aterialfluss in Logistiksysteme
|
|
|
- Angelika Birgit Bayer
- vor 7 Jahren
- Abrufe
Transkript
1 Dieter Arnold Kai Furmans aterialfluss in Logistiksysteme 5., erweiterte Auflage Mit 202 Abbildungen und 19 Tabellen Sprin er
2 Inhaltsverzeichnis 1. Einführung und Überblick Der Materialfluß in Produktion und Vertrieb Aufgaben der Materialflußlehre Typisches Beispiel eines Materialflußsystems 4 2. Grundelemente der Materialflußsysteme Förderstrecken Durchsatz Grenzdurchsatz, Auslastungsgrad Taktzeit Zwischenankunftszeit Erwartungswert stetig verteilter Zwischenankunftszeiten f6 2.f.6 Praktische Ermittlung des Erwartungswerts Streuung der Zwischenankunftszeiten Verzweigungen Teilstetige Verzweigungen für zwei Richtungen Teilstetige Verzweigungen für beliebig viele Richtungen Unstetige Verzweigungen für zwei und mehr Richtungen Partieller Grenzdurchsatz der stetigen und der unstetigen Richtungen Stetige Verzweigungen für zwei Richtungen Stetige Verzweigungen für beliebig viele Richtungen Zusammenführungen Abfertigungsregeln für die Zusammenführungen Die Zeitlücken im Hauptstrom Durchsatzbedingungen der Zusammenführungen mit Vorfahrt Universelles Materialflußelement Literaturempfehlungen zu Kapitel Abbildung von Materialflußsystemen in Modellen Modellarten Flußdiagramme, Groblayout Graphen 51
3 X Inhaltsverzeichnis Struktur Pfeil- und Knotenbewertung Materialflußmatrizen Adjazenzmatrix Bewertungsmatrix Kürzeste-Wegc"-Matrix Belastungsmatrix Transportmatrix Leerfahrtenmatrix Benutzung der Matrizen zur Bestimmung der Fördermittelanzahl Verteilungen zur Beschreibung des dynamischen Verhaltens von Materialflußprozessen Diskrete Verteilungen Stetige Verteilungen Stetige Gleichverteilung Exponentialverteilung Erlangverteilung Normalverteilung Statistische Schätz- und Prüfmethoden zur Beurteilung des stochastischen Verhaltens von Materialflußprozessen Punktschätzung Bereichsschätzung Vertrauensbereich der Varianz Testen von Hypothesen Literaturempfehlungen zu Kapitel Warten und Bedienen im Materialfluß Wartesystem-Modelle Das M M l-modell Das D D l-modell Das M D l-modell Das M fe l-modell Das M G l-modell Das G G l-modell Das M M[m-Modell Geschlossene Systeme am Beispiel des M M 1 K-Systems Vernetzte Wartesysteme Berechnung von Kennwerten für offene Netzwerke mit Exponentialverteilungen Berechnung von Kennwerten für geschlossene Netzwerke mit exponentialverteilten Bedienzeiten Die Mittelwertanalyse Beispiel zur Anwendung von elementaren Wartesystemen Zeitdiskrete Modelle von Materialflußelementen 148
4 Inhaltsverzeichnis XI 4.13 Exkurs: Zufällige Irrfahrt und Leiterhöhenverteilung Zeitdiskrete G G 1-Wartesysteme als zufällige Irrfahrt Berechnung der Warte- und Brachverteilung Bestimmung der Zwischenabgangszeit Bestimmung der Verweilzeit einer Fördereinheit Bestimmung der Verteilung der Zahl von Fördereinheiten im System im Ankunftsmoment Literaturempfehlungen zu Kapitel Lagern und Kommissionieren Lagerbestand Lagerkapazität und Füllungsgrad Lagerdimensionierung bei normalverteilten Artikelbeständen Lagerdimensionierung bei beliebig verteilten Artikelbeständen Lagerbauarten Zugriffszeit Einzel- und Doppelspiel Mittlere Spielzeit der Einzelspiele Mittlere Spielzeit der Doppelspiele Mittlere Spielzeiten in Abhängigkeit von der Lage des Übergabeplatzes Kommissionieren Drei Grundkonzepte für Kommissioniersysteme Die Kommissionierzeit Literaturempfehlungen zu Kapitel Sortieren Der Materialfluss des Sortierprozesses Sortieren in Logistikprozessen Grenzdurchsatz, betrieblicher Durchsatz Literaturempfehlungen zu Kapitel Planung von Materialfiußsystemen Aufnahme des Ist-Zustands Parameter der Ist-Aufnahme Ablaufstudien Belastungsstudicn Kostenstudien Darstellung des Ist-Zustands Wertstromanalyse Planungsstufen Grobplanung Idealplanung 273
5 XII Inhaltsverzeichnis Realplanung Detailplanung Beurteilung von Planungsvarianten Nutzwertanalysen Wirtschaftlichkeitsanalysen Risikoanalysen Layoutplanung Das Optimierungsproblem Das Dreieck-Verfahren Rechnergestützte Layoutplanungsverfahren Ein vektorbasiertes Layoutplanungsverfahren Verfügbarkeit Definition und Bestimmungsgrößen der Verfügbarkeit Verbesserung der Verfügbarkeit von Systemen durch die Anordnung ihrer Elemente Die Problematik des Nachweises der Verfügbarkeit Simulation Simulation der Arbeitsweise eines Regalbediengeräts im Hochregallager Simulation eines Warteprozesses Simulation vernetzter Materialflußsysteme in der Planungsphase Charakteristische Arbeitsphasen und typische Probleme bei der Durchführung einer Simulation Analyse der Simulationsergebnisse Literaturempfehlungen zu Kapitel Literaturverzeichnis 329 Sachverzeichnis 337
Elementare Wahrscheinlichkeitsrechnung
Johann Pfanzagl Elementare Wahrscheinlichkeitsrechnung 2., überarbeitete und erweiterte Auflage W DE G Walter de Gruyter Berlin New York 1991 Inhaltsverzeichnis 1. Zufallsexperimente und Wahrscheinlichkeit
Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler
Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis
Wahrscheinlichkeitsrechnung und schließende Statistik
Günther Bourier Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung Mit Aufgaben und Lösungen 3. F überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort Inhaltsverzeichnis
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
1 Grundprinzipien statistischer Schlußweisen
Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation
Literatur. Drezner, Z. (1980). A new method for the layout problem. Operations Research 25 (6), S. 1375 1384.
Literatur Aggteleky (1987). Fabrikplanung (2. Aufl.). München: Carl Hanser Verlag. Armour, G. und E. S. Buffa (1963). A heuristic algorithm and simulation approach to relative allocation of facilities.
1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...
Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............
Biostatistik Erne Einfuhrung fur Biowissenschaftler
Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie
Statistik für Ökonomen
Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren
Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...
Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5
1 Inhaltsverzeichnis. 1 Einführung...1
1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische
Auswahl von Schätzfunktionen
Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)
ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)
ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels
Ereignisdiskrete Systeme
Ereignisdiskrete Systeme Modellierung und Analyse dynamischer Systeme mit Automaten, Markovketten und Petrinetzen von Jan Lunze Mit 340 Abbildungen, 80 Anwendungsbeispielen und 110 Übungsaufgaben Oldenbourg
Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen
Jürgen Bortz Statistik Für Sozialwissenschaftler Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Springer-Verlag Berlin Heidelberg Newlfork London Paris Tokyo Inhaltsverzeichnis Einleitung
Inhaltsverzeichnis. Teil I Einführung
Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood
Statistische Auswertung von Meß- und Versuchsdaten mit Taschenrechner und Tischcomputer
Siegfried Noack Statistische Auswertung von Meß- und Versuchsdaten mit Taschenrechner und Tischcomputer Anleitungen und Beispiele aus dem Laborbereich W DE G Walter de Gruyter Berlin New York 1980 Inhaltsverzeichnis
Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage
Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung
Kapitel VI - Lage- und Streuungsparameter
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie
k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr
Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p
7.2 Moment und Varianz
7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p
Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft
Die Varianz (Streuung) Definition
Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen
6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,
Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.
Analytische Energiebedarfsbestimmung von Intralogistiksystemen in der Planungsphase
Analytische Energiebedarfsbestimmung von Intralogistiksystemen in der Planungsphase Dipl.- Ing. Sebastian Habenicht Dipl.- Ing. Rainer Ertl Dortmund 17.9.13 fml - Lehrstuhl für Fördertechnik Materialfluss
Statistik für das Psychologiestudium
Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER
Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.
Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat
Einführung in die computergestützte Datenanalyse
Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL
Lehrbuch der Statistik
Jürgen Bortz Lehrbuch der Statistik Für Sozialwissenschaftler Zweite, vollständig neu bearbeitete und erweiterte Auflage Mit 71 Abbildungen und 223 Tabellen Springer-Verlag Berlin Heidelberg New York Tokyo
die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen
Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung
Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch
6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6
1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller
Stochastik für Informatiker
Statistik und ihre Anwendungen Stochastik für Informatiker Bearbeitet von Lutz Dumbgen 1. Auflage 2003. Taschenbuch. XII, 267 S. Paperback ISBN 978 3 540 00061 7 Format (B x L): 15,5 x 23,5 cm Gewicht:
Über den Autor 7. Teil Beschreibende Statistik 29
Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:
Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage
Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt
2. Übung zur Vorlesung Statistik 2
2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen
Keine Panik vor Statistik!
Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt
Grundlagen, Vorgehensweisen, Aufgaben, Beispiele
Hans Benker - Wirtschaftsmathematik Problemlösungen mit EXCEL Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Mit 138 Abbildungen vieweg TEIL I: EXCEL 1 EXCEL: Einführung 1 1.1 Grundlagen 1 1.1.1 Tabellenkalkulation
1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben...
Inhaltsverzeichnis 1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben... 14 2 Beschreibende Statistik... 15 2.1 Merkmale und ihre
I. Zahlen, Rechenregeln & Kombinatorik
XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen
Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0
Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I WS 009/010 Kapitel.0 Schritt 1: Bestimmen der relevanten Kenngrößen Kennwerte Einflussgrößen Typ A/Typ B einzeln im ersten Schritt werden
Wahrscheinlichkeitsrechnung und schließende Statistik
Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
EdM Nordrhein-Westfalen Qualifikationsphase Bleib fit in Funktionsuntersuchungen. 1 Kurvenanpassung Lineare Gleichungssysteme
EdM Nordrhein-Westfalen Qualifikationsphase 978-3-507-87900-3 Bleib fit in Differenzialrechnung Bleib fit in Funktionsuntersuchungen 1 Kurvenanpassung Lineare Gleichungssysteme Lernfeld: Krumm, aber doch
Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16
Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.
Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik
Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung
Makrem Kadachi. Kriterien für eine simulationskonforme Abbildung von Materialflusssystemen. Herbert Utz Verlag München
Makrem Kadachi Kriterien für eine simulationskonforme Abbildung von Materialflusssystemen Herbert Utz Verlag München Zugl.: München, Techn. Univ., Diss., 2003 Bibliografische Information Der Deutschen
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86
Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................
Kommissioniersysteme Fallbeispiel zur simulationsgestützten Planung von Kommissioniersystemen
Kommissioniersysteme Fallbeispiel zur simulationsgestützten Planung von Kommissioniersystemen liz Demo-Tag Garching 08.02.2008 Alexander Ulbrich [email protected] +49 (0) 89-289159-72 Stefan Galka
Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate
Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
Materialfluß und Logistik
Wolfram Fischer Lothar Dittrich 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Materialfluß und Logistik Potentiale
Objektorientierte Prozeßsimulation in C++
Joachim Fischer Klaus Ahrens Objektorientierte Prozeßsimulation in C++ SUB Göttingen 204938 880 98A24564 ADDISON-WESLEY PUBLISHING COMPANY Bonn Reading, Massachusetts Menlo Park, California New York Don
Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden
Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse
Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von
Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN
Fragenkatalog Kapitel 1 Fehleranalyse
Teil 1: Numerik katalog Kapitel 1 Fehleranalyse 1. Zwischen was besteht ein funktionaler Zusammenhang z i? Welche Form hat er? 2. Welche 4 Typen von Fehlerquellen gibt es? Nenne Beispiele! 3. Wie berechnet
Stochastik im Wechselspiel von Intuitionen und Mathematik
Stochastik im Wechselspiel von Intuitionen und Mathematik von Univ. Doz. Dr. Manfred Borovcnik Universität Klagenfurt Wissenschaftsverlag Mannheim/Leipzig/Wien/Zürich Inhaltsverzeichnis Intuitionen und
Statistische Auswertungsmethoden für Ingenieure
Manfred Kühlmeyer Statistische Auswertungsmethoden für Ingenieure mit Praxisbeispielen Unter Mitarbeit von Claudia Kühlmeyer Mit 55 Abbildungen Springer Inhaltsverzeichnis Seite 1 Einführung 1 1.1 Was
Analytische Energiebedarfsbestimmung von Intralogistiksystemen in der Planungsphase
Analytische Energiebedarfsbestimmung von Intralogistiksystemen in der Planungsphase Dipl.- Ing. Sebastian Habenicht Dipl.- Ing. Rainer Ertl Dortmund 17.09.2013 fml - Lehrstuhl für Fördertechnik Materialfluss
Ein- und Zweistichprobentests
(c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen
Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse. Computer-Netzwerke
Informationstechnik Klaus-Dieter Thies Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse für Computer-Netzwerke Mit einer wahrscheinlichkeitstheoretischen
Stochastik und Statistik für Ingenieure Vorlesung 4
Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl
2. Repräsentationen von Graphen in Computern
2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen
Stochastik. 1. Wahrscheinlichkeitsräume
Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.
1. Aufgaben zur Übung Einfache Systeme
Thomas Schulze Übungsaufgaben zur LV Produktionssimulation 1 1. Aufgaben zur Übung Einfache Systeme 1.1. Aufgabe 1(Maschine mit Puffer) In einer Quelle (Quelle1) werden identische Teile (Teile A) erzeugt.
Kommissionierung. 4y Spri ringer. Materialflusssysteme 2 - Planung und Berechnung der Kommissionierung in der Logistik
Michael ten Hompel Volker Sadowsky Maria Beck Kommissionierung Materialflusssysteme 2 - Planung und Berechnung der Kommissionierung in der Logistik 4y Spri ringer Inhaltsverzeichnis 1 Einleitung 1 2 Kommissionieren
Grundkompetenzen (Mathematik Oberstufe)
Grundkompetenzen (Mathematik Oberstufe) AG: Algebra und Geometrie (14 Deskriptoren) FA: Funktionale Abhängigkeiten (35 Deskriptoren) AN: Analysis (11 Deskriptoren) WS: Wahrscheinlichkeit und Statistik
Signalverarbeitung 2. Volker Stahl - 1 -
- 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend
2 Zufallsvariable, Verteilungen, Erwartungswert
2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über
Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion
Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere
1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?
86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?
Modul G.1 WS 07/08: Statistik
Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen
Adolf Riede. Mathematik für Biologen. Eine Grundvorlesung. Mit 120 Abbildungen und zahlreichen durchgerechneten Beispielen.
9vieweg Adolf Riede Mathematik für Biologen Eine Grundvorlesung Mit 120 Abbildungen und zahlreichen durchgerechneten Beispielen IX I Zahlen 1 1.1 Anzahlen 1 1.2 Reelle Zahlen 8 1.3 Dokumentation von Meßwerten
1.4! Einführung. Systemmodellierung. Methoden und Werkzeuge
Einführung. Vorbemerkungen und Überblick. Die elektronischen e des Fahrzeugs. Prozesse in der Fahrzeugentwicklung im Überblick,.4 Grundlagen. Steuerungs- und regelungstechnische e (Prof. Schumacher). Diskrete
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
4.5 Wachstumsfunktionen
4.5 Wachstumsfunktionen Wenn man die Entwicklung einer Pflanze modelliert, ist es zweckmäßig, das Verzweigen und das Längenwachstum in verschiedenen Regeln zu modellieren. Das wurde zum Beispiel in den
Inhaltsverzeichnis. Vorwort
V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6
Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests
Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung
Inhaltsverzeichnis. 1 Lineare Algebra 12
Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer
Ökonomische Analyse der Medikamentenverteilung im Krankenhaus
Helmut Kühn Ökonomische Analyse der Medikamentenverteilung im Krankenhaus Eine empirische Simulationsstudie UNIVERSITÄTS- BIBLIOTHEK PETER LANG Frankfurt am Main Bern New York Nancy INHALTSVERZEICHNIS
3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft
3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)
1. Einführung und Überblick
1. Einführung und Überblick 1.1 Der Materialfluss in Produktion und Vertrieb Die einzelnen Schritte der Produktion und des Vertriebs von Konsum- und Investitionsgütern sind in einer Vorgangsfolge nach
Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).
Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen
Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion
Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig
Einführung in die Statistik mit EXCEL und SPSS
Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen
Kenngrößen von Zufallsvariablen
Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert
Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe
Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,
Portfolio Insurance - CPPI im Vergleich zu anderen Strategien
Roger Uhlmann Portfolio Insurance - CPPI im Vergleich zu anderen Strategien Haupt Verlag Bern Stuttgart Wien Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbol- und
