Dichtefunktionaltheorie

Ähnliche Dokumente
4.2) Mehrelektronenatome

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Die Hartree-Fock-Methode

Was ist Dichtefunktionaltheorie?

Einführung in die Computerchemie

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry

Exakte Diagonalisierung

Bewegung im elektromagnetischen Feld

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Physik II Quantenmechanik

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 10. Vorlesung. Pawel Romanczuk WS 2016/17

Gesamtdrehimpuls Spin-Bahn-Kopplung

Claudia Schrodt (Autor) Untesuchungen binärer Metall- und Halbleitercluster mit Dichtefunktionalmethoden

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

2.1 Das quantenmechanische Vielteilchenproblem. Das Problem besteht darin, für ein System die zeitabhängige Schrödinger-Gleichung

Vortrag: Dichtefunktionaltheorie und Ornstein-Zernike-Gleichung

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

11. Quantenchemische Methoden

3.7. Coulomb-Loch und FERMI-Loch Eigenschaften der Slater-Determinante: antisymmetrisches Produkt von Einelektronenfunktionen ( )" 2.

Vertiefende Theoretische Chemie Übungen

6.1 Hohenberg-Kohn-Theoreme 6.2 Kohn-Sham-Ansatz 6.3 Funktionale 6.4 TD-DFT KAPITEL 6: DICHTEFUNKTIONALTHEORIE

Theoretische Chemie (TC II) Computational Chemistry

2.1 Der Hamiltonoperator, die Wellenfunktion

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Festkörperelektronik 3. Übung

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie

Inhaltsverzeichnis. 0 Einleitung... 1

Minimierung der Energie

Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten

Die klassische Welt. Jochen Hub. Akademie Rot an der Rot, August Die klassische Welt p.1

Ab-initio-Untersuchungen von Oberflächen- und Bulksystemen. Dissertation. vorgelegt von Andreas Greuling. Fachbereich Physik

Das Hartree-Fock-Verfahren

TC1 Grundlagen der Theoretischen Chemie

Gerd Czycholl. Theoretische Festkörperphysik Band 1. Grundlagen: Phononen und Elektronen in Kristallen 4. Auflage

Lösung der zeitunabhängigen Schrödingergleichung. Ansatz : Entwicklung in Basisfunktionen - Prinzip analog zur Taylor- oder Fourierreihe

Lösungsvorschlag Übung 9

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0

1.3 Mehrelektronensysteme

Theoretische Chemie / Computerchemie

Theoretische Festkörperphysik

2) Störungstheorie und Variationsverfahren Burgd. 9 oder was tun, wenn die S-Glg. nicht exakt lösbar ist Schwabl 11

8 Das Wasserstoffatom

Grundlagen der Theoretischen Chemie (TC 1)

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS

Übungen zur Theoretischen Physik 1. Übungsblatt

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

TC1 Grundlagen der Theoretischen Chemie

Vorlesung Theoretische Chemie I

TC1 Grundlagen der Theoretischen Chemie

Theoretische Festkörperphysik I, II. E. Schachinger H. Sormann

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i

Harmonischer Oszillator und 3d-Schrödingergleichung

Ferienkurs Quantenmechanik 2011

Theoretische Chemie (TC II) Computational Chemistry

Ferienkurs Quantenmechanik - Probeklausur

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt

Die Schrödingergleichung

Elektronenstrukturrechungen

Theoretische Chemie (TC II) Computational Chemistry

Ferienkurs Quantenmechanik 2009

Ab-initio Beschreibung des Ladungstransports durch Kohlenstoffnanoröhren

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

6 Methoden zur Lösung des elektrostatischen Randwertproblems

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit

Das H + 2 -Molekülion

Transkript:

Dichtefunktionaltheorie Ein Kurzüberblick Joscha Reichert 18. Februar 2011 1 / 9

Die Grundidee Aussage Statt der Wellenfunktion ψ(r) ist die Teilchendichte ρ(r) genauso gut geeignet ein Vielelektronensystem zu beschreiben 2 / 9

Die Grundidee Aussage Statt der Wellenfunktion ψ(r) ist die Teilchendichte ρ(r) genauso gut geeignet ein Vielelektronensystem zu beschreiben Wie sieht man das? 2 / 9

Die Grundidee Aussage Statt der Wellenfunktion ψ(r) ist die Teilchendichte ρ(r) genauso gut geeignet ein Vielelektronensystem zu beschreiben Wie sieht man das? Energie E: E( ψ ) = ψ H ψ ( ψ ψ ) 1 2 / 9

Die Grundidee Aussage Statt der Wellenfunktion ψ(r) ist die Teilchendichte ρ(r) genauso gut geeignet ein Vielelektronensystem zu beschreiben Wie sieht man das? Energie E: E( ψ ) = ψ H ψ ( ψ ψ ) 1 Teilchendichte: ρ(r) = ψ N e i δ(r r i ) ψ 2 / 9

Die Grundidee Aussage Statt der Wellenfunktion ψ(r) ist die Teilchendichte ρ(r) genauso gut geeignet ein Vielelektronensystem zu beschreiben Wie sieht man das? Energie E: E( ψ ) = ψ H ψ ( ψ ψ ) 1 Teilchendichte: ρ(r) = ψ N e i δ(r r i ) ψ Dichte und Energie über Wellenfunktionen verknüpft d.h. Energie ist ein Funktional der Dichte 2 / 9

Hohenberg-Kohn Theorem 1 Ausformulierung der Grundidee im sog. Hohenberg-Kohn Theorem. 3 / 9

Hohenberg-Kohn Theorem 1 Ausformulierung der Grundidee im sog. Hohenberg-Kohn Theorem. Aussage 1 Es gibt eine eineindeutige Korrespondenz zwischen der Grundzustandsenergie und der Grundzustandsdichte. 3 / 9

Hohenberg-Kohn Theorem 1 Ausformulierung der Grundidee im sog. Hohenberg-Kohn Theorem. Aussage 1 Es gibt eine eineindeutige Korrespondenz zwischen der Grundzustandsenergie und der Grundzustandsdichte. Aussage 2 Diejenige Grundzustandsdichte ρ 0 (r) für die das Energie-Dichte Funktional sein Minimum annimmt ist die Grundzustandsteilchendichte. 3 / 9

Hohenberg-Kohn Theorem 2 Implikationen: 1 Eineindeutige Korrespondenz (Invertibel!) Alle Eigenschaften des Grundzustandes können durch ρ 0 (r) erhalten werden. 4 / 9

Hohenberg-Kohn Theorem 2 Implikationen: 1 Eineindeutige Korrespondenz (Invertibel!) Alle Eigenschaften des Grundzustandes können durch ρ 0 (r) erhalten werden. 2 Universalität (siehe nächste Folie) 4 / 9

Hohenberg-Kohn Theorem 2 Implikationen: 1 Eineindeutige Korrespondenz (Invertibel!) Alle Eigenschaften des Grundzustandes können durch ρ 0 (r) erhalten werden. 2 Universalität (siehe nächste Folie) 3 Grundzustandsenergie ist definiert über ein Minimum Variationeller Zugang möglich! 4 / 9

Hohenberg-Kohn Theorem 2 Implikationen: 1 Eineindeutige Korrespondenz (Invertibel!) Alle Eigenschaften des Grundzustandes können durch ρ 0 (r) erhalten werden. 2 Universalität (siehe nächste Folie) 3 Grundzustandsenergie ist definiert über ein Minimum Variationeller Zugang möglich! Um effizient eine Lösung zu erhalten 4 / 9

Hohenberg-Kohn Theorem 2 Implikationen: 1 Eineindeutige Korrespondenz (Invertibel!) Alle Eigenschaften des Grundzustandes können durch ρ 0 (r) erhalten werden. 2 Universalität (siehe nächste Folie) 3 Grundzustandsenergie ist definiert über ein Minimum Variationeller Zugang möglich! Um effizient eine Lösung zu erhalten Vereinfache Hamiltonian 4 / 9

Hohenberg-Kohn Theorem 2 Implikationen: 1 Eineindeutige Korrespondenz (Invertibel!) Alle Eigenschaften des Grundzustandes können durch ρ 0 (r) erhalten werden. 2 Universalität (siehe nächste Folie) 3 Grundzustandsenergie ist definiert über ein Minimum Variationeller Zugang möglich! Um effizient eine Lösung zu erhalten Vereinfache Hamiltonian Erhalte ρ 0 Selbstkonsistent! 4 / 9

Umschreiben des Hamiltonians 1 Betrachte H nach Born-Oppenheimer Näherung (T ist E Kin der Elektronen, V deren Wechselwirkung und V ext das Gitterpotential): E[ρ(r)] = ψ (T + V ) ψ + ψ V }{{} ext ψ F HK [ρ] Das Hohenberg-Kohn Dichtefunktional F HK [ρ] 5 / 9

Umschreiben des Hamiltonians 1 Betrachte H nach Born-Oppenheimer Näherung (T ist E Kin der Elektronen, V deren Wechselwirkung und V ext das Gitterpotential): E[ρ(r)] = ψ (T + V ) ψ + ψ V }{{} ext ψ F HK [ρ] Das Hohenberg-Kohn Dichtefunktional F HK [ρ] Ist universal für alle Elektronensysteme (Klar: ist nur von e -Termen abhängig!) 5 / 9

Umschreiben des Hamiltonians 1 Betrachte H nach Born-Oppenheimer Näherung (T ist E Kin der Elektronen, V deren Wechselwirkung und V ext das Gitterpotential): E[ρ(r)] = ψ (T + V ) ψ + ψ V }{{} ext ψ F HK [ρ] Das Hohenberg-Kohn Dichtefunktional F HK [ρ] Ist universal für alle Elektronensysteme (Klar: ist nur von e -Termen abhängig!) Genaue Abhängigkeit von der Dichte ist nicht bekannt Muss versuchen F HK umzuschreiben um ρ 0 (r) erhalten zu können! 5 / 9

Umschreiben des Hamiltonians 2 Verwende Hartree-Fock Näherung um F HK zu vereinfachen 6 / 9

Umschreiben des Hamiltonians 2 Verwende Hartree-Fock Näherung um F HK zu vereinfachen Definiere: T 0 ist die kinetische Energie von freien Elektronen, V H ein Potentialanteil aus der Hartree Fock Näherung und V xc ist die Summe von Korrekturen der Austauschwechselwirkung 6 / 9

Umschreiben des Hamiltonians 2 Verwende Hartree-Fock Näherung um F HK zu vereinfachen Definiere: T 0 ist die kinetische Energie von freien Elektronen, V H ein Potentialanteil aus der Hartree Fock Näherung und V xc ist die Summe von Korrekturen der Austauschwechselwirkung F HK = T + V + T 0 T 0 + V H V H = T 0 + V H + V xc 6 / 9

Umschreiben des Hamiltonians 2 Verwende Hartree-Fock Näherung um F HK zu vereinfachen Definiere: T 0 ist die kinetische Energie von freien Elektronen, V H ein Potentialanteil aus der Hartree Fock Näherung und V xc ist die Summe von Korrekturen der Austauschwechselwirkung F HK = T + V + T 0 T 0 + V H V H = T 0 + V H + V xc Was bringts? Unser Problem ist damit auf eine Summe nicht wechselwirkender Hamiltonians im externen Potential V eff = V H + V xc + V ext reduziert! Einziges Problem: die Form des sog. Austausch-Korrelations-Beitrags V xc ist immernoch unbekannt. Hier muss man also nähern! 6 / 9

Basiswechsel! Hamiltonian des Gesamtsystems (Kohn-Sham Hamiltonian): H KS = T 0 + V H + V xc + V ext Stationäre Schrödingergleichung zu H KS wird durch eine Art Wellenfunktion φ i gelöst. (H KS φ i = ɛ i φ i ) 7 / 9

Basiswechsel! Hamiltonian des Gesamtsystems (Kohn-Sham Hamiltonian): H KS = T 0 + V H + V xc + V ext Stationäre Schrödingergleichung zu H KS wird durch eine Art Wellenfunktion φ i gelöst. (H KS φ i = ɛ i φ i ) Wellenfunktionen u. Energie sind physikalisch unbedeutend - man braucht diese nur um auf ρ zu schließen 7 / 9

Basiswechsel! Hamiltonian des Gesamtsystems (Kohn-Sham Hamiltonian): H KS = T 0 + V H + V xc + V ext Stationäre Schrödingergleichung zu H KS wird durch eine Art Wellenfunktion φ i gelöst. (H KS φ i = ɛ i φ i ) Wellenfunktionen u. Energie sind physikalisch unbedeutend - man braucht diese nur um auf ρ zu schließen Problem: unendlich viele φ i lösen SGL Basiswechsel zu einfacher Basis die mutmaßlich das Problem löst (Näherung: endlich viele φ) 7 / 9

Basiswechsel! Hamiltonian des Gesamtsystems (Kohn-Sham Hamiltonian): H KS = T 0 + V H + V xc + V ext Stationäre Schrödingergleichung zu H KS wird durch eine Art Wellenfunktion φ i gelöst. (H KS φ i = ɛ i φ i ) Wellenfunktionen u. Energie sind physikalisch unbedeutend - man braucht diese nur um auf ρ zu schließen Problem: unendlich viele φ i lösen SGL Basiswechsel zu einfacher Basis die mutmaßlich das Problem löst (Näherung: endlich viele φ) Wichtiges Ergebnis! Mit den neuen Wellenfunktionen reduziert sich das Problem noch weiter: Man hat es hier jetzt effektiv mit N Einteilchen Schrödingergleichungen zu tun, die man einzeln lösen kann! Spart Rechenaufwand 7 / 9

Selbstkonsistente Lösung suchen Kann mit neuer Basis Hamiltonian diagonalisieren Eigenwerte und Eigenfunktionen 8 / 9

Selbstkonsistente Lösung suchen Kann mit neuer Basis Hamiltonian diagonalisieren Eigenwerte und Eigenfunktionen Problem: Linke sowie rechte Seite von ρ abhängig Selbstkonsistenzproblem! 8 / 9

Selbstkonsistente Lösung suchen Kann mit neuer Basis Hamiltonian diagonalisieren Eigenwerte und Eigenfunktionen Problem: Linke sowie rechte Seite von ρ abhängig Selbstkonsistenzproblem! Wie lösen? Numerisch! 8 / 9

Selbstkonsistente Lösung suchen Kann mit neuer Basis Hamiltonian diagonalisieren Eigenwerte und Eigenfunktionen Problem: Linke sowie rechte Seite von ρ abhängig Selbstkonsistenzproblem! Wie lösen? Numerisch! Rate ein ρ 8 / 9

Selbstkonsistente Lösung suchen Kann mit neuer Basis Hamiltonian diagonalisieren Eigenwerte und Eigenfunktionen Problem: Linke sowie rechte Seite von ρ abhängig Selbstkonsistenzproblem! Wie lösen? Numerisch! Rate ein ρ Löse SGL für gegebenes V eff (ρ) 8 / 9

Selbstkonsistente Lösung suchen Kann mit neuer Basis Hamiltonian diagonalisieren Eigenwerte und Eigenfunktionen Problem: Linke sowie rechte Seite von ρ abhängig Selbstkonsistenzproblem! Wie lösen? Numerisch! Rate ein ρ Löse SGL für gegebenes V eff (ρ) Extrahiere neues ρ aus φ i. 8 / 9

Selbstkonsistente Lösung suchen Kann mit neuer Basis Hamiltonian diagonalisieren Eigenwerte und Eigenfunktionen Problem: Linke sowie rechte Seite von ρ abhängig Selbstkonsistenzproblem! Wie lösen? Numerisch! Rate ein ρ Löse SGL für gegebenes V eff (ρ) Extrahiere neues ρ aus φ i. Setze neues ρ in SGL ein Wiederhole Prozedur 8 / 9

Selbstkonsistente Lösung suchen Kann mit neuer Basis Hamiltonian diagonalisieren Eigenwerte und Eigenfunktionen Problem: Linke sowie rechte Seite von ρ abhängig Selbstkonsistenzproblem! Wie lösen? Numerisch! Rate ein ρ Löse SGL für gegebenes V eff (ρ) Extrahiere neues ρ aus φ i. Setze neues ρ in SGL ein Wiederhole Prozedur Hoffe das ρ konvergiert... 8 / 9

Literatur S. Cottenier, Density Functional Theory and the family of (L)APW-methods: a step-by-step in- troduction 2002. ISBN 90-807215-1-4. Kapitel 1. C. Czycholl, Theoretische Festkörperphysik, 2008. ISBN 978-3-540-74789-5. Abschnitt 5.8. K. Capelle, A Birds-Eye View of Density-Functional Theory, 2006. arxiv:cond-mat/0211443v5. Teil 2 bis 3.4. 9 / 9