1.12 Einführung in die Vektorrechung

Ähnliche Dokumente
3.6 Einführung in die Vektorrechnung

Vektorgeometrie Layout: Tibor Stolz

(0, 3, 4) (3, 3, 4) (3, 3, 0)

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel)

Definition, Grundbegriffe, Grundoperationen

Lernunterlagen Vektoren in R 2

Grundlagen der Vektorrechnung

2 Vektoren als Pfeile

Vektorgeometrie - Teil 1

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Vektorrechnung. Wolfgang Kippels 27. Oktober Inhaltsverzeichnis. 1 Vorwort 2. 2 Grundlagen der Vektorrechnung 3

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Vektoren, Vektorräume

Vektorrechnung Raumgeometrie

5.4 Vektorgeometrie. 1 Repetition der Vektorgeometrie I Freie Vektoren, Ortsvektoren Die skalare Multiplikation eines Vektors...

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen

Grundwissen Abitur Geometrie 15. Juli 2012

Lineare Algebra: Theorie und Anwendungen

Arbeitsblatt Mathematik 2 (Vektoren)

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Kapitel I: Vektorrechnung 2: Vektoren im Raum

12 Übungen zu Gauß-Algorithmus

Aufgaben zu Anwendungen zur Vektorrechnung

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Aufgaben zu Anwendungen zur Vektorrechnung

Zweidimensionale Vektorrechnung:

Kapitel II. Vektoren und Matrizen

Elementare Geometrie Wiederholung 3

Vorkurs Mathematik B

Analytische Geometrie

Einführung in das mathematische Arbeiten im SS Vektoren. Evelina Erlacher 1 9. März Winkel Ausblick 6

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

Verlauf Material LEK Glossar Lösungen. Die Addition von Vektoren einführen. Walter Czech, Krumbach VORANSICHT

Übungsblatt

Arbeitsblatt 1 Einführung in die Vektorrechnung

Elementare Geometrie Vorlesung 13

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

03. Vektoren im R 2, R 3 und R n

Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!

= 9 10 k = 10

Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R

03. Vektoren im R 2, R 3 und R n

Lineare Algebra Übungen

Geometrie Strecke, Gerade, Halbgerade

2.2 Kollineare und koplanare Vektoren

Vorlesung Mathematik 2 für Informatik

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Elementare Geometrie

Vektorielle Addition von Kräften

Formelsammlung Mathematik Grundkurs Inhalt

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Vektorrechnung Grundoperationen

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

6. Vektor- und Koordinaten-Geometrie.

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve.

6. Analytische Geometrie : Geraden in der Ebene

Skalarprodukt. Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor. Ganz einfache Erklärung der Grundlagen:

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Vektorrechnung. Mathematik-Repetitorium

Demo für

Geometrie Strecke, Gerade, Halbgerade

Teil 1 Grundlagen. Für moderne Geometrie-Kurse am Gymnasium. und für Realschulen in Bayern! (Prüfungsstoff!)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Schulmathematik Geometrie und Vektorrechnung Blatt 1

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Lektionen zur Vektorrechnung

Übung (5) 2x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

KOMPETENZHEFT ZUR VEKTORRECHNUNG IM RAUM. = 1 eingeschlossenen Winkel.

Vektorgeometrie: Grundlagen Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Vektorgeometrie: Grundlagen

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

Was sind Vektoren? Wozu braucht man sie?

1 lineare Gleichungssysteme

Verlauf Material LEK Glossar Lösungen. Walter Czech, Krumbach. Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren?

Lineare Algebra 1. Roger Burkhardt

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Vektorrechnung der Ebene 5.Klasse

Examen GF Mathematik (PAM) Kurzfragen 2017

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Zahlen und metrische Räume

} Symmetrieachse von A und B.

1 Vektoren und Vektorräume

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind.

Lösbarkeit linearer Gleichungssysteme

Einführung. 1 Vektoren

Transkript:

. Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren.................................. 3 3. Addition von mehreren Vektoren................................ 5 4 algebraische Darstellung von Vektoren 6 5 algebraische Grundoperationen mit Vektoren 8 6 Der Abstand zwischen zwei Punkten 0 6. Die Bildung eines Vektors aus zwei Punkten.......................... 0 6. allgemeiner dreidimensionaler Fall............................... 0 6.3 Ein Abstandsproblem...................................... 0 7 linear abhängige Vektoren und kolineare Vektoren

Vektorrechnung 05.06.008 Theorie und Übungen Definition des Vektors Definition Ein Vektor a ist ein Pfeil mit gegebener Richtung und gegebener Länge. Einen Vektor mit gegebenem Anfangspunkt A und gegebenem Endpunkt B bezeichnen wir mit #» AB. Wir betrachten Vektoren in der Ebene (-dim. Vektoren) und im Raum (3-dim. Vektoren). Auf der folgenden Abbildung sehen wir ein paar Beispiele von Vektoren. 8 6 4 4 6 8 Definition Zwei Vektoren a, b betrachten wir als gleich, d.h. a= b, wenn sie die gleiche Richtung und die gleiche Länge haben. Diese Definition scheint auf den ersten Blick überflüssig zu sein. Sie sagt aus, dass uns der Anfangspunkt eines Vektors nicht interessiert. Ein Beispiel dazu:

Vektorrechnung 05.06.008 Theorie und Übungen 3 8 6 4 4 6 8 Alle diese Vektoren werden als gleich angesehen, obwohl sie nicht am gleichen Ort beginnen. Wenn uns jemand den Auftrag gibt, einen bestimmten Vektor a auf ein Blatt Papier zu zeichnen, dann können wir den Anfangspunkt auswählen. Schliesslich definieren wir noch einen speziellen Vektor, den Nullvektor. Definition 3 Der Nullvektor hat die Länge 0 und eine unbestimmte Richtung. In der Physik nennen wir Grössen, die durch Angabe eines Vektors festgelegt werden können, Vektorgrössen (z.b. Geschwindigkeiten, Kräfte). Grössen, die schon durch Angabe einer reellen Zahl allein bestimmt werden können (z.b. Massen, Temperaturen), heissen Skalare.

Vektorrechnung 05.06.008 Theorie und Übungen 4 Skalare Multiplikation und Kehrvektor Definition 4 Ist a ein Vektor und x eine reelle Zahl, so versteht man unter x a den Vektor mit der x -fachen Länge und mit der gleichen oder entgegengesetzten Richtung von a, je nachdem ob x positiv oder negativ ist. Definition 5 Der Kehrvektor von a ist gleich lang wie a, hat aber die entgegengesetzte Richtung. Wir bezeichnen ihn mit a. Für den Vektor AB #» mit Anfangspunkt A und Endpunkt B ist der Kehrvektor der Vektor BA. #» Beachte, dass diese Vektoren nicht gleich sind, weil sie nicht die gleiche Richtung haben (aber den gleichen Betrag). 3 Addition und Subtraktion von Vektoren 3. Addition von zwei Vektoren Definition 6 Die Summe a + b zweier Vektoren a und b ist der Vektor, welcher der Zusammensetzung der Vektoren a und b entspricht.

Vektorrechnung 05.06.008 Theorie und Übungen 5 Definition 7 Die Differenz a b zweier Vektoren a und b definieren wir als den Vektor a+( b).

Vektorrechnung 05.06.008 Theorie und Übungen 6 3. Addition von mehreren Vektoren Die Addition von mehreren Vektoren lässt sich zurückführen auf die Addition von zwei Vektoren. Ein Beispiel: a b c Übungen. Gegeben sind die Vektoren a, b und c. a) Konstruiere die Vektoren a + b, a + c, a b und a c. b) Prüfe, ob das Kommutativgesetz gilt: a+ b= b+ a. c) Prüfe, ob das Distributivgesetz gilt: a+ b=( a+ b) a d) Kontruiere den Vektor d so, dass gilt: a + b + d = 0. Die Vektoren AB, #» BA, #» BC, #» CB, #» CD, #» DC, #» DA, #» AD #» beziehen sich auf das untenstehende Parallelgramm. Fülle die Lücken aus. C D b c A B

Vektorrechnung 05.06.008 Theorie und Übungen 7 a) d) #» AB=... b) #» DC=... e) #» BC=... c) #» AD=... f) #» BA=... #» CB=... 3. Gegeben sind die Vektoren a, b und c. a b a) Konstruiere den Vektor a + b + c. c b) Konstruiere den Vektor a+0.5 b+ c. c) Konstruiere den Vektor a b c. d) Prüfe, ob das Assoziativgesetz der Addition gilt:( a+ b)+ c= a+( b+ c). 4. Ein Dreieck ABC ist durch AB = c und BC = a gegeben. Der Punkt D ist Mittelpunkt der Seite AB. Drücke die Vektoren AC,AD und CD mit den Vektoren a und c aus. 5. (.5 P.) Gegeben ist ein Parallelogramm mit den Eckpunkten A,B,C und D und dem Schnittpunkt E der Diagonalen, die einander halbieren. Gegeben sind nun die Vektoren AB = a und BC = b. Drücke die Vektoren AC und ED mit diesen beiden Vektoren aus. 6. Gegeben ist ein Spat (ein von sechs Parallelogrammen begrenzter Körper, siehe untenstehende Zeichnung) durch die Vektoren a = AB, b = AD und c = AE. Drücke die Vektoren AC, BG, AF, EC, AG und HF durch a, b und c aus. E H F G D C A B 4 algebraische Darstellung von Vektoren Bisher haben wir Vektoren nur gezeichnet. Wie können wir aber jemandem am Telefon mitteilen, um welchen Vektor es geht? Ganz einfach, indem wir das Koordinatensystem zu Hilfe nehmen. Genauso wie wir einem Punkt Koordinaten zuordnen können, können wir auch einem Vektor Zahlen zuordnen, die sogenannten Komponenten. Auf der Ebene hat ein Vektor zwei Komponenten (x- und y-komponenten), im Raum sind es drei Komponenten (x-, y- und z-komponenten). Beispiele Wir betrachten den Vektor a in der Ebene: a= ( 4 3). Der Vektor geht um 4 Einheiten in x-richtung und um 3 Einheiten in y-richtung.

Vektorrechnung 05.06.008 Theorie und Übungen 8 Wir betrachten den Vektor b in der Ebene: b= ( 4). Der Vektor geht um Einheiten in die negative x-richtung und um 4 Einheiten in die negative y-richtung. Wir betrachten den Vektor c im Raum: c=. Der Vektor geht um Einheiten in x-richtung, um Einheiten in y-richtung und um Einheit in z-richtung. Überlegen wir uns als Nächstes, wie wir die Länge eines Vektors berechnen können: ). Der Betrag (Länge) a von a definieren wir folgendermas- Definition 8 Gegeben ist der Vektor a = sen: a = a + a. ( a a Definition 9 Gegeben ist der Vektor a= a a. Der Betrag (Länge) a von a ist: a = a 3 a + a + a 3. Übungen

Vektorrechnung 05.06.008 Theorie und Übungen 9 7. Zeichne die folgenden Vektoren in ein Koordinatensystem ein: a) a= b) b= 5 d) d = e) e= 4 0 3 c) c= 0 f) f = 5 8. Berechne die Länge der folgenden Vektoren: a) a= [ 8] b) b= [ 4] c) c= 3 4 [5] 3 0 9. Bestimme die Lösungsmenge der folgenden Gleichungen (Repetition)! a) x = 8 b) x 64=0 c) x 9=6 d) x 4=0 e) x x 6=0 f) x 8x 9= [±9,±8,±5,±,{,3},{,0}] 0. Für den Vektor v= ( x 3 ) gilt: v =5 Berechne x. [x, =±4]. Für den Vektor v=(4 y 8) gilt: v = Berechne y. [y, =±8]. Der Vektor v = (x y 3) hat die Länge v = 7 und die x-komponente ist um 8 grösser als die y- Komponente. Berechne x und y. [x =,y = 6;x = 6,y = ] 5 algebraische Grundoperationen mit Vektoren Wir wollen nun die Grundoperationen bei Vektoren definieren, die algebraisch dargestellt sind. Diese Definitionen sind so gewählt, dass sie mit den geometrischen aus den vorderen Abschnitten übereinstimmen.

Vektorrechnung 05.06.008 Theorie und Übungen 0 Definition 0 Gegeben sind die Vektoren a = a a und b= b b. Unter der Summe a+ b verstehen a 3 b 3 wir: a+ b= a + b a + b a 3 + b 3 Definition Gegeben sind die Vektoren a= a a und b= b b. Unter der Differenz a b verstehen a 3 b 3 wir: a b= a b a b a 3 b 3 Definition Gegeben ist der Vektor a = a a und x R\{0}. Die skalare Multiplikation x a des a 3 Vektors a definieren wir folgendermassen: x a= x a x a x a 3 Definition 3 Gegeben ist der Vektor a= a a. Unter dem Kehrvektor a verstehen wir den Vektor a 3 a= a a a 3 Beispiel Gegeben sind die Vektoren a, b und c. Berechne den Vektor a+3 b c, wenn a= 3 4, b= 4, c= 3 5 5 5

Vektorrechnung 05.06.008 Theorie und Übungen Übungen 3. Gegeben sind die Vektoren a, b und c. Berechne die Komponenten des Vektors d = 3 a b c, ( wenn ) [ 3 ] 9 a= 3, b= 4, c= 0 5 4. Gegeben sind die Vektoren a, b und c. Berechne die Komponenten des Vektors d = a+ b 0.5 c, wenn [ ] 3 a=, b= 0, c= 3 4

Vektorrechnung 05.06.008 Theorie und Übungen 6 Der Abstand zwischen zwei Punkten 6. Die Bildung eines Vektors aus zwei Punkten Wir betrachten ein Beispiel: Frage : Gegeben sind die Punkte A(a a a 3 ) und B(b b b 3 ). Wie lauten nun die Komponenten des Vektors AB #»? Überlegung: Wir nehmen einfach die Differenz bei der x-, y- und z-komponente. Antwort: AB= #» b a b a b 3 a 3 Frage : Gegeben sind die Punkte A(a a a 3 ) und B(b b b 3 ). Wie gross ist der Abstand zwischen den beiden Punkten? Überlegung: Wir bilden zuerst den Vektor AB und berechnen danach die Länge dieses Vektors. Die Länge entspricht gerade dem Abstand zwischen den zwei Punkten. Antwort: Der Abstand beträgt AB = #» (b a ) +(b a ) 6. allgemeiner dreidimensionaler Fall Wir rechnen gleich wie beim zweidimensionalen Fall, einfach mit einer Komponente mehr. AB= #» b a b a b 3 a 3

Vektorrechnung 05.06.008 Theorie und Übungen 3 #» AB = (b a ) +(b a ) +(b 3 a 3 ) 6.3 Ein Abstandsproblem Aufgabe: Welche Punkte auf der z-achse haben von P( 6 3 7) den Abstand 7? [z = 5,z = 9] Übungen 5. Gegeben sind die Punkte A und B. Berechne den Vektor #» AB, wenn a) A( ) und B( 4 5) b) A( 0 6) und B( 4 0) [ 0, 4 ] 4 6 6. Berechne den Abstand zwischen den Punkten A und B, wenn a) A( 4 5) und B(0 4) [ 4] b) A( 4 3) und B( 3 ) [ 35] 7. Berechne den Umfang des Dreiecks ABC, wobei A( 3),B(3 3) und C(8 9). [3] 8. Wie muss y gewählt werden, damit die Strecke AB mit A(7 5) und B(6 y 3) die Länge 9 hat? [y = 3,y = 5] 9. Welche Punkte auf der x-achse haben von P( 3 6) den Abstand 9? [x = 4,x = 8] 0. Bestimme zeichnerisch und rechnerisch den Punkt P auf der x-achse, der von A( ) und B(4 5) gleich weit entfernt ist. [P(3 0)]. Welcher Punkt P auf der y-achse ist von A(7 0 4) und B( 3 7) gleich weit entfernt? [P(0 3 0)]

Vektorrechnung 05.06.008 Theorie und Übungen 4 7 linear abhängige Vektoren und kolineare Vektoren ( Definition 4 Gegeben sind 3 Vektoren a=( a a ), b= b b und c= c c ). c ist linear abhängig von a und b, wenn es x,y Rso gibt, dass gilt: c = x a+y b. Beispiel: Ist der Vektor c linear abhängig von den Vektoren a und b, wenn 8 a=, b= und c=? 3 4 8 Lösung: 8 x y x y x+y = x + y = + = + = 8 3 4 x 3 y 4 3x 4y 3x+4y Es entstehen zwei Gleichungen mit je zwei Unbekannten: 8=x+y 8=3x+4y Wir lösen die erste Gleichung nach x auf: x=8 y. Wir setzen für x in den zweiten Gleichung 8 y ein. 8=3(8 y)+4y 8=4 6y+4y 6= y y=3 Wir setzen y=3 in die erste Gleichung ein: 8=x+ 3 8=x+6 x= 8 Damit: = + 3 c ist linear abhängig von a und b. 8 3 4 Definition 5 Gegeben sind zwei Vektoren a = a a und b= b b. a und b sind kolinear (parallel) a 3 b 3 zueinander, wenn es eine Zahl x R so gibt, dass gilt: a=x b. Beispiel: Sind die Vektoren a= 3 4 =x 9 5 5 3 4 = 9x x 5 5x 3 4 und b= 9 kolinear zueinander? 5 5

Vektorrechnung 05.06.008 Theorie und Übungen 5 Bei allen 3 Komponenten gilt: x= 3. Damit sind die Vektoren a und b zueinander kolinear. Übungen. Prüfe, ob der Vektor c linear abhängig von a und b ist. 5 7 a) a=, b= und c= 3 4 4 0 b) a=, b= und c= 0 5 0 3 c) a=, b= und c= 3 5 3 3. Sind die Vektoren a und b zueinander kolinear (parallel), wenn a= 4 und b= 6? 3