- Grundlagen der Elektrotechnik I - 81 11.01.01. 5 Gleichströme und Gleichspannungen in linearen Netzwerken 1



Ähnliche Dokumente
Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

3. Anwendungen Chemische Reaktionen. Aufgabe: Die Gleichung + +

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

Aufgaben Wechselstromwiderstände

2 Gleichstrom-Schaltungen

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Zeichen bei Zahlen entschlüsseln

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Lineare Gleichungssysteme

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

1 Mathematische Grundlagen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Strom - Spannungscharakteristiken

0, v 6 = , v 4 = span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

Rekursionen. Georg Anegg 25. November Methoden und Techniken an Beispielen erklärt

Lineare Gleichungssysteme

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

3. LINEARE GLEICHUNGSSYSTEME

Praktikum Grundlagen der Elektrotechnik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Eigenwerte und Eigenvektoren von Matrizen

1 Wiederholung einiger Grundlagen

2 Netze an Gleichspannung

Repetitionsaufgaben Wurzelgleichungen

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x y = x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

DIFFERENTIALGLEICHUNGEN

Lineare Gleichungssysteme

Elektrischer Widerstand

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Theoretische Grundlagen der Informatik WS 09/10

Einführung in die Algebra

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Was ist Sozial-Raum-Orientierung?

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Plotten von Linien ( nach Jack Bresenham, 1962 )

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

Informationsblatt Induktionsbeweis

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Klassenarbeit zu linearen Gleichungssystemen

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

WB Wechselstrombrücke

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Klasse : Name : Datum :

n S n , , , , 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Grundlagen der Theoretischen Informatik, SoSe 2008

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

3.1. Die komplexen Zahlen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

Rekursionen (Teschl/Teschl )

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Daten verarbeiten. Binärzahlen

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).

Musterlösungen zur Linearen Algebra II Blatt 5

2 Terme 2.1 Einführung

4. Übungsblatt Matrikelnr.:

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

Primzahlen und RSA-Verschlüsselung

Linearen Gleichungssysteme Anwendungsaufgaben

Wechselstromkreis mit verschiedenen Bauteilen

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

AZK 1- Freistil. Der Dialog "Arbeitszeitkonten" Grundsätzliches zum Dialog "Arbeitszeitkonten"

Klausur , Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Der Zwei-Quadrate-Satz von Fermat

Analysis I für Studierende der Ingenieurwissenschaften

Zahlensysteme Seite -1- Zahlensysteme

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

Im Jahr t = 0 hat eine Stadt Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Geneboost Best.- Nr Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt.

Lineare Differentialgleichungen erster Ordnung erkennen

Komplexe Zahlen und Wechselstromwiderstände

Eine Logikschaltung zur Addition zweier Zahlen

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

In diesem Tutorial lernen Sie, wie Sie einen Termin erfassen und verschiedene Einstellungen zu einem Termin vornehmen können.

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Kapitel 15. Lösung linearer Gleichungssysteme

Teil 1: IT- und Medientechnik

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: Weitere Informationen oder Bestellungen unter

Aufgaben zur Flächenberechnung mit der Integralrechung

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

Transkript:

- Grundlagen der Elektrotechnik - 8.0.0 5 Gleichströme und Gleichspannungen in linearen Netzwerken 5. Begriffsbestimmungen 5.. Netzwerk, Knoten, Zweig, Schleife, Masche Allgemein besteht eine Schaltung aus einer mehr oder weniger großen Anzahl von Schaltelementen, die durch widerstandsbehaftete Leitungen miteinander verbunden sind. Die gesamte Schaltung bildet ein Netzwerk. Wandelt man die widerstandsbehafteten Leitungen um in konzentrierte Widerstandselemente sowie widerstandslose Leitungen und die Spannungsquellen in eine Reihenschaltung aus idealer Spannungsquelle und konzentriert angenommenem nnenwiderstand, so erhält man ein idealisiertes Netzwerk als Ersatzschaltbild für das tatsächliche Netzwerk; solche Netzwerke aus konzentrierten Bauelementen und widerstandslosen Verbindungsleitungen werden im folgenden betrachtet. Ziel hierbei ist es, die Ströme und Spannungen an den einzelnen Zweigen zu berechnen. Dies ist die ein Problem der Netzwerkanalyse, bei der es darum geht, Schaltungen auf ihr elektrisches Verhalten und ihre Grundstruktur hin zu untersuchen. Neben der technischen Aufgabe der Netzwerkanalyse gibt es auch die technische Aufgabe der Netzwerksynthese. Bei dieser Aufgabe müssen Netzwerke mit vorgegebenen Eigenschaften (elektrisches Verhalten, Struktur) entworfen werden. Die Netzwerksynthese ist schwieriger als die Netzwerkanalyse. Die Netzwerksynthese wird im Rahmen dieser Vorlesung nicht behandelt. Die folgenden Begriffe ermöglichen eine differenziertere Bezeichnung einzelner Netzwerkkomponenten: Der Zweig eines Netzwerkes ist der zwischen zwei Verbindungspunkten liegende Leitungszug. Die Verbindungspunkte mehrerer Zweige heißen Knoten. Jeder geschlossene Umlauf in einem Netzwerk heißt Schleife. Schleifen, die vom keinem Zweig gekreuzt werden, heißen Maschen. Lineare Netzwerke enthalten nur passive lineare Bauelemente wie z.b. ideale Widerstände, Kondensatoren, Spulen und Übertrager, sowie Quellen mit lastunabhängiger Quellspannung und lastunabhängigem nnenwiderstand.

- Grundlagen der Elektrotechnik - 8.0.0 Beispiel: K R U q G M G U q Z R M M Z Z R R 4 K R 5 Z 5 Z: Zweig K:Knoten M: Masche Das Netzwerk hat drei Zweige, und zwei Knoten, Es sind zwei innere Maschen (M und M ) und eine äußere Masche (M ) eingezeichnet. 5.. Topologie, Netzwerkgraph Betrachtet man ein Netzwerk unabhängig von den in ihm vorhandenen Schaltelementen, so wird seine Struktur, d.h. die Art, in der die einzelnen Zweige des Netzwerks miteinander verbunden sind, auch als Topologie bezeichnet. Sie kann als ein Streckenkomplex, der als Netzwerkgraph bezeichnet wird, dargestellt werden. Der Netzwerkgraph enthält die Zweige als Linien und die Knoten als Punkte; der Netzwerkgraph ist die zeichnerische Darstellung der Topologie des Netzwerkes. Die Struktur oder Topologie eines Netzwerkes beschreibt die Art der Verknüpfung ohne Rücksicht auf die vorhandenen Schaltelemente. Die entsprechende zeichnerische Darstellung ist der Netzwerkgraph.

- Grundlagen der Elektrotechnik - 8.0.0 Beispiel: R K K U q G G U q5 Z R i R R i5 R 6 Z Z Z 5 Z 6 Z 4 R 4 K K 4 Das Netzwerk hat sechs Zweige und vier Knoten. Jedes Netzwerk besteht aus einzelnen Zweigen, die in den Knoten miteinander verknüpft sind. m folgenden wird mit m die Anzahl der Zweige, mit n die Anzahl der Knoten bezeichnet- 5.. Strom- und Spannungszählpfeile Um die Grundaufgabe der Netzwerkanalyse, nämlich das Berechnen der unbekannten Ströme in den Zweigen und der unbekannten Spannungen zwischen den Enden eines jeden Zweigs, lösen zu können, ist ein System von Gleichungen erforderlich, die man, wie in Abschnitt 5. gezeigt werden wird mit den Kirchhoffschen Sätzen, gewinnen kann. Das Aufstellen der Gleichungen ist nur möglich, wenn für jeden Zweig des Netzwerkgraphen Strom- und Spannungszählpfeile eingeführt werden; die Orientierung der Zählpfeile ist willkürlich. U K K Wenn = -A, so fließt ein Strom der Stärke A durch den Zweig von K nach K. U 5 6 U 6 U U5 4 Wenn U 5 = 7V, so hat K4 gegenüber K die positive Spannung K K 4 von 7 V. U 4

- Grundlagen der Elektrotechnik - 84.0.0 5. Kirchhoffsche Sätze 5.. Erster Kirchhoffscher Satz n einem Knotenpunkt können keine Ladungen verschwinden und keine Ladungen neu entstehen (Quellenfreiheit des Stromes). Deshalb ist in jedem Knoten die Summe aller zufließenden Ströme gleich der Summe aller abfließenden Ströme. Hat man ein Netzwerk mit eingetragenen Stromzählpfeilen, so lautet der erste Kirchhoffsche Satz folgendermaßen. n einem Knoten ist die Summe aller Ströme gleich Null. Ströme, deren Zählpfeil auf den Knoten zeigen, sind positiv (bzw. negativ), Ströme, deren Zählpfeile vom Knoten wegzeigen, sind negativ (bzw. positiv) einzuführen. Formal lautet der erste Kirchhoffsche Satz: m = α µ Zählpfeil von = 0 Zählpfeil von Zählpfeil von zeigt zum Knoten zeigt vom Knoten µ hin µ weg gehört nicht zum Knoten µ α α α µ µ µ = + = = 0 (5...) Mit µ =... n ergeben sich n Gleichungen mit m Unbekannten. n ist die Anzahl der Knoten, m die Anzahl der Zweige. Gustav Robert Kirchhoff (84-887), deutscher Physiker. Die heute nach ihm benannten Sätze veröffentlichte er 845.

- Grundlagen der Elektrotechnik - 85.0.0 Beispiel: Bei der Struktur aus Abschnitt 5.. führt der. Kirchhoffsche Satz zu folgenden Knotenpunktsgleichungen: 4 5 6 K - + - 0 0 0 = 0 ( ) K + - 0 + 4 0 0 = 0 ( ) K 0 0 + 0-5 + 6 = 0 ( ) K 4 0 0 0-4 + 5-6 = 0 ( 4 ) n Matrixschreibweise lautet das Gleichungssystem 0 0 0 0 0 0 0 0 0 4 0 0 0 5 6 = 0. Die Gleichungen (-4) sind nicht alle voneinander unabhängig. Durch Addition der Gleichungen (-) erhält man z.b. + = 0 4 5 6 + = 0. 4 5 6 oder gleichbedeutend Das ist die Gleichung (4). Anhand der Gleichungen erkennt man: Wenn z.b. 4 = -A und 5 = 0A, dann gilt 6 = 5 4 = A.

- Grundlagen der Elektrotechnik - 86.0.0 Anzahl der unabhängigen Knotenpunktsgleichungen: Bei jeder beliebigen Reihenfolge der n Knotenpunktsgleichungen tritt bis zur Gleichung n- mit jeder weiteren Gleichung mindestens ein neuer Zweigstrom auf. n der n-ten Gleichung kommen dagegen keine neuen Zweigströme mehr vor: K K 4 4 K K 5, 6 K, K K 4 neu hinzukommende Zweigströme K sind im Gleichungssystem durch fette Schrift markiert K 5, 6 K 4 K K K 5, 6 K 4 K 4 K Die jeweils n- ersten Knotenpunktsgleichungen bilden ein System linear unabhängiger Gleichungen. Die n-te Gleichung ist von den vorhergehenden linear abhängig. Dies kann folgendermaßen plausibel gemacht werden: Die Stromsumme des n-ten Knotens ist Null, ebenso die Stromsumme des Restnetzwerkes ohne den n-ten Knoten; beide Summen sind gleich; durch die n- ersten Knotenpunktsgleichungen ist bereits dafür gesorgt, daß die Stromsumme des Restnetzwerkes null wird; deshalb ist die Knotenpunktsgleichung des n-ten Knotens überflüssig. Somit gilt: Für ein Netzwerk mit n Knoten gibt es n- unabhängige Knotenpunktsgleichungen für die Zweigströme. Keine dieser n- Gleichungen läßt sich durch Linearkombination der restlichen n- Gleichungen erzeugen.

- Grundlagen der Elektrotechnik - 87.0.0 Gewinn der n- unabhängigen Knotenpunktsgleichungen: Die n- unabhängigen Knotenpunktsgleichungen erhält man, indem man bei der Gesamtzahl von n Gleichungen willkürlich eine Gleichung wegläßt. n den obigen Beispielen für die Auswahl verschiedener Knotenpunktsgleichungen kann jeweils die letzte Gleichung weggelassen werden, bei der ersten Auswahl K 4, bei der zweiten K usw. Das System der n- unabhängigen Knotenpunktsgleichungen hat in Matrix- Vektor- Schreibweise die Form n Gleichungen α M m m = 0, Ströme d.h. man hat also n- linear unabhängige Gleichungen für m unbekannte Zweigströme. Schnittmenge: Eine in der Netzwerkanalyse angewandte Verallgemeinerung des Begriffs "Knoten" ist die Schnittmenge. Wenn man einen Teil eines Netzwerkes durch eine geschlossene Hülle umgibt, ist die Summe der Ströme durch die Hülle unter Berücksichtigung ihrer Zählpfeilrichtung Null. Hülle 5 6 4 + 5 + 6 = 0 Zur Schnittmenge gehören alle Ströme, welche durch die Hülle treten. Diese erfüllen ebenfalls eine (verallgemeinerte) Knotenpunktsgleichung.

- Grundlagen der Elektrotechnik - 88.0.0 5.. Zweiter Kirchhoffscher Satz Schleife: n 5.. wurde der Begriff der Schleife bereits eingeführt. Eine Schleife ist ein geschlossener Umlauf durch das Netzwerk. Jeder Schleife kann man eine von zwei möglichen Umlaufrichtungen zuordnen. Bei einer in der Netzwerkanalyse manchmal üblichen Differenzierung bezeichnet man Schleifen, durch die keine Zweige hindurchgehen, auch als Maschen. Demnach wären in folgendem Beispiel M, M 5 und M 6 als Schleifen, jedoch nur M und M 6 als Maschen zu bezeichnen. K K M 6 M M 5 K K 4 Sind in einem Netzwerk die Spannungszählpfeile und positiven Umlaufrichtungen für die Schleifen bzw. Maschen festgelegt, so gilt der zweite Kirchhoffsche Satz: n einer Schleife ist die Summe aller Zweigspannungen gleich Null. Spannungen, deren Zählpfeile in Richtung der Umlaufrichtung der Schleife zeigen, sind hierbei positiv (bzw. negativ), Spannungen deren Zählpfeile gegen die Umlaufrichtung der Schleife zeigen, sind hierbei negativ (bzw. positiv) einzuführen. Formal lautet der zweite Kirchhoffsche Satz: m = β µ U Zählpf.vonU = 0 Zählpf.vonU Zählpf.vonU zeigt in Umlaufrichtung zeigt gegen gehört nicht zur Schleife der Schleife µ die Umlaufrichtung der Schleife µ µ β β β µ µ µ = + = = 0 (5...) Mit µ =... M ergeben sich M Gleichungen mit m Unbekannten.

- Grundlagen der Elektrotechnik - 89.0.0 n jeder Schleife treten mindestens zwei Spannungen auf. Deshalb ist die Anzahl der Schleifen stets kleiner als die Anzahl der unbekannten Zweigspannungen. st M die Anzahl der Schleifen und m die Anzahl der Zweigspannungen, so führt der zweite Kirchhoffsche Satz zu einem Gleichungssystem von M Gleichungen mit m Unbekannten (m>m). Anmerkung: Wenn der zweite Kirchhoffsche Satz nicht gelten würde, müßte man verlangen, daß zwischen Anfang und Ende einer Masche, d.h. in ein und demselben Knoten, eine Spannung besteht. Beispiele:. Gegeben sei die folgende Schaltung: R i U i U q G M U R U = U q R R + R i, (4...) U i = U q Ri R + R i. (4...4) Für die Spannungen in Masche M gilt U U U = U U q i q q R R + R i U q Ri R + R i = 0

- Grundlagen der Elektrotechnik - 90.0.0. Für das Netzwerk aus Abschnitt 5.. gilt: K K M 6 M 4 M 5 M M M K K 4 Gemäß den Spannungszählpfeilen aus dem Bild in Abschnitt 5.. ist das folgende Gleichungssystem aufstellbar: U U U U 4 U 5 U 6 M -U +U 0 0 0 0 = 0 ( ) M 0 -U +U +U 4 -U 5 0 = 0 ( ) M 0 0 0 0 +U 5 +U 6 = 0 ( ) M 4 -U 0 +U +U 4 -U 5 0 = 0 ( 4 ) M 5 0 -U +U +U 4 0 +U 6 = 0 ( 5 ) M 6 -U 0 +U +U 4 0 +U 6 = 0 ( 6 ) Die Gleichungen (-6) sind nicht alle voneinander unabhängig. Beispielsweise erhält man durch Addition der Gleichungen (), () und () U + 0 + U + U + 0 + U = 0. 4 6 Das ist Gleichung (6).

- Grundlagen der Elektrotechnik - 9.0.0 Gewinnen eines Systems unabhängiger Schleifengleichungen: Beim Aufstellen eines Systems von Schleifengleichungen muß darauf geachtet werden, daß die Gleichungen nicht linear abhängig sind, und daß man die maximal mögliche Anzahl unabhängiger Schleifengleichungen erhält. Um dies zu erreichen, ist es zweckmäßig, den Begriff des "vollständigen Baumes" einzuführen. Ein vollständiger Baum ist ein Streckenkomplex innerhalb einer Netzwerkstruktur, der alle n Knoten miteinander verbindet, jedoch keine Schleifen enthält. Die Zweige des Baumes nennt man Baumzweige; alle Zweige, die keine Baumzweige sind, heißen Verbindungszweige. st m die Anzahl aller Zweige und n- die Anzahl der Baumzweige, so sind im Netzwerk m-(n-) Verbindungszweige vorhanden. Für jede Netzwerkstruktur gibt es mehrere Streckenkomplexe mit der Eigenschaft des vollständigen Baumes. Beispiel: n-= Baumzweige m-(n-) = Verbindungszweige Ein System unabhängiger Schleifengleichungen erhält man, wenn man die Schleifen so legt, daß in jeder Schleife nur ein einziger Verbindungszweig liegt, und daß jede Schleife im übrigen nur Baumzweige enthält. Die so entstehenden Schleifengleichungen sind unabhängig, weil in jeder der Gleichungen eine Zweigspannung auftritt, die in den anderen Gleichungen nicht erscheint. Dies ist die Zweigspannung des jeweiligen Verbindungszweiges. Die Anzahl der auf diese Weise entstehenden Gleichungen ist gleich der Anzahl m-(n-) der Verbindungszweige. Zusätzliche unabhängige Schleifengleichungen existieren nicht, d.h. alle zusätzlich formulierbaren Schleifenlgeichungen sind durch Linearkombination der m-(n-) unabhängigen Schleifengleichungen darstellbar.

- Grundlagen der Elektrotechnik - 9.0.0 Allgemein gilt somit: Für ein Netzwerk mit m Zweigen und n Knoten gibt es m-(n-) unabhängige Schleifengleichungen. Keine dieser m-(n-) Gleichungen läßt sich durch Linearkombination der restlichen Gleichungen erzeugen. Ein System m-(n-) unabhängiger Schleifengleichungen erhält man, wenn man die Schleife so legt, daß jeder Verbindungszweig einer und nur einer Schleife angehört. Beispiele:. Betrachtet werde das Netzwerk aus Abschnitt 5... U U U U 6 U 5 U 4 Mit m=6 und n=4 erhält man in diesem Fall m ( n ) = 6 ( 4 ) =, d.h. es existieren unabhängige Schleifengleichungen. M 4 M M M

- Grundlagen der Elektrotechnik - 9.0.0 U U U U 4 U 5 U 6 M -U +U 0 0 0 0 = 0 ( ) M 0 0 0 0 U 5 +U 6 = 0 ( ) M 4 -U 0 +U +U 4 -U 5 0 = 0 ( ) Die n- unabhängigen Knotenpunktsgleichungen und die m-(n-) unabhängigen Maschengleichungen bilden zusammen ein Gleichungssystem mit m Gleichungen. Die Zweigspannungen der jeweiligen Verbindungszweige sind im obigen Gleichungssystem durch fette Schrift markiert. Die oben gestrichelt eingezeichnete Masche M führt auf die Maschengleichung. U + U + U4 U5 = 0. Durch Subtrahieren der Maschengleichung M von der Maschengleichung M 4 erhält man ebenfalls. U + U + U4 U5 = 0. /00

- Grundlagen der Elektrotechnik - 94.0.0.Betrachtet werde ein Netzwerk mit der dargestellten Struktur. m = 8 n = 5 8 Zweige 5 Knoten m ( n ) = 8 4 = 4 4 unabhängige Maschengleichungen! 4 unabhängige Zweigströme n = 4 4 unabhängige Knotenpunktsgleichungen vollständiger Baum: Die dick gedruckte Linie ist ein Beispiel für einen vollständigen Baum. Die Schleifen, welche jeweils nur einen Verbindungszweig enthalten, sind in ihrem Umlauf angedeutet. Die n- unabhängigen Knotenpunktsgleichungen und die m-(n-) unabhängigen Schleifengleichungen bilden zusammen ein Gleichungssystem mit m Gleichungen, womit m unbekannten Größen berechnet werden können. n jedem Zweig sind der Strom und die Spannung eine unbekannte Größe; somit wären bei m Zweigen also m Unbekannte zu ermitteln. Nach dem ohmschen Gesetz ist jedoch jede Zweigspannung über den bekannten Widerstand im Zweig und den Zweigstrom ausdrückbar; es genügt also die Kenntnis sämtlicher m Zweigströme oder m Zweigspannungen, siehe dazu Abschnitt 5...

- Grundlagen der Elektrotechnik - 95.0.0 5.. Unabhängige Zweigströme Ordnet man den m-(n-) unabhängigen Schleifengleichungen als Schleifenströme die Ströme der Verbindungszweige zu, von denen in jeder Schleife ein anderer Zweigstrom enthalten ist, so sind diese Ströme unabhängig voneinander, d.h. diese Zweigstöme können willkürlich festgelegt werden, ohne daß im Netzwerk der erste Kirschhoffsche Satz verletzt wird. Diese Unabhängigkeit ist auf die der m-(n-) unabhängigen Maschengleichungen zurückzuführen. Wenn die unabhängigen Zweigströme, d.h. die Ströme der Verbindungszweige, feststehen, sind dadurch auch die Zweigströme der Baumzweige festgelegt. Diese Ströme heißen deshalb abhängige Zweigströme. m folgenden Beispiel soll gezeigt werden, daß bei bekannten unabhängigen Zweigströmen die abhängigen Zweigströme ermittelt werden können. Beispiel: Durch willkürliche Wertezuweisung für, und 6 im folgenden Bild wird der erste Kirchhoffsche Satz nicht verletzt, da sich die abhängigen Zweigströme stets entsprechend einstellen können. K K 5 6 4 K K 4 Wenn für ein Netzwerk die unabhängigen Zweigströme berechnet sind, können aus diesen die restlichen, abhängigen Zweigströme mit dem ersten Kirchhoffschen Satz berechnet werden.

- Grundlagen der Elektrotechnik - 96.0.0 m Fall des oben dargestellten Netzwerkes ist 0/99 abhängige Zweigströme unabhängige Zweigströme 4 5 6 = = = +,,. 4 4 4 4 Dieses Ergebnis hätte man auch auf einem anderen Weg erhalten können:. Aufstellen von drei unabhängigen Knotenpunktsgleichungen (z.b. für K, K und K ). 0. : K 0 : K 0 : K 6 5 4 = + = + = + = 0 0 0 0 0 0 0 0 0 0 4 5 6.. Umstellung der unabhängigen Zweigströme, und 6 auf die rechte Seite: 6 5 4 : K : K : K = = + + =, = 0 0 0 0 0 0 0 0 0 4 5 6.

- Grundlagen der Elektrotechnik - 97.0.0. Berechnen von, 4, 5 aus diesem Gleichungssystem: =, =, = +. 4 5 6 Allgemein erhält man beim Berechnen der abhängigen ( x ) aus den unabhängigen Zweigströmen (y) ein Gleichungssystem der Form n A x n n B y = 4 4 4 4 n m( n) m ( n ). Aus dieser Darstellung wird deutlich, daß man für die n- abhängigen Zweigströme ein lösbares inhomogenes Gleichungssystem erhält, wenn man die Werte der unabhängigen Zweigströme kennt und diese auf die rechte Seite bringt.

- Grundlagen der Elektrotechnik - 98.0.0 5. Berechnen der Zweigströme und Zweigspannungen 5/99 5.. Berechnen sämtlicher m Zweigströme n einem Netzwerk mit m Zweigen gibt es m zu berechnende Zweigströme, d.h. man benötigt m unabhängige Gleichungen zum Berechnen der Zweigströme. Mit den Kirchhoffschen Sätzen gewinnt man n- unabhängige Gleichungen für die Zweigströme und m-(n-) unabhängige Gleichungen für die Zweigspannungen. Wenn es gelingt, letztere Gleichungen in Gleichungen für die Zweigströme umzuschreiben, so hat man die erforderlichen m Gleichungen für die Zweigströme. Man geht hierzu nach folgendem Schema vor: n- unabhängige Gleichungen für die m Zweigströme, m-(n-) unabhängige Gleichungen für die m Zweigspannungen; hieraus durch Elimination der Zweigspannungen m unabhängige Gleichungen für die m Zweigströme. Jeder der m Zweige besteht aus einem aktiven Zweipol oder aus einem passiven Zweipol. Die Zweigspannung kann durch den Zweigstrom ausgedrückt werden: Zweig ist ein passiver Zweipol U R U =. R U R U = -. R (5...) (5...)

- Grundlagen der Elektrotechnik - 99.0.0 Zweig ist ein aktiver Zweipol U R U =. R + U q U R U = -. R + U q G U q G U q (5...) (5...4) U R U =. R - U q U R U = -. R - U q G U q G U q (5...5) (5...6) Somit sind alle Zweigspannungen durch die Zweigströme ausdrückbar. Dies wird im folgenden auf das bereits aus Abschnitt 5.. bekannte Netzwerk angewendet. U R K K 6 U q G M 4 G U q5 R U U U 5 U 6 R 6 R i R i5 M M 4 5 K R 4 K 4 U 4

- Grundlagen der Elektrotechnik - 00.0.0 Unabhängige Knotenpunktsgleichungen aus 5..: 4 5 6 K - + - = 0 K + - + 4 = 0 K + - 5 + 6 = 0. Unabhängige Schleifengleichungen aus 5..: U U U U 4 U 5 U 6 M -U +U = 0 M +U 5 +U 6 = 0 M 4 -U +U +U 4 -U 5 = 0. Nach (5...): U = R + U i q Nach (5...): U = R Nach (5...): U = R Nach (5...): U4 = 4 R4 Nach (5...6): U = R U 5 5 i5 q5 Nach (5...): U6 = 6 R6

- Grundlagen der Elektrotechnik - 0.0.0 Setzt man diese Ausdrücke in die drei unabhängigen Schleifengleichungen ein, so erhält man drei weitere Gleichungen für die Ströme: 4 5 6 U + U = 0 - R i - R = U q U5 + U6 = 0-5 R i5-6 R 6 = U q5 U + U + U U = 4 5 0 - R i + R + 4 R 4 + 5 R i5 = U q -U q5. Damit hat man sechs Gleichungen zum Berechnen der sechs Zweigströme bis 6.

- Grundlagen der Elektrotechnik - 0.0.0 5.. Berechnen der m Zweigspannungen Nachdem die Zweigströme berechnet sind, könne die Zweigspannungen über (5...) bis (5...6) berechnet werden. 5.. Berechnen der m-(n-) unabhängigen Zweigströme Zum Berechnen lediglich der m-(n-) unabhängigen Zweigströme setzt man in die m-(n-) unabhängigen Schleifengleichungen die m-(n-) unabhängigen Zweigströme ein. Dann erhält man ein lösbares Gleichungssystem mit m-(n-) unbekannten Zweigströmen und m-(n-) Gleichungen. Beispiel: Für die Netzwerkstruktur des Beispiels in Abschnitt 5.. erhält man die unabhängigen Schleifengleichungen U U U U 4 U 5 U 6 M -U +U = 0 M +U 5 +U 6 = 0 M 4 -U +U +U 4 -U 5 = 0 Wenn man der Netzwerkstruktur denn vollständigen Baum aus dem folgenden Bild zugrundelegt, sind, und 6 unabhängige Zweigströme, siehe Beispiel in Abschnitt 5... M 4 M M M

- Grundlagen der Elektrotechnik - 0.0.0 Ordnet man die Zweigströme den jeweiligen unabhängigen Schleifenengleichungen zu, also /00 M M 4 6 M, so lassen sich sämtliche Spannungen des Systems unabhängiger Schleifengleichungen durch diese unabhängigen Zweigströme ausdrücken. U R K K U q G G U q5 R U U U 5 U 6 R 6 R i M,- M 4, R i5 M, - 6 K R 4 K 4 U 4 ( ) U = U + R q i U = R, U = R, U = R, 4 4 ( ) U = U R + 5 q5 i5 6 U = R 6 6 6.,,

- Grundlagen der Elektrotechnik - 04.0.0 Setzt man diese Ausdrücke in die unabhängigen Schleifengleichungen ein, so entsteht M ( R i R ) M 6 + R i = U q 5 ( R i + R ) R i 6 5 6 = U q5 M4 + ( R i + R + R + R i ) R i 4 5 + 6 R i5 = U q -U q5. Aus diesem Gleichungssystem kann man die unabhängigen Zweigströme, und 6 berechnen. Aus den unabhängigen Zweigströmen kann man die abhängigen n- Zweigströme berechnen, siehe Abschnitt 5... Nachdem alle Zweigströme bekannt sind, könne die Zweigspannungen nach (5...) bis (5...6) ermittelt werden.

- Grundlagen der Elektrotechnik - 05.0.0 5..4 Zusammenfassung der behandelten Berechnungsverfahren für die Zweig- ströme und Zweigspannungen. Verfahren: - Aufstellen der n- unabhängigen Knotenpunktsgleichungen für die Zweigströme und der m-(n-) unabhängigen Schleifengleichungen für die Zweigspannungen, - Einsetzen der Zweigströme in die Schleifengleichungen siehe, (5...) bis (5...6), - Lösen des Gleichungssystems für die m unbekannten Zweigströme, - Berechnen der m Zweigspannungen aus den Zweigströmen.. Verfahren: - Aufstellen der m-(n-) unabhängigen Schleifengleichungen für die Zweigspannungen, - Festlegen der m-(n-) unabhängigen Zweigströme, - Einsetzen der unabhängigen Zweigströme in die unabhängigen Schleifengleichungen, - Lösen des Gleichungssystems für die m-(n-) unbekannten unabhängigen Zweigströme, - Berechnen der n- abhängigen Zweigströme, siehe Abschnitt 5.., - Berechnen der m Zweigspannungen aus den Zweigströmen. Das zweite Verfahren führt i.a. rascher zum Ziel.

- Grundlagen der Elektrotechnik - 06.0.0 5.4 Überlagerungsgesetz nach Helmholtz Das Helmholtzsche Überlagerungsgesetz gilt für lineare Netzwerke und soll anhand eines Beispiels erläutert werden. Beispiel: Gesucht sind die Zweigströme und. R i U R i U M R M U G U q U q G Anzahl der unabhängigen Zweigströme: m =, n = m ( n ) = ( ) =. Als unabhängige Zweigströme werden und eingeführt. Maschengleichungen: M M : U : U U U = 0, = 0. Unabhängige Zweigströme in M und M eingesetzt: M M : (R : R + i + R) + R = U (R i + R) = U q q,.

- Grundlagen der Elektrotechnik - 07.0.0 Kramersche Regel: Uq Ri R U q R = ( + ) + = U R + R + U q q ( R + R)( R + R) R ( R + R)( R + R) R ( )( ) i i Uq R i R Uq R = ( + ) + = + U q q ( R i + R)( R i + R) R ( Ri + R)( R i + R) R ( Ri )( i ) 44444 44444 i i i R Anteil aufgrund U q R R + R R + R R i i R i + R U + R R + R R 44444 44444 Anteil aufgrund U q Die Ströme bestehen also aus zwei Anteilen, die man getrennt berechnen kann, wenn man abwechselnd U q =0 bzw. U q =0 setzt. Hat ein Netzwerk mehrere Spannungsquellen, läßt sich das Berechnen der Zweigströme und Zweigspannungen durch das Überlagerungsgesetz von Helmholtz vereinfachen. Es sagt aus, daß man die Zweigströme und Zweigspannungen eines Netzwerks mit M Quellen erhält durch algebraische Addition der jeweils nur von einer Quelle hervorgerufenen Zweigströme und Zweigspannungen: M = U q G, U = U q F µ µ µ µ µ = µ = M (5.4..a,b) M ist die Anzahl der Quellen; υ m Zweigströme und Zweigspannungen eines Netzwerks mit M Spannungsquellen können berechnet werden, indem man der Reihe nach jeweils nur eine dieser Spannungsquellen berücksichtigt und die anderen M- Spannungsquellen durch ihren nnenwiderstand ersetzt. Auf diese Weise erhält man M Sätze von Zweigströmen und Zweigspannungen. Durch deren Addition ergeben sich die Zweigströme und Zweigspannungen des tatsächlichen Netzwerks mit M Spannungsquellen.

- Grundlagen der Elektrotechnik - 08.0.0 5.5 Leistungsbetrachtung, Satz von Tellegen 5/99 Jeder Zweig eines Netzwerks ist entweder ein passiver oder ein aktiver Zweipole. Passive Zweipole können nur elektrische Leistung aufnehmen. Aktive Zweipole können Leistung aufnehmen oder abgeben. Man kann die Zweige eines Netzwerks einteilen in leistungsabgebende und leistungsaufnehmende Zweige. Aufgrund des Energieerhaltungssatzes muß die Summe der abgegebenen Leistungen gleich der Summe der aufgenommenen Leistungen sein. n einem Netzwerk nehmen gewisse Zweige Leistung auf, gewisse Zweige geben Leistung ab. Die Summe der aufgenommenen Leistungen muß gleich der Summe der abgegebenen Leistungen sein (Energieerhaltungsgesetz): m γ = +, wenn für Zweig VZS, γ U = 0 = γ =, wenn für Zweig EZS. (5.5.) Anhand eines Beispiels soll die Gültigkeit des Satzes von Tellegen gezeigt werden. Beispiel aus Abschnitt 5.4: U U U Mit dem ersten und zweiten Kirchhoffschen Gesetz gilt = +, U = U U =.

- Grundlagen der Elektrotechnik - 09.0.0 Damit gilt ( ) γ U = U + U U = U + = 0 = von Zweig aufgenommen von Zweig aufgenommen von Zweig abgegeben Die Gleichung (5.5.) ist also erfüllt, wenn für alle U v und v die Kirchhoffschen Gesetze gelten. Satz von Tellegen: Geben sei die Struktur eines Netzwerks mit Zählpfeilen für die Zweigströme und Zweigspannungen. Jeder Satz von Zweigströmen, der den. Kirchhoffschen Satz nicht verletzt, und jeder Satz von Zweigspannungen, der den. Kirchhoffschen Satz nicht verletzt, erfüllen (5.5.).