei Symmetrieachsen Aufgabe 13 Ein Reiter will auf kürzestem Wege von A nach B reiten und unterwegs am Bach sein Pferd tränken. Aufgabe 14 Gegeben ist ein Billardtisch. Wie muss die Kugel A gespielt werden, damit sie die Kugel B trifft a) unter Reflexion an a b) unter Reflexion an a und b c) unter Reflexion an a, b und c Aufgabe 15 Konstruieren Sie das Dreieck ABC mit C auf g so, dass der Umfang möglichst klein ist. Aufgabe 16 Konstruieren Sie die folgenden Dreiecke: a) β = 60, w β = 4 cm, a = 7 cm b) a = 7 cm, b = 8 cm, s b = 6 cm c) α = 90, w α = 4 cm, β = 60 d) c = 10 cm, h c = 4 cm, s c = 5 cm e) a = 5 cm, β = 40, b = 4 cm f) Umkreis r = 4 cm, a = 7,5 cm, h a = 1,5 cm
3 Lösungen 1 Punkte, die von P weniger als 2,5 cm Abstand haben, liegen im Innern des Kreises k mit r = 2,5 cm. Punkte, die von p und q je den gleichen Abstand haben, liegen auf der grünen Mittelparallelen. Resultat: die rote Strecke ohne Endpunkte. 2 d(ap) 2,5 cm: alle Punkte auf dem und im Kreis um A mit r =2,5 cm d(bp) 2,5 cm: alle Punkte auf dem und im Kreis um B mit r = 2,5 cm Resultat: die rot schraffierte Fläche mit Rand 3 Der gesuchte Punkt muss im Schnittpunkt der Winkelhalbierenden liegen. 4 d(pg) 1,5 cm: zwei Parallelen im Abstand 1,5 cm von g bilden einen Streifen. Die Punkte liegen auf oder zwischen den Parallelen. d(pa) > d(pb): Mittelsenkrechte von A und B, die Punkte liegen rechts davon. Ergebnis: das rote Streifenstück mit Rand. 5 Alle Punkte für die d(pg) 1 cm und d(ph) 1 cm liegen in einem Streifen der Breite 2 cm, dessen Mittelparallele g bzw. h ist. Alle Punkte, für die d(pm) 3 cm liegen im Innern des Kreises mit r = 3 cm.
4 6 Punkte, für die d(pa) > 2c m liegen ausserhalb des Kreises k1 Punkte, für die d(pb) < 2,5 cm liegen innerhalb des Kreises k2 Punkte, für die d(pa) < d(pb) liegen links von der Mittelsenkrechten mab 7 Parallele Strecken im Abstand 2 cm, Halbkreise um A und B mit r = 2cm 8 Punkte, die gleich weit von g und h weg sind, liegen auf den Winkelhalbierenden. Die gesuchten Punkte liegen in den Ebenenvierteln, die die Gerade g enthalten. 9 Das Schulhaus läge in X auf dem Schnittpunkt der Mittelsenkrechten. Das ergibt zwar gleich lange, aber auch sehr lange Schulwege. Besser ist Y. 10 aus der Bedingung d(pg) = 1cm bzw. d(pg) = 2 cm ergeben sich je zwei Parallelenpaare zu g. Mit > bzw. < erhält man die Streifen dazwischen. Alle Punkte mit d(pa) = d(pb) liegen auf der Mittelsenkrechten von AB. Allen drei Bedingungen gehorchen die roten Strecken.
5 11 Parallele zu AB im Abstand 6 cm Viertelskreis um P mit r = 3 cm Viertelskreis um Q mit r = 4 cm Viertelskreis um R mit r = 2 cm 12 a b c d 13 Wird ein Lichtstrahl an einem Spiegel oder eine Billardkugel an der Bande reflektiert, gilt das Gesetz: Einfallswinkel = Ausfallswinkel. Außerdem ist diese Strecke die kürzeste aller möglichen Strecken, die unter Berührung von g von A nach B führen. 14 a) siehe 13 b) A an a spiegeln... A, B an b spiegeln... B c) A an a spiegeln... A, B an c spiegeln... B, B an b spiegeln... B
6 15 siehe links 16a) Da β = 60 von w halbiert wird, lässt sich das Teildreieck BCW nach SWS konstruieren: Anschließend: β abtragen und CW verlängern, ergibt A b) Die Seitenhalbierende teilt b in zwei gleich große Stücke: Das Dreieck BCM lässt sich nach SSS konstruieren. Anschließend MC um 4 verlängern. c) Anfang: rechter Winkel und Winkelhalbierenden; irgendwo an c einen 60 -Winkel zeichnen, a' parallel verschieben, bis sie durch W geht. d) das rechtwinklige Dreieck HMC ist einfach zu konstruieren, anschließend von M aus je 5 cm nach links und rechts abmessen e) Beginnen mit der Seite BC und dem Winkel β. Die Seite CA lässt sich auf zwei verschiedene Arten abtragen. f) Beginnen mit dem Kreis und darin eine Sehne der Länge 7,5 abtragen. h a bedeutet, dass der Abstand des Punktes a von der Seite a 1,5 cm ist. Auf beiden Seiten von a ist ein Streifen der Breite 1,5 zu zeichnen. Aus den 4 möglichen Punkten für A ergeben sich 2 verschiedene Dreiecke.
Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.
Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)
Geometrische Grundkonstruktionen
Geometrische Grundkonstruktionen Strecken...2 Halbierung einer Strecke und Mittelsenkrechte...2 Teilung einer Strecke in eine bestimmte Anzahl gleicher Teile...2 Halbierung eines Winkels...3 Tangente an
GEOMETRIE (4a) Kurzskript
GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.
Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse
Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse k mam 1. näher bei M als bei A (Entfernung von 2 Punkten) 2. weniger als 35mm von A entfernt (Entf. von
Begründen in der Geometrie
Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten
2.5. Aufgaben zu Dreieckskonstruktionen
2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere
Geometrie-Dossier Kreis 2
Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert
Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
WF Mathematik: 1. Grundbegriffe der Geometrie
WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres
Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5
(Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei
Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte
AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.
Bezeichnungen am Dreieck
ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.
Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $
$Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis
MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE
ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:
Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :
GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen
3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus
Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch
Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.
Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,
Konstruktionen mit Zirkel und Lineal
Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Unterrichtsreihe zur Parabel
Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis
Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)
Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen
Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.
Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen
Dreieckskonstruktionen
Dreieckskonstruktionen 1. Quelle: VER C 2008 Lösung: ja, nein, ja, ja, nein 2. Wähle aus den vorgegebenen Größen jeweils drei aus und überlege anhand einer Skizze, ob aus den ausgewählten Größen ein Dreieck
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Achsensymmetrie. Grundkonstruktionen
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1)
Name: Geometrie-Dossier 7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Inhalt: Fläche und Umfang von Rechteck und Quadrat Dreiecke (Benennung, Konstruktion) Winkelberechnung im Dreieck und
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
OvTG Gauting, Grundwissen Mathematik 7. Klasse
1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer
37 II.1. Abbildungen
37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin
Schullehrplan in der Geometrie der Vorlehre
Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für
(3r) r 2 =? xy 3y a + 6b 14. ( xy
Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:
Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)
(Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie
Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.
1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets
Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Dualität in der Elementaren Geometrie
1 Dualität in der Elementaren Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected] url: www.wias-berlin.de/people/stephan FU Berlin,
I. Symmetrie. II. Grundkonstruktionen
I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander
M9 Geometrielehrgang. M9 Geometrielehrgang 1
M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche
DOWNLOAD. Konstruieren von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner
DOWNLOAD Michael Körner Konstruieren von Figuren Kopiervorlagen zum Grundwissen Ebene Michael Körner Grundwissen Ebene Geometrie 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel:
Konstruktion von Kreistangenten
Konstruktion von Kreistangenten 1 Gegeben sind die Punkte A und B mit AB = 5cm Konstruiere die Geraden durch B, die von A den Abstand 3cm haben! 2 Eine Ecke einer Rasenfläche, an der die geraden Ränder
Grundlagen der Geometrie
Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode
Geometrie, Einführung
Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende
4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen
4. athematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 1 OJ 4. athematik-olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit
1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website und klicken Sie auf der Startseite auf Download.
1. Was ist GeoGebra? GeoGebra ist eine dynamische Mathematiksoftware, die für Schülerinnen und Schüler aller Altersklassen geeignet ist und auf allen gängigen Betriebssystemen läuft. Sie verbindet Geometrie,
Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten
Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,
Geometrie-Dossier Punktmengen und Dreiecke
Geometrie-Dossier Punktmengen und Dreiecke Name: Inhalt: Punktmengen (Definition, Eigenschaften, Kurzform, Übungen) Dreiecke (Definition, Eigenschaften, Höhen und Schwerlinien) Konstruktionshilfen für
Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $
$Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken
Übungsaufgaben Klasse 7
Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.
Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile
Geometrie I (Sommersemester 006, Dr. Christian Werge, [email protected]) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst
Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7
Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse
Geometrie. Homepage zur Veranstaltung: Lehre Geometrie
Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,
Ähnlichkeit, Strahlensatz
Ähnlichkeit, Strahlensatz Aufgabe 1 Berechne die Strecken x und y. a) links b) rechts Aufgabe 2 Einem Dreieck wurde die Spitze abgeschnitten. Das Reststück in Form eines Trapezes hat Parallelen von 15
Lösungen Crashkurs 7. Jahrgangsstufe
Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der
MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE A. L = { 5} oder x = 5, denn x 5 = 0 oder x 5 = 0 x = 5 oder x = 5 x = 5 oder x = 5 L = {... ; ; ; 0; 4; 5;...}, denn x 5 >
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.
Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende
Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.
AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,
1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A
1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten
Der Höhenschnittpunkt im Dreieck
Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen
Sekundarschulabschluss für Erwachsene. Geometrie A 2014
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für
Die Mittelsenkrechte im deduktiven Aufbau
Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Aufnahmeprüfung Mathematik
Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22.
Vektorgeometrie ganz einfach Aufgabensammlung Berechnung von Strecken und Winkeln Hier alle Beispiele aus Teil 5 und 6 als Aufgabensammlung. Datei Nr. 640 Stand. März 0 INTERNETBIBLITHEK FÜR SCHULMATHEMATIK
3 Geometrisches Beweisen
22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette
Grundwissen 7 Bereich 1: Terme
Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen
D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
1. Grundlegendes in der Geometrie
1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Aufgaben zum Basiswissen 7. Klasse
Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion:
Lösungen Geometrie-ossier 7 - Ebene Figuren eiten 7/ 8 ufgaben reiecke (ie Lösungen sind verkleinert gezeichnet. ie hier vorgeschlagenen Konstruktionswege sind nur eispiele unter einige Möglichkeiten.)
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:
MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2014 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
Symmetrien und Winkel
1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen
31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen
31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen
1. Winkel (Kapitel 3)
1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt
Didaktik der Geometrie
Jürgen Roth Didaktik der Geometrie Modul 5: Fachdidaktische Bereiche 3.1 Inhalt Didaktik der Geometrie 1 Ziele und Inhalte 2 Begriffsbildung 3 Konstruieren 4 Argumentieren und Beweisen 5 Problemlösen 6
Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?
Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.
Sehnenlänge. Aufgabenstellung
Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion
mentor Lernhilfe: Mathematik 7. Klasse Baumann
mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse
A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 %
5 Prozentrechnen Übung 50 Der ganze Streifen entspricht 100 % = 1 000 = 1. Welche Prozent- und Promillesätze stellen die unterschiedlich getönten Flächen dar? Abb. 27 1. 2. 3. Übung 51 Der volle Winkel
Mecklenburg - Vorpommern
Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht
Station A * * 1-4 ca. 16 min
Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt
3. Synthetische Geometrie (synthetein = zusammensetzen)
3. Synthetische Geometrie (synthetein = zusammensetzen) Wichtig ist in der synthetischen Geometrie das Zusammensetzen von Grundsätzen, Voraussetzungen, Sätzen und Folgerungen. Die SuS lernen die neue Art
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 DIE MERKWÜRDIGEN PUNKTE DES DREIECKS
REITSLTT 14 1) Der Höhenschnittpunkt DIE MERKWÜRDIGEN PUNKTE DES DREIECKS Definition: Unter einer Höhe versteht man eine Normale auf eine Seite zum gegenüberliegenden Eckpunkt. Die Höhe h c steht also
Geometrie. in 15 Minuten. Geometrie. Klasse
Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)
Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei
M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?
M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.
