Allgemeine Optische Spektroskopie

Größe: px
Ab Seite anzeigen:

Download "Allgemeine Optische Spektroskopie"

Transkript

1 Allgemeine Optische Spektroskopie nstrumentelle Analytik Sommersemester 2018 Dr. Oliver Thorn-Seshold Ziel Licht Eigenschaften Spektralbereiche Spektrometer: Quelle, Selektor, Absorption im Probe, Detektor Wechselwirkungen Licht/Verbindungen 2

2 Spektroskopie Spektroskopie: Untersuchung der Wechselwirkungen zwischen elektromagnetischer Strahlung ( Licht ) und Materie Strukturaufklärung dentitätsprüfung Reinheitsprüfung Gehaltsbestimmung Atomspektroskopie Atomemissionsspektroskopie (AES) Atomabsorptionsspektroskopie (AAS) Molekülspektroskopie UV-Vis-Spektroskopie Fluorimetrie R-Spektroskopie NMR-Spektroskopie Chiroptische Methoden Polarimetrie Optische Rotationsdispersion (ORD) Circulardichroismus (CD) Refraktometrie Massenspektrometrie 3 Spektroskopie Spektroskopie: Untersuchung der Wechselwirkungen zwischen elektromagnetischer Strahlung ( Licht ) und Materie Strahlung Selektor Probe Spektrum Gerätekunde Lichtquelle Gitter/Prisma Küvette Detektor Theorie Emission nterferenz/ Absorption Datenverarbeitung Brechung [Emission] 4

3 Spektroskopische Messinstrumente allgemein Emissionsspektroskopie Strahlungsquelle(n) Wellenlängenselektor Probenbehälter Detektor Signalverarbeitung & Datenanzeige Absorptionsspektroskopie Fluoreszenzspektroskopie 5 1. STRAHLUNG & QUELLE 6

4 Elektromagnetischer Strahlung ( Licht ) Elektromagnetische Strahlung: sich wellenartig ausbreitende transversale elektrische (E) und magnetische (H) Felder A Bei allen weiteren Betrachtungen: nur E-Vektor siehe auch: VLS Polarimetrie Charakteristische Größen: c = Ausbreitungsgeschwindigkeit = m.s -1 Nichts ist schneller i. Vak. als das Licht (Einstein) ν = Frequenz [s -1 = Hz] ν-angabe üblich nur im > µm Bereich λ = Wellenlänge [Å] bei Röntgen; [nm] bei UV, VS, NR; [µm] bei R;... c = ν.λ ν ~ 1 _ = Wellenzahl = λ [cm -1 ] A = Amplitude = ntensität ~ A 2 7 Energieinhalt elektromagnetischer Strahlung Anzahl der Maxima pro Zeiteinheit: ν [s -1 = Hz] Teilchennatur des Lichts (Welle-Teilchen-Dualismus) Lichtquanten bzw. Photonen Planck sche Gleichung: E = hν = hc/λ [J] Ausbreitungsgeschwindigkeit c ~ Materie Energie aber konstant => Energie eines Photons oft durch λ i. Vak. ( Luft ) gegeben h = J.s (Planck sches Wirkungsquantum) Strahlungsenergie kj.mol -1 N A = UV R 8

5 Energie elektromagnetischer Wellen Elektronenvolt [ev] Frequenz υ [Hz] Wellenlänge λ [m] Wellenzahl υ [cm -1 ]... sind als Energieeinheiten oder als energie-proportionale Einheiten äquivalent und lassen sich ineinander umrechnen. - E= h. υ c= λ. υ υ= 1/λ - Energie [kj.mol-1] Kernresonanz NMR Molekül- Rotationen Molekül- Elektronen- Schwingungen Anregung R UV-Vis onisierung 9 Energie elektromagnetischer Wellen NMR R UV-Vis Kernresonanz Molekül- Rotationen Molekül- Elektronen- Schwingungen Anregung onisierung Energie [kj.mol-1] 1 m 1 mm 1 µm 1 nm 10

6 Quellen 1 m 1 mm 1 µm 1 nm Quellen für AAS, UV-Vis [Fluo], R - s. entsprechende Teil Glut (Kerz, Gluhbirne): R, NR, Vis, nuv Electroluminescenz (LED): NR, Vis, nuv Gasentladung (Xe, Na, D 2 ): NR, Vis, tief UV!AAS D 2 Lampe nm Xe Lampe! nm W Gluhbirne nm SELEKTOR 12

7 Eigenschaften der Strahlung 1: nterferenz Licht ausbreitet sich geradeaus bis Brechung oder nterferenz Konstruktive und destruktive nterferenz 13 Eigenschaften der Strahlung 1: nterferenz Schwebung bei unterschiedlichen Wellenlängendifferenzen 14

8 Eigenschaften der Strahlung 1: nterferenz UV-Vis >> Gitter Aufspaltung von weißem Licht nach Wellenlängen: nterferenz im Gitter (vgl. Röntgen Diffraktion im Kristall) Empfehlung: zu Hause nachlesen (Bonus: nterferometer) Transmissionsgitter Reflektionsgitter Strukturelle Farbe : Vogelfädern; CD-farben; Dünnschicht-farben [Öl auf Wasser];. 15 Eigenschaften der Strahlung 1: nterferenz UV-Vis >> Gitter Gitter: Auftrennung groß im VS / NR Lineare Wellenlängenskala Wechsel von Gittern für unterschiedliche λ-bereiche ~Billig und einfach herzustellen im VS/NR m Prinzip kein Lichtverlust durch Absorption aber (0 ) 1, 2, Reflektion 16

9 Bandbreite Austrittsspalt Spaltbreite meist variabel ð effektive Bandbreite veränderbar nominale Wellenlänge enger Spalt = enger Bandbreite = hoher Auflösung: aber Strahlungsintensität i (messgenauigkeit i?) effektive Bandbreite Breite in halber Höhe der max. ntensität des Lichtbandes, das den Monochromator verlässt Anpassende Bandbreite ganz wichtig bei genaue Messung 17 Eigenschaften der Strahlung 2: Brechung UV-Vis >> Prisma Brechungsphänomen: siehe VLS Refraktometrie n medium = c / c medium n medium sina sin b a dünneres Medium 1 Brechungsindex stark abhängig von λ c 1 c 2 dichteres Medium 2 b n (UV) > n (VS) > n (R)!nicht linear 18

10 Eigenschaften der Strahlung 2: Brechung UV-Vis >> Prisma n (UV) > n (VS/NR) : Auftrennung im UV am großten kein 1, 2 >> groß Bereich von ein Prisma abgedeckt Strahlung geht durch das Prisma >> Absorption möglich Glas: nur für > 300 nm ; Quartz: > 200 nm Große gute Prismen sind relativ teuer 19 Wellenlängeselektoren Kontinuierliche Selektoren: UV-Vis: Prismen & Gittern, je nachdem welche λ-bereich Diskontinuierliche Selektoren: Absorptionsfilter (z.b. Farbeglas) nterferenzfilter (v.a. in Mikroskopie) 20

11 3. PROBE & ABSORPTON 21 Absorption und Emission elektromagnetischer Strahlung Energie {! h.ν ΔE Absorption Absorptions- Spektroskopie Atomabsorptionsspektroskopie (AAS), UV-Vis; R; NMR angeregter Zustand M* M Grundzustand s Fluoreszenz Phosphoreszenz oder Wärme Emissions- Spektroskopie Atomemissionsspektroskopie (AES) Fluorimetrie h.ν Die gesamte Energie eines Photons wird auf ein Atom/Molekül übertragen. Übertragung von Teilbeträgen der Energie findet nie statt. h. c ΔE = h. ν = = h. c. ν ~ λ o durchkommende Lichtintensität reduziert durch Absorption 22

12 Absorption und Emission - Lichtquelle Monochrom 1 Küvette Detektor λ Absorptionsspektroskopie Monochrom 2 (90, minimales Streulicht) Detektor häufig PM Emissions spektroskopie 23 Wechselwirkungen Licht/Verbindungen Verbindungen/Atome absorbieren Energie in diverse Weise γ-strahlung E onisation π* π +. UV-Vis- Strahlung Elektronenanregung σ-elektronen π-elektronen nichtbindende Elektronenpaare π* π R-Strahlung Anregung von Molekülschwingungen Mikrowellen Anregung von Molekülrotationen 24

13 Absorption / das Lambert-Beersche Gesetz: A λ =ε λ *c*d A λ =ε λ *c*d c = Konzentration [mol/l] = [M] d = Schichtdicke der Küvette [cm]: z.b. 1 ε λ = molarer Extinktionskoeffizient bei λ siehe Ableitung (Bonusfolien) ε: stoffspezifische Proportionalitätskonstante, abhängig von λ ; Einheit [M -1 cm -1 ] Bestimmung: ε λ = A λ /(c*d) A kann zur Berechnung der Konzentration c herangezogen werden c = A λ /(ε λ *d) A 1% = spezifische Absorption: Absorptionswert einer 1%igen Lösung in einer Standardküvette von 1cm Absorption und Transmission T = P / P 0 A = -log(t) = -log (P/P 0 ) d 25 Absorption / das Lambert-Beersche Gesetz: A λ =ε λ *c*d Transmission c Transmission T = = e -kcd o 2c c Konzentration 4c 5c Absorption 2 1,5 1 0,5 0 Absorption A = -log 10 T = -log 10 = log o 10 o = ε. c. d c 2c 3c Konzentration 4c 5c Gültigkeit des Lambert-Beerschen Gesetzes: Nur Absorption (kein Fluoreszenz oder Phosphoreszenz der Probe) monochromatische Strahlung (da ε ist von λ abhängig) verdünnte Lösungen (0.2 A 1.5); Optimaler Bereich Unterhalb: instrumentelles Rauschen: Messungenauigkeit bei kleine Werte Oberhalb (>0.01M) : nichtlinearer Bereich durch Wechselwirkung zwischen den Chromophoren, und Veränderungen des Brechungsindexes bei hohen Konzentrationen klare Lösungen sonst Streustrahlung durch kleine Partikel in der Probe 26

14 ! Achtung Probekuvetten bzw. Lösungsmitteln soll transparent sein Lösungsmittel Durchlässigkeitsgrenze Wasser 200 nm n-hexan, Cyclohexan 200 nm MeOH, EtOH, 2-Propanol 210 nm Dichlormethan 240 nm Toluol 290 nm Küvetten Durchlässigkeitsgrenze Quarz nm Silikatglas nm 27 Absorption Excellente Chromophore: Fluorescein: ε 500 = M -1 cm -1 Cy3: ε 564 = M -1 cm -1 Weltrekord ca M -1 cm -1 28

15 Spektren: Representation ntensität A oder ε Bandenspektrum λ nm Energie Wellenlänge λ Frequenz ν ~ Wellenzahl ν ntensität Linienspektrum λ angeregter Zustand M* nm M Grundzustand DETEKTOR 30

16 Detektoren Unterschiedliche, je nachdem welche λ-bereich. z.b. Photozelle Photomultiplier Photodiode ( nm) Details: s. relevante Methoden 31 Auge als Detektor 32

17 Auge als Detektor: Komplementarfarben Warum sind Blätter grün? Absorptionsspektrum von Chlorophyll orange blau Farbkreis 33 Auge als Detektor: Komplementarfarben Warum ist Rotwein rot? R 1 R 2 HO OH O + OH R Anthocyanidine 3 Absorption Wellenlänge [nm] orange blau Farbkreis 34

18 5. ZUSAMMENBAU 35 Einstrahl vs Zweistrahl Spektroskop 1 2 Einstrahl: Hintergrundmessung im selben Strahl wird zu anderer Zeit aufgenommen & subtrahiert Zweistrahl: ntensitätsschwankungen der Lampe werden durch die Referenzmessung berücksichtigt 36

19 BONUSFOLEN 37 Erweiterung: Wechselwirkungen Licht/Materie Absorption: Übergang von einem energetisch niederen in einen höheren Zustand, verbunden mit Energietransfer aus einem Strahlungsfeld an einen Absorber (Atom, Molekül oder Feststoff) Emission: Übergang von einem energetisch höheren in einen niedrigeren Zustand, verbunden mit Energietransfer vom Emitter an ein Strahlungsfeld. Spontane vs. nduzierte Emission Wenn keine Strahlung emittiert wird, wird der Übergang vom energetisch höheren in den niedrigeren Zustand als strahlungslose Deaktivierung bezeichnet. Streuung (Scattering) Umlenkung von Licht durch dessen Wechselwirkung mit Materie. Streuung kann mit und ohne Energietransfer stattfinden, d.h. die Streustrahlung kann, (muss aber nicht) eine leicht veränderte Wellenlänge gegenüber der ursprünglichen Strahlung haben. 38

20 Bonus : Ableitung Lambert-Beer, 1 o Bouguer-Lambert sches Gesetz Beer sches Gesetz Transmission % % % 25% 12.5% 6.25% 3.125% o Schichtdicke T = = e -k d o Transmission % % o T = = e -kcd o c 50% 1 100% 2c o 25% 2 100% o Konzentration A = -log(t) = -log (/ 0 ) è A = kcd è A = εcd 3c T = = e -k c o 12.5% 3 100% o 4c 6.25% 4 5c 39 Bonus : Ableitung Lambert-Beer, 2 dx d -d ~. c. dx -d = k.. c. dx - d d o ln log o log o o = k. c. dx d 0 = -k. c. dx = -k. c. d = k. c. d = - ε. c. d = A = ε. c. d 40

21 Photometrische Bestimmung zweier Komponenten nebeneinander Absorption im Gemisch der Stoffe 1 und 2 : A gesamt λ1 =ε1 λ1 *c1 *d + ε 2 λ1 *c2 *d bei Wellenlänge λ1 A gesamt λ2 =ε1 λ2 *c1 *d + ε 2 λ2 *c2 *d bei Wellenlänge λ2 Zwei Messwerte (A λ1,a λ2 ) Zwei Gleichungen, -> zwei Unbekannte (c 1, c 2 ) können ermittelt werden 41 Bandenspektren β-carotin 42

22 Bandenspektren Schwingungsniveaus (ν) Rotationsniveaus () A β-carotin λ nm Jablonski-Termschema 43

Allgemeine Optische Spektroskopie

Allgemeine Optische Spektroskopie Allgemeine Optische Spektroskopie Instrumentelle Analytik SoSe 2019 Dr. Oliver Thorn-Seshold C1.059 (Fr 12-13) / oliver.thorn-seshold@cup.lmu.de Ziele Licht Eigenschaften Spektralbereiche Spektrometer:

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Die Farbstofflösung in einer Küvette absorbiert 90% des einfallenden Lichtes. Welche Extinktion hat diese Lösung? 0 0,9 1,9 keine der Aussagen ist richtig Eine Küvette mit einer wässrigen Farbstofflösung

Mehr

Wechselwirkung zwischen Licht und chemischen Verbindungen

Wechselwirkung zwischen Licht und chemischen Verbindungen Photometer Zielbegriffe Photometrie. Gesetz v. Lambert-Beer, Metallkomplexe, Elektronenanregung, Flammenfärbung, Farbe Erläuterungen Die beiden Versuche des 4. Praktikumstages sollen Sie mit der Photometrie

Mehr

Photom etrieren Photometrie Fraunhofer sche Linien

Photom etrieren Photometrie Fraunhofer sche Linien 17 Photometrieren Die Spektroskopie, auch Spektralphotometrie, Spektrophotometrie oder einfach nur Photometrie genannt, umfasst eine Anzahl experimenteller Messverfahren, die generell die Wechselwirkung

Mehr

Protokoll zum Versuch 50: Photometrie vom Thema: Photometrische Fe 2+ -Konzentrationsbestimmung mit Phenanthrolin

Protokoll zum Versuch 50: Photometrie vom Thema: Photometrische Fe 2+ -Konzentrationsbestimmung mit Phenanthrolin Protokoll zum Versuch 50: Photometrie vom 06.11.00 Thema: Photometrische Fe + -Konzentrationsbestimmung mit Phenanthrolin für das Protokoll: Datum: 5.11.00 1 1 Materialien 1.1 Chemikalien NH Fe SO H O

Mehr

Seminar: Photometrie

Seminar: Photometrie Seminar: Photometrie G. Reibnegger und W. Windischhofer (Teil II zum Thema Hauptgruppenelemente) Ziel des Seminars: Theoretische Basis der Photometrie Lambert-Beer sches Gesetz Rechenbeispiele Literatur:

Mehr

Ausbreitung von elektromagnetischer Strahlung

Ausbreitung von elektromagnetischer Strahlung Ausbreitung von elektromagnetischer Strahlung E! B Der elektrische Feldvektor und der magnetische Feldvektor stehen senkrecht aufeinander Die elektromagentische Welle ist beschrieben durch x x E = E 0

Mehr

Spektroskopie-Seminar SS UV-Vis-Spektroskopie. UV-Vis-Spektroskopie

Spektroskopie-Seminar SS UV-Vis-Spektroskopie. UV-Vis-Spektroskopie UV-Vis-Spektroskopie 7.1 Allgemeines UV-Vis-Spektroskopie verwendet elektromagnetische Strahlung im sichtbaren und UV-Bereich. 190 nm bis 700 nm. Dabei kommt es zur Anregung von Elektronen ( Elektronenspektroskopie

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

K1: Lambert-Beer`sches Gesetz

K1: Lambert-Beer`sches Gesetz K1: Lambert-Beer`sches Gesetz Einleitung In diesem Versuch soll die Entfärbung von Kristallviolett durch atronlauge mittels der Absorptionsspektroskopie untersucht werden. Sowohl die Reaktionskinetik als

Mehr

GRUNDLAGEN DER SPEKTROPHOTOMETRIE

GRUNDLAGEN DER SPEKTROPHOTOMETRIE 11 GRUNDLAGEN DER SPEKTROPHOTOMETRE Materie erscheint uns farbig, wenn sie aus dem einfallenden weißen Licht einen bestimmten spektralen Teil absorbiert. Als Farbe nehmen wir den reflektierten Anteil des

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

Medizinische Biophysik 6

Medizinische Biophysik 6 Eigenschaften des Lichtes Medizinische Biophysik 6 Geradlinige Ausbreitung Energietransport Licht in der Medizin. 1 Geometrische Optik Wellennatur Teilchennatur III. Teilchencharakter des Lichtes a) Lichtelektrischer

Mehr

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Die Natriumlinie und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Absorption & Emissionsarten Absorption (Aufnahme von Energie) Atome absorbieren Energien, z.b. Wellenlängen,

Mehr

Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU

Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU 1 Agilent engagiert sich für Ausbildung und Lehre und möchte den Zugang zu firmeneigenem Material ermöglichen. Diese

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 5 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Farbstoffmoleküle In der Spektroskopie unterscheidet man zwei grundsätzliche Typen von Spektren: Emissionsspektren, wie sie

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

PS4. Grundlagen-Vertiefung Version vom 2. März 2012

PS4. Grundlagen-Vertiefung Version vom 2. März 2012 PS4 Grundlagen-Vertiefung Version vom 2. März 2012 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu Auösungsvermögen eines Gitters. 2 3 2.1 Entstehung optischer Spektren......................... 3 2.2 Einteilung

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 9. Vorlesung 13.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Laborpraktikum Sensorik. Versuch. Optische Konzentrations- bestimmung MS 2

Laborpraktikum Sensorik. Versuch. Optische Konzentrations- bestimmung MS 2 Otto-von-Guericke-Universität Magdeburg Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro- und Sensorsysteme (IMOS) Laborpraktikum Sensorik Versuch Optische Konzentrations- bestimmung

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

1. Blue-curacao 1.1. Die durchgelassene Lichtintensität I ist bei konstanter Konzentration von der Schichtdicke abhängig: d 1 < d 2

1. Blue-curacao 1.1. Die durchgelassene Lichtintensität I ist bei konstanter Konzentration von der Schichtdicke abhängig: d 1 < d 2 1. Blue-curacao 1.1 Viele Getränke sind aus rein optischen Gründen mit Lebensmittelfarbstoffen angefärbt. So auch Blue-curacao. Der Likör enthält den Lebensmittelfarbstoff E 133. (Erioglaucin A (Brillant

Mehr

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion

Mehr

Spektroskopie im sichtbaren und UV-Bereich

Spektroskopie im sichtbaren und UV-Bereich Spektroskopie im sichtbaren und UV-Bereich Theoretische Grundlagen Manche Verbindungen (z.b. Chlorophyll oder Indigo) sind farbig. Dies bedeutet, dass ihre Moleküle sichtbares Licht absorbieren. Durch

Mehr

2.) Welcher Kurvenverlauf deutet auf eine Abweichung vom Lambert-Beerschen Gesetz infolge Assoziation der absorbierenden Moleküle hin?

2.) Welcher Kurvenverlauf deutet auf eine Abweichung vom Lambert-Beerschen Gesetz infolge Assoziation der absorbierenden Moleküle hin? Fragen zum Gesamtthemenbereich Analytik Spektroskopische Verfahren 1.) Welche Aussage trifft zu? a) Die Absorption A wächst proportional zur Konzentration. b) Die Transmission T wächst proportional zur

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Lambert Beer sches Gesetz - Zerfall des Manganoxalations

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Lambert Beer sches Gesetz - Zerfall des Manganoxalations Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 34 Lambert Beer sches Gesetz - Zerfall des Manganoxalations Aufgabe: 1. Bestimmen Sie die Wellenlänge maximaler Absorbanz λ max eines

Mehr

Versuch Fluoreszenz-Quenching

Versuch Fluoreszenz-Quenching Versuch Fluoreszenz-Quenching Zielstellung: 1.) Aufnahme des UV-Vis-Spektrums eines Fluoreszenzfarbstoffes 2.) Aufnahme der Kennlinie des verwendeten Photon-Counting-Moduls (PCM) im Bereich von 1,9 2,9

Mehr

Elektronenspektroskopie

Elektronenspektroskopie Elektronenspektroskopie Die Elektronenspektroskopie befasst sich mit der Wechselwirkung elektromagnetischer Strahlung des Wellenlängenbereichs von etwa 100 bis 800 nm mit Materie. Es werden dabei Elektronen

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Technische Raytracer

Technische Raytracer University of Applied Sciences 05. Oktober 2016 Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Licht und Spektrum 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale:

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atomphysik Dr. Holger Hauptmann Europa-Gymnasium Wörth holger.hauptmann@gmx.de Quantenphysik in der Sek I, Folie 1 Inhalt 1. Der Aufbau der Atome 2. Größe und Dichte

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: Die Essentials der letzten Vorlesung Funktionelle Gruppen

Mehr

UV-Vis Spektroskopie Teil 1

UV-Vis Spektroskopie Teil 1 UV-Vis Spektroskopie Teil 1 Instrumentelle Analytik Sommersemester 2018 Dr. Oliver Thorn-Seshold, C1.059 oliver.thorn-seshold@cup.lmu.de Ziel, Teil 1 Recap: Spektralbereiche E ges. = E R + E S + E E meistrelevante

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm.

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Prof. Dr. D. Winklmair Wechselwirkung 1/11 Symmetrische Valenzschwingung

Mehr

Elektromagnetische Strahlung

Elektromagnetische Strahlung Elektromagnetische Strahlung 1 Absorptionsmethoden - Grundlagen Als Absorptionsmethoden bezeichnet man die Konzentrationsbestimmung einer Substanz, indem gemessen wird, wie sie die Intensität elektromagnetischer

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Lernziele zu Farbigkeit von Stoffen

Lernziele zu Farbigkeit von Stoffen Farbstoffe Lernziele zu Farbigkeit von Stoffen du verstehst, wie Farbigkeit mit der Absorption von EM-Strahlung zusammenhängt. du verstehst die Unterschiede zwischen Feuerwerksfarben und Textilfarbstoffen.

Mehr

Medizinische Biophysik Licht in der Medizin. Temperaturstrahlung, Lumineszenz

Medizinische Biophysik Licht in der Medizin. Temperaturstrahlung, Lumineszenz V. Lichtemission Medizinische Biophysik Licht in der Medizin. Temperaturstrahlung, Lumineszenz 6. Vorlesung Lichtquellen warmes Licht kaltes Licht kontinuierliches Spektrum Linien- oder Bandenspektrum

Mehr

Wie man Lumineszenz versteht

Wie man Lumineszenz versteht Lumineszenz ntstehung der Lumineszenz igenschaften Fluoreszenz und Phosphoreszenz Messung Anwendungen Labordiagnostik Untersuchung von biol. Makromolekülen Biosensoren Lumineszenzmikroskopie Lampen Strahlungsdetektoren

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

Light Amplification by Stimulated Emission of Radiation

Light Amplification by Stimulated Emission of Radiation Light Amplification by Stimulated Emission of Radiation Licht: a) Elektromagnetische Welle E = E 0 sin(-kx) k = 2 p/l E = E 0 sin(t) = 2 p n = 2 p/t c = l n c = Lichtgeschwindigkeit = 2,99792458 10 8 m/s

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie 7 Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie Umwandlung von Licht in Wärme Absorptions- und Emissionsvermögen 7.1 Umwandlung von Licht in Wärme Zur Umwandlung von Solarenergie in Wärme

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

2 Einführung in Licht und Farbe

2 Einführung in Licht und Farbe 2.1 Lernziele 1. Sie wissen, dass Farbe im Gehirn erzeugt wird. 2. Sie sind mit den drei Prinzipien vertraut, die einen Gegenstand farbig machen können. 3. Sie kennen den Zusammenhang zwischen Farbe und

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Spektroskopische Methoden

Spektroskopische Methoden Spektroskopische Methoden OCIfolie367 MS - Massenspektroskopie (Bestimmung von Molekulargewichten, charakteristischen Fragmentierungen von Molekülen) Absorptionsspektroskopische Methoden (Absorption =

Mehr

Wie Heavy Metal ist der Boden?

Wie Heavy Metal ist der Boden? Wie Heavy Metal ist der Boden? Inhaltsverzeichnis 1. Entstehung und Ausbreitung von Schwermetallen im Boden 2. Analytische Aufschlussverfahren 3. Grundlagen der UV-VIS- und AAS-Spektroskopie 2 Schwermetalle

Mehr

Atomabsorptionsspektroskopie (AAS)

Atomabsorptionsspektroskopie (AAS) Atomabsorptionsspektroskopie (AAS) 11.06.2012 1 Übersicht der spektrosk. Methoden Atomspektroskopie Atomemissionsspektroskopie (Flammenphotometrie) Spektralanalyse Emissionsspektroskopie Absorptionsspektroskopie

Mehr

Einfaches Spektroskop aus alltäglichen Gegenständen

Einfaches Spektroskop aus alltäglichen Gegenständen Illumina-Chemie.de - Artikel Physik aus alltäglichen Gegenständen Im Folgenden wird der Bau eines sehr einfachen Spektroskops aus alltäglichen Dingen erläutert. Es dient zur Untersuchung von Licht im sichtbaren

Mehr

Moderne Physik. Elektromagnetische Schwingungen und Wellen Photonen als Quantenobjekte. LC-Kreis - Schwingkreis. Sinusoszillator (HF-Generator)

Moderne Physik. Elektromagnetische Schwingungen und Wellen Photonen als Quantenobjekte. LC-Kreis - Schwingkreis. Sinusoszillator (HF-Generator) LC-Kreis - Schwingkreis Moderne Physik Kondensator (C Kapazität) Spule (L Induktivität) Elektromagnetische Schwingungen und Wellen Photonen als Quantenobjekte I max I max U max U max Elektromagnetische

Mehr

Praktikum Optische Technologien, Protokoll Versuch Absorptionsmessung

Praktikum Optische Technologien, Protokoll Versuch Absorptionsmessung Praktikum Optische Technologien, Protokoll Versuch Absorptionsmessung 09.0.204 Ort: Laserlabor der Fachhochschule Aachen Campus Jülich Inhaltsverzeichnis Einleitung 2 Fragen zur Vorbereitung 2 3 Geräteliste

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Seminar zum Praktikumsversuch: Optische Spektroskopie. Tilman Zscheckel Otto-Schott-Institut

Seminar zum Praktikumsversuch: Optische Spektroskopie. Tilman Zscheckel Otto-Schott-Institut Seminar zum Praktikumsversuch: Optische Spektroskopie Tilman Zscheckel Otto-Schott-Institut Optische Spektroskopie Definition: - qualitative oder quantitative Analyse, die auf der Wechselwirkung von Licht

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Themenüberblick Schwingungsspektroskopie Physikalische Grundlagen: Mechanisches Bild

Mehr

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik 23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

Primärstruktur Proteinsequenzierung

Primärstruktur Proteinsequenzierung Proteinanalytik II Primärstruktur Proteinsequenzierung Hydrolyse der Peptidbindung Aminosäurenachweis Ninhydrin Aminosäurenachweis Fluorescamin Proteinhydrolysat Ionenaustauschchromatographie Polypeptidstruktur

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Proben, Probengefässe, Probenvorbereitung.

Spektroskopie. im IR- und UV/VIS-Bereich. Proben, Probengefässe, Probenvorbereitung. Spektroskopie im IR- und UV/VIS-Bereich Proben, Probengefässe, Probenvorbereitung Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Allgemeiner Aufbau eines Spektrometers d

Mehr

Das Spektrum elektromagnetischer Strahlung

Das Spektrum elektromagnetischer Strahlung Druckversion: Virtuelles Labor: UV-Vis-Spektroskopie 1 Versuchsziel ufnahme eines Spektrums von Sulfanilamid (SN) und Sulfathiazol (ST) zur Ermittlung der maximalen Wellenlänge max und der entsprechenden

Mehr

V. Optik in Halbleiterbauelementen

V. Optik in Halbleiterbauelementen V.1: Einführung V. Optik in Halbleiterbauelementen 1. Kontakt 1. 3.. 1. Kontakt Abb. VI.1: Spontane Emission an einem pn-übergang Rekombination in der LED: - statistisch auftretender Prozess - Energie

Mehr

1 Experimentelle Daten

1 Experimentelle Daten 1 1 Experimentelle Daten UV/VIS-Spektroskopie oder Elektronenspektroskopie nennt man die Messung, Auswertung und Deutung der Phänomene der Wechselwirkung von elektromagnetischer Strahlung des sichtbaren

Mehr

422 - Spektralphotometer

422 - Spektralphotometer 422 - Spektralphotometer 1. Aufgaben 1.1 Nehmen Sie die Transmissionskurven zweier Farbfilter auf! 1.2 Messen Sie die Transmission in Abhängigkeit von der Dicke der durchstrahlten Schicht! 1.3 Nehmen Sie

Mehr

13.5 Photonen und Phononen

13.5 Photonen und Phononen Woche 11 13.5 Photonen und Phononen Teilchen mit linearem Dispersionsgesetz: E = c p, c - Ausbreitungsgeschwindigkeit (Licht- oder Schallgeschwindigkeit). 13.5.1 Photonen Quantisierung der Eigenschwingungen

Mehr

Farbstoffe Einleitung

Farbstoffe Einleitung Einleitung Farben, die aus Mineralien gewonnen wurden, wie die Mineralfarben Mennige, Zinnober oder Malachit dienten bereits in der Altsteinzeit für Höhlenmalereien. Diese Farben bestehen aus anorganischen

Mehr

Welle-Teilchendualismus. Reflexion. Brechungsgesetz. Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften

Welle-Teilchendualismus. Reflexion. Brechungsgesetz. Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften Welle-Teilchendualismus Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften Holger Scheidt Optik 2 Reflexion Brechung Beugung Interferenz Kohärenz Polarisierbarkeit Optik Absorption

Mehr

Anfängerpraktikum D11 - Röntgenstrahlung

Anfängerpraktikum D11 - Röntgenstrahlung Anfängerpraktikum D11 - Röntgenstrahlung Vitali Müller, Kais Abdelkhalek Sommersemester 2009 1 Messung des ersten Spektrums 1.1 Versuchsaufbau und Hintergrund Es sollte das Spektrum eines Röntgenapparates

Mehr

Vorlesung Physik für Pharmazeuten PPh Optik

Vorlesung Physik für Pharmazeuten PPh Optik Vorlesung Physik für Pharmazeuten PPh - 10 Optik 02.07.2007 Wiederholung : Strom und Magnetismus B = µ 0 N I l Ampère'sche Gesetz Uind = d ( BA) dt Faraday'sche Induktionsgesetz v F L = Q v v ( B) Lorentzkraft

Mehr

Fluoreszenzspektroskopie

Fluoreszenzspektroskopie A 60 Fluoreszenzspektroskopie Aufgabe: Bestimmen Sie das Absorptions- und Fluoreszenzspektrum des Farbstoffs Rhodamin 6G in ethanolischer Lösung. Bestimmen Sie in beiden Spektren jeweils die Wellenlänge

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Schmelz- und Siedepunkte von typischen reinen Stoffen. Symbolik der Elektronenpaarbindung

Schmelz- und Siedepunkte von typischen reinen Stoffen. Symbolik der Elektronenpaarbindung Prof. Dr..-U. Reißig 2.01 Schmelz- und Siedepunkte von typischen reinen Stoffen Salzartig Diamantartig Flüchtige Stoffe Ionengitter Atomgitter diskrete Moleküle (Nal) (af 2 ) (Al 2 O 3 ) 4 6 6 l 4 O 2

Mehr

K2: Acetonjodierung. Theoretische Grundlagen. Absorptionsspektroskopie. Physikalische Chemie für Pharmazeuten

K2: Acetonjodierung. Theoretische Grundlagen. Absorptionsspektroskopie. Physikalische Chemie für Pharmazeuten In diesem Versuch wird die Konzentrationsänderung von Iod während einer Reaktion erster Ordnung (Acetonjodierung) mittels quantitativer Absorptionsspektroskopie untersucht. Die Geschwindigkeitskonstanten

Mehr

Lösungen zu den Übungen zur Einführung in die Spektroskopie für Studenten der Biologie (SS 2011)

Lösungen zu den Übungen zur Einführung in die Spektroskopie für Studenten der Biologie (SS 2011) Universität Konstanz Fachbereich Biologie Priv.-Doz. Dr. Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Datum: 26.5.211 Lösungen zu den Übungen zur Einführung in die Spektroskopie

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H

Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H 104 KAPITEL H Wechselwirkung von Strahlung mit Materie 1. Einleitung In der Elektrodynamik wird der Einfluß der Materie auf die Strahlung mit Hilfe der Stoffkonstanten ε r und µ r berücksichtigt, wobei

Mehr

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung VL 20 VL 18 18.1. Mehrelektronensysteme VL 19 19.1. Periodensystem VL 20 20.1. Röntgenstrahlung Wim de Boer, Karlsruhe Atome und Moleküle, 27.06.2013 1 Vorlesung 20: Roter Faden: Röntgenstrahlung Folien

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

Elektronen können sich zu sogenannten Cooper Paaren vereinigen. Dabei haben die Elektronen

Elektronen können sich zu sogenannten Cooper Paaren vereinigen. Dabei haben die Elektronen Minitest 12 Elektronen können sich zu sogenannten Cooper Paaren vereinigen. Dabei haben die Elektronen antiparallelen l Spin. Mit wie vielen il dieser Cooper Paaren kann ich deren niedrigsten energetischen

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr