Geometrische Gruppentheorie
|
|
|
- Kasimir Schreiber
- vor 7 Jahren
- Abrufe
Transkript
1 Stichwortliste zur Vorlesung Geometrische Gruppentheorie Gabriela Schmithüsen Karlsruhe, Wintersemester 2009/2010 Kapitel I Cayleygraphen I.1 Graphen und Bäume Definition von Graphen; Beispiele wie die Rose und der Farey-Graph; die Kategorie der Graphen; Wege in Graphen; Bäume. I.2 Der Cayleygraph Definition des verallgemeinerten Cayleygraphen Γ(G, S) bezüglich eines Erzeugendensystems; G operiert auf Γ(G, S) durch Multiplikation von links. I.3 Graphen als topologische Räume Verkleben von Räumen; die geometrische Realisierung von Graphen; CW-Komplexe. I.4 Graphen als metrische Räume Beispiele für verschiedene Metriken auf R 2 ; Topologien, die von einer Metrik herkommen, sind hausdorffsch; Beispiele für nicht hausdorffsche Räume; Wege, Bögen und geodätische Segmente; Graphen als metrische Räume; Isometriegruppe von Graphen. Kapitel II Geometrie aus der Ferne II.1 Quasi-Isometrien Quasi-Isometrien und streng-quasi-isometrische Einbettungen; erste Beispiele und Eigenschaften. II.2 Cayleygraphen Wortmetrik; Satz1: Cayleygraphen derselben Gruppe zu endlichen Erzeugendensystemen sind quasi-isometrisch. II.3 Raum der Enden Enden als Äquivalenzklassen eigentlicher Strahlen; der Raum der Enden Ends(X); das Lemma von Arzelá-Ascoli; Umgebungsbasen in Ends(X); Satz2: Quasi-Isometrien induzieren Homöomorphismen zwischen den zugehörigen Endenräumen. Eine endlich erzeugte Gruppe G hat 0 Enden gdw. G endlich, zwei Enden gdw. G virtuell Z ist, ein Ende oder unendlich viele Enden. Der Endenraum eines
2 Baums ist die Cantor-Menge; der Endenraum einer endlich erzeugten Gruppe ist kompakt; falls er unendlich ist, dann ist er überabzählbar und jeder Punkt ist Häufungspunkt. II.4 Der Satz von Milnor und Svarc Eigentlich diskontinuierliche Gruppenaktionen; Quotientenräume; Satz 3 (Milnor/Svarc): Ist der Quotient eines eigentlich geodätischen Raums X nach einer eigentlich diskontinuierlichen Gruppenaktion kompakt, dann ist die Gruppe quasi-isometrisch zu X. Folgerung: Eine Gruppe ist quasi-isometrisch zu ihren Untergruppen von endlichem Index. Kapitel III Endlich erzeugte Gruppen III.1 Freie Gruppen und Präsentationen von Gruppen Freie Gruppen; Bäume als Cayleygraphen; Präsentationen von Gruppen. III.2 Beispiele für endlich präsentierte Gruppen Beispiele: S n, die Zopfgruppe und die Diedergruppe. III.3 Andrew-Curtis-Äquivalenz von Präsentationen Die Andrew-Curtis-Vermutung und einige prominente mögliche Gegenbeispiele. III.4 Das Wort-Problem Dehns drei klassische Probleme aus der kombinatorischen Gruppentheorie; Dehnpräsentationen; in Gruppen mit Dehnpräsentationen ist das Wortproblem linear lösbar. III.5 Thompsons Gruppe F Thompsons Gruppe F über Präsentationen und als Untergruppe der Homöomorphismengruppe von R. Kapitel IV Gromov-hyperbolische metrische Räume IV.1 Das Gromov-Produkt Einführung des Gromov-Produkts; geometrische Interpretation in der euklidischen Ebene; Mediane/Y -Punkte in metrischen Räumen; die Y -Eigenschaft; Zusammenhang zum Gromov-Produkt; Bäume haben die eindeutige Y -Eigenschaft; Mediane von vier Punkten in einem Baum. IV.2 Gromov-Hyperbolizität Eine erste Definition; Bäume sind 0-hyperbolisch; die Euklidische Ebene ist nicht hyperbolisch; 4-Punkte-Lemma; Unabhängigkeit der Hyperbolizität vom Basispunkt.
3 IV.3 Geometrie von Gromov-hyperbolischen Räumen Definition der Hyperbolizität in geodätischen Räumen über schlanke und dünne Dreieck, sowie über den insize- und minsize-radius. Satz 4: die verschiedenen Definitionen sind äquivalent. IV.4 R-Bäume Satz 5: Ein geodätischer Raum ist 0-hyperbolisch gdw. er ein R-Baum ist. IV.5 Quasi-Geodätische Einführung von Quasi-Geodätischen; Ballvermeidungslemma; Satz 6: lokal-quasi- Geodätische liegen nahe zu Geodätischen. IV.6 Quasi-Isometrien und Hyperbolizität Bilder von geodätischen Segmenten unter strengen Quasi-Isometrien sind quasi- Geodätische; Urbilder von hyperbolischen Räumen unter streng-quasi-isometrischen Einbettungen sind hyperbolisch; Satz 7: Hyperbolizität bleibt erhalten unter Quasi-Isometrie. Kapitel V Hyperbolische Gruppen V.1 Einführung Hyperbolische Gruppen; Beispiele und Gegenbeispiele: freie Gruppen, Z n, PSL 2 (Z). V.2 Das Wortproblem in hyperbolischen Gruppen In hyperbolischen Räumen gibt es keine K-lokalen geodätischen Schleifen, falls K groß genug. Hyperbolische Gruppen haben eine Dehnpräsentation. Damit ist das Wortproblem in linearer Zeit lösbar. V.3 Isoperimetrische Ungleichungen Dehn-Funktion und isoperimetrische Ungleichung; die klassische Variante in R 2 ; Gruppen mit Dehn-Präsentationen erfüllen eine lineare isoperimetrische Ungleichung; Dehn-Diagramme. V.4 Der hyperbolische Raum H n Hyperbolische Ebene H mit Poincaré-Metrik; Geometrie in H; H ist hyperbolisch. Hyperbolizität von Fuchsschen Gruppen, z.b. Flächengruppen.
4 Schließlich noch einige Kommentare zu Literatur begleitend zur Vorlesung. Vieles aus Kapitel I kann z.b. durch [S] oder auch [H] vertieft werden. Das meiste aus Kapitel II wurde dem Skript [L] entnommen. Zu II.3 diente als Grundlage [G, Kap. 13] und [BH, Kap. 1.8]. Kapitel III kann beispielsweise mit Hilfe der Bücher [LS] und [ECHLPT] vertieft werden. Mehr zu Zopfgruppen findet man in [M]. Als Hintergrund zu III.3 bietet sich das Preprint [MMS] an, als Grundlage für III.5 diente [G, II.9] und der sehr nett lesbare Artikel [CFP]. Kapitel IV und V stammen wiederum aus dem Skript [L], sowie aus [GHV, Kapitel I] und [BH]. Kap IV.4 wurde aus [CDP, Kap. 3] genommen. Literatur [BH] M. Bridson and A. Haefliger: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften Springer (1999). [CFP] J.W. Cannon, W.J. Floyd und W.R. Parry: Introductory notes on Richard Thompson s groups Enseign. Math., II. Sér. 42, No.3-4, S (1996). [CDP] M. Coornaert, T. Delzant und A. Papadopoulos: Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov. Lecture Notes in Mathematics, Springer (1990). [ECHLPT] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston: Word processing in groups. Jones and Bartlett Publishers (1992). [G] R. Geoghegan: Topological methods in group theory. Graduate Texts in Mathematics 243. Springer (2008). [H] Vorlesung von F. Herrlich: Gruppen und Graphen. Informelles Vorlesungsskript. [L] C. Leininger A, Reed: Notes on Geometric group theory. Informelles Skript. clein/ [LS] R. C. Lyndon and P. E. Schupp: Combinatorial group theory. Classics in Mathematics. Springer (2001). [GHV] E. Ghys, A. Haefliger, A. Verjovsky: Group theory from a geometrical viewpoint. World Scientific (1993).
5 [M] S. Moran:The mathematical theory of knots and braids. An introduction. North-Holland Mathematics Studies, 82. Amsterdam-New York-Oxford: North-Holland. XI (1983). [MMS] A. D. Myasnikov, A. G. Myasnikov, V. Shpilrain: On the Andrews-Curtis equivalence. Preprint, arxiv:math/ [S] J.-P. Serre: Trees. Springer Monographs in Mathematics. Springer (2003).
Seminar: Das Wortproblem
Seminar: Das Wortproblem C. Löh ([email protected]) Juli 2014 Ein grundlegendes mathematisches Problem ist, welche Fragen algorithmisch beantwortet werden können bzw. welche Objekte
Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann
Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer
Flache homogene Räume in der pseudo-riemannschen Geometrie
Flache homogene Räume in der pseudo-riemannschen Geometrie Wolfgang Globke School of Mathematical Sciences Oberseminar Differentialgeometrie Christian-Albrechts-Universität zu Kiel 1 I Pseudo-Riemannsche
Programm des Hauptseminars Symmetrie
Programm des Hauptseminars Symmetrie Prof. Dr. Irene Bouw Universität Ulm Institut für Reine Mathematik SS 2008 irene.bouw at uni-ulm.de Vortrag 1: Einführung (2 Personen) Dieser Vortrag soll eine Einführung
Topologische Aspekte: Eine kurze Zusammenfassung
Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,
Verallgemeinerte Dreiecksungleichungen Michael Kapovich
Verallgemeinerte Dreiecksungleichungen Michael Kapovich Wir alle wissen, dass eine gerade Linie die kürzeste Verbindung von einem Punkt zu einem anderen Punkt ist. Dieses Wissen scheint in den Jahrmillionen
Seminar zur Darstellungstheorie endlicher Gruppen
Seminar zur Darstellungstheorie endlicher Gruppen Prof. Dr. Gebhard Böckle und Yujia Qiu Sommersemester 15, dienstags 16:15 17:45, Raum 248/INF 368. Beginn: 21.04.2015 Motivation und Ziele des Seminars
Der Satz von Cramér (1938) Ausarbeitung zu einem Vortrag im Seminar Große Abweichungen am Maren Urner
Der Satz von Cramér (1938) Ausarbeitung zu einem Vortrag im Seminar Große Abweichungen am 04.12.2010 Maren Urner In diesem Vortrag soll der Satz von Cramér als ein Prinzip großer Abweichungen (LDP) vorgestellt
Seminar Einführung in die Kunst mathematischer Ungleichungen
Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................
Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)
WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Kapitel 5 KONVERGENZ
Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz
Wachstumsfunktionen von Coxetergruppen und Bianchigruppen
Wachstumsfunktionen von Coxetergruppen und Bianchigruppen I n a u g u r a l D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität
Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME
Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist
Was bisher geschah: Formale Sprachen
Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)
Skript zur Vorlesung Topologie I
Skript zur Vorlesung Topologie I Carsten Lange, Heike Siebert Richard-Sebastian Kroll Faszikel 1 Fehler und Kommentare bitte an [email protected] Stand: 15. Juni 2010 Fachbereich Mathematik und
Einführung in die Mathematik
Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die
Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge
1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten
[Ausarbeitung Mathe 3 Prüfungsfragen WH]
2008 [Ausarbeitung Mathe 3 Prüfungsfragen WH] Wichtige Anmerkung des Autors: Diese Ausarbeitung ist meine persönliche Interpretation der Antworten. Es gibt keinerlei Gewähr, dass die Antworten stimmen
9 Vektorräume mit Skalarprodukt
9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G
Konvergenz, Filter und der Satz von Tychonoff
Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.
Analysis I - Stetige Funktionen
Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt
Seminar: Summen von Quadraten & K-Theorie WS 2013/14
Vektorbündel über topologischen Räumen Seminarvortrag von C. Dahlhausen am 06. November 2013. Hinweise auf Fehler und Korrekturen bitte an [email protected]. Im folgenden sei X stets ein topologischer Raum.
Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016
Stichwortliste zur Vorlesung Lineare Algebra II Gabriela Weitze-Schmithüsen Saarbrücken, Sommersemester 2016 Kapitel I Jordansche Normalform Ziel: Wir möchten Matrizen bis aus Ähnlichkeit klassifizieren.
Gerade, Strecke, Halbgerade, Winkel (in (R n,, ))
Gerade, Strecke, Halbgerade, Winkel (in (R n,, )) A B Winkel Gerade Halbgerade Strecke A A A Gerade ist Punktmenge L A,v := {A+t v t R}, wobei v 0. Halbgerade (Strahl) ist Punktmenge H A,v := {A+t v t
MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.
1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine
Fakultät für Mathematik und Physik
Die fundamentalen mathematischen Strukturen sind: in der Algebra die Gruppe, in der Geometrie der topologische Raum und dann dazu natürlich die diskreten Objekte. [ ] Das Schloss [der Mathematik] ist erstaunlich
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
8. Kleinsche Geometrie I: Hyperbolische Geometrie. Das Erlanger Programm.
8. Kleinsche Geometrie I: Hyperbolische Geometrie Nach den bisherigen Ergebnissen müssen wir uns nun um die Gruppe PSL 2 C kümmern. Das Studium dieser Gruppe wird uns in dieser Vorlesung zu einem neuen
Einführung in die Analysis
Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel
Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:
Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein
Euklidische und unitäre Vektorräume
Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein
1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:
Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere
Topologische Begriffe
Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer
Vektoren, Vektorräume
Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010
Drehung um einen Punkt um Winkel α.
Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D
Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering
Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme
Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016
Kausalität Seminar zur Lorentz Geometrie Jonas Haferkamp 9. Juni 2016 1 Einleitung Kausalität ist das Prinzip von Ursache und Wirkung. Um dieses Konzept zu formalisieren, ist offenbar ein sinnvoller Zeitbegriff
Ein Fundamentalbereich der Modulgruppe. 1 Erzeugende
Ein Fundamentalbereich der Modulgruppe Vortrag zum Seminar zur Funktionentheorie,.04.009 Kerstin Küpper Im Vortrag wird die Modulgruppe und ihre Erzeuger untersucht und ein exakter Fundamentalbeich der
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Kapitel 1. Grundlagen Mengen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
ENZYKLOPÄDIE DER ELEMENTARMATHEMATIK
I HOCHSCHULBÜCHER FÜR. MATHEMATIK HERAUSGEGEBEN VON H. GRELL, K. MARUHN UND W. RINOW \ BAND 11 ENZYKLOPÄDIE DER ELEMENTARMATHEMATIK REDAKTION: P.S. ALEXANDROFF A. I. MARKUSCHEWITSCH A. J. CHINTSCHIN BAND
Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie
Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches
Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K
Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und
Operations Research I
Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015
KAPITEL 2. Folgen und Reihen
KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).
Einführung in die Mathematik für Informatiker
Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 21.11.2016 6. Vorlesung aufgespannter Untervektorraum Span(T ), Linearkombinationen von Vektoren Lineare Unabhängigkeit
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016
Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung
Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung Ihre Vorbereitung auf die mündliche Prüfung sollte in mehreren Schritten verlaufen: Definitionen und Sätze Die wichtigen Definitionen
1.5 Duales Gitter und Diskriminantengruppe
Gitter und Codes c Rudolf Scharlau 24. April 2009 27 1.5 Duales Gitter und Diskriminantengruppe Dieser Abschnitt ist im wesentlichen algebraischer Natur: Es spielt keine Rolle, dass unsere Gitter in einem
Modulhandbuch Studiengang Bachelor of Arts (Kombination) Mathematik Prüfungsordnung: 2013 Nebenfach
Modulhandbuch Studiengang Bachelor of Arts (Kombination) Mathematik Prüfungsordnung: 2013 Nebenfach Sommersemester 2016 Stand: 14. April 2016 Universität Stuttgart Keplerstr. 7 70174 Stuttgart Inhaltsverzeichnis
Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und
7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ
Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?
1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2
7 Sphärische und elliptische Geometrie
7 Sphärische und elliptische Geometrie Hier diskutieren wir ausführlicher sphärische Geometrie, also X = S n, G = O(n +1) und dann, davon abgeleitet, elliptische Geometrie, also X = S n /(x x) =RP n, G
Strukturierung und Referenzen in L A T E X
Strukturierung und Referenzen in L A T E X Markus Severitt Fakultät für Mathematik Universität Bielefeld L A T E X in der Mathematik Markus Severitt (Uni Bielefeld) Strukturierung und Referenzen in LAT
Zusammenfassung der Lebesgue-Integrationstheorie
Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,
1 Elemente der Wahrscheinlichkeitstheorie
H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen
Lehrstuhl IV Stochastik & Analysis. Stochastik II. Wahrscheinlichkeitstheorie I. Skriptum nach einer Vorlesung von Hans-Peter Scheffler
Fachschaft Mathematik Uni Dortmund Lehrstuhl IV Stochastik & Analysis Stochastik II Wahrscheinlichkeitstheorie I Skriptum nach einer Vorlesung von Hans-Peter Scheffler Letzte Änderung: 26. November 2002
Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle
Anhang A Etwas affine Geometrie In diesem Anhang stellen wir die wichtigsten Grundbegriffe aus der affinen Geometrie zusammen, soweit sie eben für uns von Nutzen sind. Für weiterführende Ergebnisse sei
Zahlen und metrische Räume
Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,
1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:
Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar
Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren
Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis
Gleichmäßige Konvergenz und Funktionenräume
Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen
Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik
Kapitel Lineare normierte Räume.1 Allgemeiner Überblick Definition.1. Eine Menge X, in der über einem Zahlenkörper K (K = R oder K = C) die Addition und λ-multiplikation mit den üblichen Verbindungsaxiomen
DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )
Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon
Vorkurs Mathematik Abbildungen
Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.
Tutorium zur Analysis 1 - Sommersemester 2011
Tutorium zur Analysis 1 - Sommersemester 2011 Franz X. Gmeineder - LMU München Die vorliegende Sammlung von Aufgaben zur Analysis 1 ist im Sommersemester 2011 begleitend zur Vorlesung von Prof. Dr. Bley
Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.
Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik
Überblick. Kapitel 7: Anwendungen der Differentialrechnung
Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung
Klausur zur Vorlesung Mathematische Logik
Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik
ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen
ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen
Topologie. Vorlesung von Johann Linhart. Wintersemester 2008/09
Topologie Vorlesung von Johann Linhart Wintersemester 2008/09 Inhaltsverzeichnis 1 Metrische Räume 1 2 Topologien 6 3 Umgebungen 8 4 Berührungspunkte und abgeschlossene Mengen 12 5 Topologische Teilräume
Kapitel 2: Mathematische Grundlagen
[ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen
2. Optimierungsprobleme 6
6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen
W. Oevel. Mathematik II für Informatiker. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002
W. Oevel Mathematik II für Informatiker Veranstaltungsnr: 172010 Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002 Inhalt 1 Komplexe Zahlen 1 1.1 Definitionen..............................
Seminar: Simpliziale Topologie
Seminar: Simpliziale Topologie C. Löh ([email protected]) Juli 2015 Viele topologische Objekte besitzen einfache kombinatorische Beschreibungen. Zum Beispiel können viele Räume konstruiert
Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.
Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise
Primzahlen von Euklid bis heute
Mathematisches Institut Universität zu Köln [email protected] 5. November 2004 Pythagoras von Samos (ca. 570-480 v. Chr.) Euklid von Alexandria (ca. 325-265 v. Chr.) Teilbarkeit Satz von Euklid
Proseminar. Spieltheorie. Sommersemester 2015
Proseminar Spieltheorie Sommersemester 2015 Informationen bei: Prof. Dr. Martin Möhle Eberhard Karls Universität Tübingen Mathematisches Institut Tel.: 07071/29-78581 Vortragsübersicht Teil I: Allgemeine
Mathematik für Informatik 3
Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:
Kapitel 1. Grundlagen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
Gruppen die auf einer Menge operieren. Die Ikosahedrongruppe.
Proseminar zu Linearen Algebra SS 2010 Gruppen die auf einer Menge operieren. Die Ikosahedrongruppe. Hümeyra Yilmaz Heinrich - Heine - Universität Betreuer: Prof. Dr. Oleg Bogopolski Unterteilungen I.
Mathematik I. Vorlesung 19. Metrische Räume
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b
Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23
Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des
2. Mathematische Grundlagen
2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,
1. Gruppen. 1. Gruppen 7
1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.
Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff
Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:
Kapitel 3. Natürliche Zahlen und vollständige Induktion
Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine
Die Kirchhoffsche Knotenregel gilt nicht am Rand unendlicher Graphen
Die Kirchhoffsche Knotenregel gilt nicht am Rand unendlicher Graphen Johannes Carmesin 20. August 2010 1 Einleitung Elektrische Netzwerke sind ein wichtiger Bestandteil unseres täglichen Lebens. Ebenfalls
Am Ende des Regenbogens
Am Ende des Regenogens Alerto Aondandolo Ruhr-Universität Bochum Tag der offenen Tür 2014 Ein Regenogen Die Erklärung von Descartes (1596-1650) Das Modell von Descartes Das Modell von Descartes Die Regentropfen
6. Übung zur Linearen Optimierung SS08
6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl
Galois-Konjugation Riemannscher Flächen
Oberseminar Algebra Magdeburg 2008/2009 Galois-Konjugation Riemannscher Flächen Patrick Reichert Gliederung des Vortrags 1. Einleitung 2. Uniformisierung von Riemannschen Flächen 3. Kinderzeichnungen (Dessin
Geometrie. Lehramt Gymnasium Sommersemester Clara Lo h
Geometrie Lehramt Gymnasium Sommersemester 2016 Clara Lo h Version vom 21. Juli 2016 [email protected] Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg Inhaltsverzeichnis
Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum:
Der Zwei-Quadrate-Satz von Fermat Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: 09.11.2015 GLIEDERUNG Einleitung Der Zwei-Quadrate-Satz Vorwissen
Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen
Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).
2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25
2 Gruppen Übersicht 2.1 Eigenschaften und Beispiele von Gruppen............................. 17 2.2 Untergruppen...................................................... 21 2.3 Homomorphismen..................................................
Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt
Herbert Zeitler Wolfgang Neidhardt Fraktale und Chaos Eine Einführung Wissenschaftliche Buchgesellschaft Darmstadt f INHALT Einleitung 1 I. Iteration reeller Funktionen und Chaos in dynamischen Systemen.
