Erinnerung VL

Größe: px
Ab Seite anzeigen:

Download "Erinnerung VL"

Transkript

1 Erinnerung VL Graphtraverierung BFS (Breitenuche): in Schichten um Startknoten löt einfache Form de Kürzete-Wege-Problem DFS (Tiefenuche): ert abteigen, dann Alternativen anehen generich formuliert, viele Intanziierungen möglich Heute: mehr zu DFS, kürzete Wege KIT Intitut für Theoretiche Informatik 1

2 Erinnerung: Tiefenuchchema unmark all node; init foreach V do if i not marked then mark root() DFS(, ) // make a root and grow // a new DFS tree rooted at Procedure DFS(u, v : NodeId) // Explore v coming from u foreach (v,w) E do if w i marked then traverenontreeedge(v, w) ele traveretreeedge(v, w) mark w DFS(v,w) backtrack(u,v) // return from v along the incoming edge KIT Intitut für Theoretiche Informatik

3 Wiederholung: Kantenklaizierung Baumkanten: Elemente de Walde, der bei der Suche gebaut wird Vorwärtkanten: verlaufen parallel zu Wegen au Baumkanten Rückwärtkanten: verlaufen antiparallel zu Wegen au Baumkanten Querkanten: alle übrigen forward tree backward cro KIT Intitut für Theoretiche Informatik 3

4 DFS-Nummerierung init: root(): traveretreeedge(v, w): dfpo=1 : 1..n dfnum[]:= dfpo++ dfnum[w]:= dfpo++ u v : dfnum[u] < dfnum[v]. Beobachtung: Knoten auf dem Rekuriontapel ind bzgl. ortiert tree backward b e g f cro forward d c 7 6 KIT Intitut für Theoretiche Informatik 4

5 Fertigtellungzeit init: backtrack(u, v): nihingtime=1 : 1..n nihtime[v]:= nihingtime++ tree backward b e g f cro forward d c 6 3 KIT Intitut für Theoretiche Informatik

6 Kantenklaizierung bei DFS type dfnum[v] < nihtime[w] < w i (v, w) dfnum[w] nihtime[v] marked tree ye ye no forward ye ye ye backward no no ye cro no ye ye forward tree backward cro KIT Intitut für Theoretiche Informatik 6

7 Topologiche Sortierung Denition 1 Eine lineare Anordnung t der Knoten eine DAG G = (V,E), in der alle Kanten von kleineren zu gröÿeren Knoten verlaufen, heiÿt topologiche Sortierung, d. h. (u,v) E : t(u) < t(v). Beipiel: topologich ortierter Kleidergraph, Quelle: Wikipedia Kleidergraph, Quelle: Wikipedia KIT Intitut für Theoretiche Informatik 7

8 Topologiche Sortieren mittel DFS Theorem G it kreifrei (DAG) DFS ndet keine Rückwärtkante. In dieem Fall liefert t(v):= n nihtime[v] eine topologiche Sortierung. KIT Intitut für Theoretiche Informatik 8

9 Topologiche Sortieren mittel DFS Theorem G it kreifrei (DAG) DFS ndet keine Rückwärtkante. In dieem Fall liefert t(v):= n nihtime[v] eine topologiche Sortierung. Bewei : Annahme: Rückwärtkante. Zuammen mit Baumkanten ergibt ich ein Krei. Widerpruch. forward tree backward cro KIT Intitut für Theoretiche Informatik 8

10 Topologiche Sortieren mittel DFS Satz: G kreifrei (DAG) DFS ndet keine Rückwärtkante. In dieem Fall liefert t(v):= n nihtime[v] eine topologiche Sortierung, d. h. (u,v) E : t(u) < t(v). Bewei : Keine Rückwärtkante Kantenklaizierung {}}{ (v,w) E : nihtime[v] > nihtime[w] G it kreifrei und nihtime deniert umgekehrte topologiche Sortierung. KIT Intitut für Theoretiche Informatik 9

11 Starke Zuammenhangkomponenten Betrachte die Relation mit u v fall Pfad u,...,v und Pfad v,...,u. Beobachtung: it Äquivalenzrelation Die Äquivalenzklaen von bezeichnet man al tarke Zuammenhangkomponenten. Übung DFS-baierter Linearzeitalgorithmu Algorithmen II KIT Intitut für Theoretiche Informatik 1

12 Mehr DFS-baierte Linearzeitalgorithmen -zuammenhängende Komponenten: bei Entfernen eine Knoten au einer Komponente bleibt diee zuammenhängend (ungerichtet) 3-zuammenhängende Komponenten Planaritättet (lät ich der Graph kreuzungfrei zeichnen?) Einbettung planarer Graphen KIT Intitut für Theoretiche Informatik 11

13 BFS DFS pro BFS: nichtrekuriv keine Vorwärtkanten kürzete Wege, Umgebung pro DFS: keine explizite Datentruktur (Rekuriontapel) für ToDo, daher mglw. einfacher Grundlage vieler Algorithmen tree forward backward cro KIT Intitut für Theoretiche Informatik 1

14 Kap. 1: Kürzete Wege Eingabe: Graph G = (V,E) mit Kotenfunktion/Kantengewicht c : E R owie Startknoten. 3. km Augabe: für alle v V : Länge µ(v) de kürzeten Pfade von nach v, µ(v) := min{c(p) : p it Pfad von nach v} mit c( e 1,...,e k ) := k i=1 c(e i). KIT Intitut für Theoretiche Informatik 13

15 Kap. 1: Kürzete Wege Eingabe: Graph G = (V,E) mit Kotenfunktion/Kantengewicht c : E R owie Startknoten. 3. km Augabe: für alle v V : Länge µ(v) de kürzeten Pfade von nach v, µ(v) := min{c(p) : p it Pfad von nach v} mit c( e 1,...,e k ) := k i=1 c(e i). Oft wollen wir auch geeignete Repräentation der kürzeten Pfade. KIT Intitut für Theoretiche Informatik 13

16 Anwendungen Routenplanung Straÿennetze Spiele Kommunikationnetze Unterprogramm Flüe in Netzwerken... Tippfehlerkorrektur Dik Scheduling km KIT Intitut für Theoretiche Informatik 14

17 Grundlagen Gibt e immer einen kürzeten Pfad? E kann negative Kreie geben! p u C q v p u C () q v... weitere Grundlagen jut in time KIT Intitut für Theoretiche Informatik 1

18 Azykliche Graphen päter KIT Intitut für Theoretiche Informatik 16

19 Kantengewichte Alle Gewichte gleich: Breitenuche (BFS)! b c d e f g tree backward cro forward 1 3 KIT Intitut für Theoretiche Informatik 17

20 Dijktra Algorithmu Nun: Beliebige nichtnegative Kantengewichte Löung ohne Rechner: M R Ditance to M Kanten Fäden Kantengewicht Fadenlänge Knoten Knoten Dann: Am Startknoten anheben. H G F E C N K L P V Q S O J W KIT Intitut für Theoretiche Informatik 18

21 Korrektheit der Bindfäden Betrachte beliebigen Knoten v mit Hängetiefe d[v]. Pfad mit Hängetiefe: verfolge trae Fäden kürzerer Pfad: fall e einen olchen Pfad gäbe, wäre einer einer Fäden zerrien! H G F E C M N K L P V R Q S O J W Ditance to M KIT Intitut für Theoretiche Informatik 19

22 Edger Wybe Dijktra ACM Turing Award THE: da erte Mulitaking-OS Semaphor Selbt-tabiliierende Syteme GOTO Statement Conidered Harmful Bildquelle: Wikipedia KIT Intitut für Theoretiche Informatik

23 Allgemeine Denitionen Wie bei BFS benutzen wir zwei Knotenarray: d[v] = aktuelle (vorläuge) Ditanz von nach v Invariante: d[v] µ(v) parent[v] = Vorgänger von v auf dem (vorläugen) kürzeten Pfad von nach v Invariante: dieer Pfad bezeugt d[v] Initialiierung: d[] =, parent[] = d[v] =, parent[v] = Kante Kante Kante v parent parent parent d[v] KIT Intitut für Theoretiche Informatik 1

24 Kante (u,v) relaxieren Fall d[u] + c(u,v) < d[v] (vielleicht d[v] = ), etze d[v] := d[u] + c(u,v) und parent[v] := u Invarianten bleiben erhalten! Beobachtung: d[v] kann ich mehrmal ändern! KIT Intitut für Theoretiche Informatik

25 Dijktra Algorithmu: Peudocode initialize d, parent all node are non-canned while non-canned node u with d[u] < u := non-canned node v with minimal d[v] relax all edge (u,v) out of u u i canned now Behauptung: Am Ende deniert d die optimalen Entfernungen und parent die zugehörigen Wege KIT Intitut für Theoretiche Informatik 3

26 KIT Intitut für Theoretiche Informatik 4 Beipiel c b d e f c b d e f a 1 c d e f b f b e d c c f e d c d f b e a a b a a a 1 6 7

27 Korrektheit Annahme: alle Koten nicht-negativ! Wir zeigen: v V : v erreichbar = v wird irgendwann gecannt v gecannt = µ(v) = d[v] KIT Intitut für Theoretiche Informatik

28 v erreichbar = v wird irgendwann gecannt Annahme: v it erreichbar, aber wird nicht gecannt gecannt ungecannt ungecannt {}}{{}}{{}}{ = v 1 v v i 1 v i v k = v }{{} ein kürzeter v Pfad = v i 1 wird gecannt = Kante v i 1 v i wird relaxiert = d[v i ] < Widerpruch nur Knoten x mit d[x] = werden nie gecannt? KIT Intitut für Theoretiche Informatik 6

29 v erreichbar = v wird irgendwann gecannt Annahme: v it erreichbar, aber wird nicht gecannt gecannt ungecannt ungecannt {}}{{}}{{}}{ = v 1 v v i 1 v i v k = v }{{} ein kürzeter v Pfad = v i 1 wird gecannt = Kante v i 1 v i wird relaxiert = d[v i ] < Widerpruch nur Knoten x mit d[x] = werden nie gecannt Up: Spezialfall i = 1? Kann auch nicht ein. v 1 = wird nach Initialiierung gecannt. KIT Intitut für Theoretiche Informatik 6

30 v gecannt = µ(v) = d[v] Annahme: v gecannt und µ(v) < d[v] OBdA: v it der erte gecannte Knoten mit µ(v) < d[v]. t := Scan-Zeit von v Scan-Zeit < t Scan-Zeit t Scan-Zeit = t {}}{{}}{{}}{ = v 1 v v i 1 v i v k = v }{{} ein kürzeter v Pfad Alo gilt zur Zeit t: µ(v i 1 ) = d[v i 1 ] v i 1 v i wurde relaxiert {}}{ = d[v i ] d[v i 1 ] + c(v i 1,v i ) = µ(v i ) µ(v)< d[v] = v i wird vor v gecannt. Widerpruch! Wieder: Spezialfall i = 1 unmöglich. KIT Intitut für Theoretiche Informatik 7

31 Implementierung? initialize d, parent all node are non-canned while non-canned node u with d[u] < u := non-canned node v with minimal d[v] relax all edge (u,v) out of u u i canned now Wichtigte Operation: nde u KIT Intitut für Theoretiche Informatik 8

32 Prioritätlite Wir peichern ungecannte erreichte Knoten in adreierbarer Prioritätlite Q. Schlüel it d[v]. Knoten peichern handle. oder gleich item KIT Intitut für Theoretiche Informatik 9

33 Implementierung BFS mit PQ tatt FIFO Function Dijktra( : NodeId) : NodeArray NodeArray // return (d, parent) Initialiierung: d=,..., : NodeArray of R { } // tentative ditance from root parent=,..., : NodeArray of NodeId parent[]:= // elf-loop ignal root Q : NodePQ // uncanned reached node d[] := ; Q.inert() KIT Intitut für Theoretiche Informatik 3

34 Function Dijktra( : NodeId) : NodeArray NodeArray d =,..., ; parent[]:= ; d[] := ; Q.inert() while Q / do u := Q.deleteMin u // can u foreach edge e = (u,v) E do canned if d[u] + c(e) < d[v] then // relax d[v]:= d[u] + c(e) parent[v] := u // update tree if v Q then Q.decreaeKey(v) u v ele Q.inert(v) reached return (d, parent) KIT Intitut für Theoretiche Informatik 31

35 Beipiel 3 a b c d e f a b c d e f a b c d e f a b d e a b d e a b d e c f 7 c f 7 c f Operation Queue inert() (,) deletemin (,) relax a (a,) relax 1 d (a,),(d,1) deletemin (a,) (d,1) relax a 3 b (b,),(d,1) deletemin (b,) (d,1) relax b c (c,7),(d,1) relax b 1 e (e,6),(c,7),(d,1) deletemin (e,6) (c,7),(d,1) relax e 9 b (c,7),(d,1) relax e 8 c (c,7),(d,1) relax e d (d,6),(c,7) deletemin (d,6) (c,7) relax d 4 (c,7) relax d b (c,7) deletemin (c,7) KIT Intitut für Theoretiche Informatik 3

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach B? B A Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 22. Vorlesung Tiefensuche und Topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Vorlesungsumfrage Nutzen Sie die Vorlesungsbefragung

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 06.06.06 Sortierte Folgen: eierlegende Wollmilchsau Suchbäume: binäre und (a, b)-bäume (a, b)-bäume: remove, insert etwas kompliziert (balancieren), aber in logarithmischer Zeit möglich Heute:

Mehr

11. Übungsblatt zu Algorithmen I im SS 2010

11. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 11. Übungsblatt zu Algorithmen I im SS 2010 http://algo2.iti.kit.edu/algorithmeni.php

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

2. Übungsblatt zu Algorithmen II im WS 2016/2017

2. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

8 Graphrepräsentation

8 Graphrepräsentation Sanders / van Stee: Algorithmentechnik November, 7 1 8 Graphrepräsentation 1736 fragt L. Euler die folgende touristische Frage: Straßen- oder Computernetzwerke Zugverbindungen (Raum und Zeit) Soziale Netzwerke

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

Algorithmen und Datenstrukturen Graphen - Einführung

Algorithmen und Datenstrukturen Graphen - Einführung Algorithmen und Datenstrukturen Graphen - Einführung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Definition / Eigenschaften Anwendungen Repräsentation

Mehr

Maximaler Fluss = minimaler Schnitt

Maximaler Fluss = minimaler Schnitt Maximaler Flu = minimaler Schnitt Oliver Junge Fakultät für Mathematik Techniche Univerität München Flüe in Netzwerken Mathematiche Abtraktion Kapazität 3 2 Quelle 5 Senke 1 2 Netzwerk gerichteter Graph

Mehr

Christian Schulz und Johannes Singler

Christian Schulz und Johannes Singler Christian Schulz und Johannes Singler, Prof. Sanders 1 KIT Christian Universität des Schulz Landes Baden-Württemberg und Johannes undsingler: nationales 3. Übung Forschungszentrum Algorithmen in der Helmholtz-Gemeinschaft

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 30.05.2016 Radix-Sort, Abschluss Sortieren Prioritätslisten: Warteschlange mit Prioritäten deletemin: kleinstes Element rausnehmen insert: Element einfügen Binäre Heaps als Implementierung

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Minimum Spanning Tree

Minimum Spanning Tree 1.5 1.5 1.0 0.75.0 0.75 Gegeben ein Graph G = (V, E). Die Knotenmenge V repräsentiere eine Menge von Spezies. Jede Kante e = (v,u) ist beschriftet mit der evolutionäre Distanz w(v,u) (Kantengewicht) des

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown Kap. Sortieren..5 HeapSort ff..6 Priority Queues Professor Dr. Vorlesung am Do 7.5. entfällt wegen FVV um Uhr Lehrstuhl für Algorithm Engineering, LS Fakultät für nformatik, TU Dortmund 7. VO DAP SS 009

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

DATENSTRUKTUREN UND ALGORITHMEN

DATENSTRUKTUREN UND ALGORITHMEN DATENSTRUKTUREN UND ALGORITHMEN 2 Ist die Datenstruktur so wichtig??? Wahl der Datenstruktur wichtiger Schritt beim Entwurf und der Implementierung von Algorithmen Dünn besetzte Graphen und Matrizen bilden

Mehr

G : (V; E) mit E V V G : (V 1, V 2 ; E) mit E V 1 V 2 V 2 V 1 l(w) k i1 l(e i ) dist(u, v) 0 min(l(w) : W ist ein Weg von u nach v falls u v falls ein solcher Weg existiert sonst v 1 V v i V (i

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung

Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung Konstantin Clemens Johanna Ploog Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Viertes

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Graphen. Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60)

Graphen. Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60) Graphen Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60) Teil II: Graphen 1. Einführung 2. Wege und Kreise in Graphen, Bäume 3. Planare Graphen / Traveling Salesman Problem 4. Transportnetzwerke

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

SS11 Effiziente Algorithmen 5. Kapitel: Dynamische Programmierung

SS11 Effiziente Algorithmen 5. Kapitel: Dynamische Programmierung SS11 Effiziente Algorithmen 5. Kapitel: Dynamische Programmierung Martin Dietzfelbinger Juni/Juli 2011 FG KTuEA, TU Ilmenau Effiziente Algorithmen SS11 Kapitel 5 Kapitel 5: Dynamische Programmierung Typische

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces Overview Testen von Planarität Markus Chimani LS XI Algorithm Engineering, TU Dortmund VO Automatisches Zeichnen von Graphen 15 Planarität Grundbegriffe Wie erkennt man Planarität Boyer-Myrvold Überblick

Mehr

2 Lösungen "Peptide de novo Sequencing"

2 Lösungen Peptide de novo Sequencing Lösungen "Peptide de novo Sequencing". Algorithm : PeptideSequencingOnlySux Input: a spectrum M with array of masses M = {m, m,, m n }, Σ, µ : Σ R >0 Output: the peptide string of the spectrum begin peptide

Mehr

Universität des Saarlandes

Universität des Saarlandes Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn WiSe 2015/2016 Übungen zu Ideen der Informatik http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter15/ideen/

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Einleitung In welchen Situationen ist Apriori teuer, und warum? Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Data Warehousing und Mining 1 Data Warehousing und Mining 2 Schnelles Identifizieren

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Werner Struckmann Wintersemester 2005/06 8. Graphen 8.1 Mathematische Grundlagen 8.2 Darstellung von Graphen 8.3 Ausgewählte Algorithmen für ungewichtete Graphen 8.4 Ausgewählte

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

Single Source Sortest Path Negative Kreise All-Pair Shortest Path Problem Minimum Mean Cycle Zusammenfassung. Shortest Paths

Single Source Sortest Path Negative Kreise All-Pair Shortest Path Problem Minimum Mean Cycle Zusammenfassung. Shortest Paths Shortest Paths Label Correcting Algorithms Florian Reitz Universität Trier Fachbereich IV Fach Informatik Seminar Netzwerkalgorithmen WS 2005/2006 Einleitung: Problemübersicht Eben: Schnelle Algorithmen

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume

C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Fachbereich IV, Informatik Softwarepraktikum C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Wintersemester 2004/2005 Dokumentation Algorithmen zur Lösung von MST - Problemen Nicolas

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

KV Software Engineering Übungsaufgaben SS 2005

KV Software Engineering Übungsaufgaben SS 2005 KV Software Engineering Übungsaufgaben SS 2005 Martin Glinz, Silvio Meier, Nancy Merlo-Schett, Katja Gräfenhain Übung 1 Aufgabe 1 (10 Punkte) Lesen Sie das Originalpapier von Dijkstra Go To Statement Considered

Mehr

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965). 5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende

Mehr

Du hast schon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln:

Du hast schon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln: Fragen mit do/doe Du hat chon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln: Bp.: We can play football in the garden. Can we play football in the garden? I mut learn the

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Fully dynamic algorithms for the single source shortest path problem.

Fully dynamic algorithms for the single source shortest path problem. Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen Folie 1 von 20 Lernmodul 2 Graphen Folie 2 von 20 Graphen Übersicht Motivation Ungerichteter Graph Gerichteter Graph Inzidenz, Adjazenz, Grad Pfad, Zyklus Zusammenhang, Trennende Kante, Trennender Knoten

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Syteme Teil II: Sytemtheorie für Informatiker Dr. Mohamed Oubbati Intitut für Neuroinformatik Univerität Ulm SS 2007 Warum Sytemtheorie? Informatiker werden zunehmend mit Sytemen konfrontiert,

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Einführung in Approximative Algorithmen und Parametrisierte Komplexität

Einführung in Approximative Algorithmen und Parametrisierte Komplexität Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr