auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

Ähnliche Dokumente
Kennlinienaufnahme elektronische Bauelemente

Halbleiterbauelemente

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

Arbeitspunkt einer Diode

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Eigenschaften elektrischer Bauelemente Versuch P2-50

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Elektrische Bauelemente

Elektrischer Widerstand

Kirstin Hübner Armin Burgmeier Gruppe Dezember 2007

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Versuch 3. Frequenzgang eines Verstärkers

Dunkel- und Hellkennlinie des Solarmoduls. Beachten Sie die Anweisungen aus der Bedienungsanleitung! Messgerät + V + A. Solarmodul

Technische Informatik Basispraktikum Sommersemester 2001

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode

Fachbereich Physik Dr. Wolfgang Bodenberger

Aufgaben Wechselstromwiderstände

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am Gruppe X

Lasertechnik Praktikum. Nd:YAG Laser

Strom - Spannungscharakteristiken

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

ELEXBO A-Car-Engineering

Skalierung des Ausgangssignals

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

UNIVERSITÄT BIELEFELD

Aufgaben Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

Lernaufgabe: Halbleiterdiode 1

Physik III - Anfängerpraktikum- Versuch 302

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

Lichtbrechung an Linsen

R-C-Kreise. durchgeführt am von Matthias Dräger und Alexander Narweleit

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Messung von Spannung und Strömen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

Simulation LIF5000. Abbildung 1

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder.

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

Filter zur frequenzselektiven Messung

Elektrische Logigsystem mit Rückführung

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum

Primzahlen und RSA-Verschlüsselung

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

Kapitel 13: Laugen und Neutralisation

Repetitionsaufgaben Wurzelgleichungen

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Induktivitätsmessung bei 50Hz-Netzdrosseln

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Versuch 26 Kennlinien von Glühlampen, Z-Diode und Transistor. durchgeführt am 22. Juni 2007

Stationsunterricht im Physikunterricht der Klasse 10

DSO. Abtastrate und Speichertiefe

1. Theorie: Kondensator:

oder: AK Analytik 32. NET ( Schnellstarter All-Chem-Misst II 2-Kanäle) ToDo-Liste abarbeiten

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Versuchsprotokoll - Michelson Interferometer

Anleitung über den Umgang mit Schildern

Klausur , Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Berechnung der Erhöhung der Durchschnittsprämien

Informationsblatt Induktionsbeweis

6 Wechselstrom-Schaltungen


Aufg. P max 1 10 Klausur "Elektrotechnik" am

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Praktikum 3 Aufnahme der Diodenkennlinie

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

Michelson-Interferometer. Jannik Ehlert, Marko Nonho

Widerstandskennlinien

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop

Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Geneboost Best.- Nr Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am Gruppe X

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

A2.3: Sinusförmige Kennlinie

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Wechselstromwiderstände

Elektrotechnisches Laboratorium

Aber zuerst: Was versteht man unter Stromverbrauch im Standby-Modus (Leerlaufverlust)?

Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung)

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Daten sammeln, darstellen, auswerten

Die Größe von Flächen vergleichen

h- Bestimmung mit LEDs

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Klasse : Name : Datum :

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Info zum Zusammenhang von Auflösung und Genauigkeit

Versuchsauswertung: Widerstandskennlinien

Oszillographenmessungen im Wechselstromkreis

Transkript:

Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands Wir haben die Schaltung der Brückenschaltung entsprechend aufgebaut und das Messgerät im feinsten Bereich (10µA) betrieben. Den gesuchten Widerstand können wir wie in der Vorbereitung beschrieben über R x = R max R P 1 R P R berechnen. Dabei ist R 1 = 101Ω, R max = 10kΩ und R P der gemessene Widerstand. Den Halbleiterwiderstand haben wir elektrisch von Zimmertemperatur bis 200 C geheizt und alle 5 C einen Messwert aufgenommen. Trägt man nun ln R x über 1 T auf, so erhält man folgendes Schaubild: 5.5 Temperaturabhängigkeit eines Halbleiterwiderstands 5 4.5 ln(r [Ω]) 4 3.5 3 2.5 2 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 1/T [1/K] Wie erwartet erhalten wir eine Gerade mit positiver Steigung, da der Widerstand mit zunehmender Temperatur kleiner wird. Der Wert bei 1 T = 0,002361 /K 1

fällt als einziger aus dem Rahmen. Schon beim Aufnehmen der Messreihe fiel dieser Wert auf, da der Widerstand am Potentiometer R P wieder kleiner wurde. Da die Temperaturabhängigkeit eines Halbleiterwiderstands allgemein als R = ae b T erhalten wir mit den aus dem vorigen Schaubild bestimmten Koeffizienten a = 0,055 und b = 2409,05K log Ω folgende Abhängigkeit: 180 160 R(T) Temperaturabhängigkeit eines Halbleiterwiderstands 140 120 Widerstand [Ω] 100 80 60 40 20 0 300 350 400 450 500 Temperatur [K] Wie erwartet nimmt der Widerstand des Halbleiters mit steigender Temperatur ab. 2 Messung von Widerständen und der I (U)-Abhängigkeit 2.1 Spannungsabhängigkeit eines Edelmetallwiderstands Wir haben die Spannung über einem Edelmetallwiderstand abgegriffen und an den X-Eingang eines Oszilloskops angeschlossen. Als Maß für die Stromstärke haben wir die Spannung über einem bekannten 101Ω-Widerstand auf den Y- Eingang des Oszilloskops gelegt. Bei Zimmertemperatur konnten wir eine Gerade mit Steigung 0,9 beobachten. Diese ist wegen R = U I umgekehrt proportional zum Widerstand des Edelmetalls. 2

Nachdem wir den Edelmetallwiderstand mit Hilfe eines Föns auf eine nicht näher bekannte Temperatur erhitzt haben ergab sich eine Steigung von 0,82. Damit ist die Steigung kleiner, und somit der Widerstand größer geworden. Im Gegensatz zum Halbleiter ergibt sich hier eine Vergrößerung des Widerstands mit der Temperatur, da die Leitungselektronen durch die thermische Anregung öfter stoßen und somit am Fluss gehindert werden. 3

2.2 Kaltwiderstand einer üblichen 60W-Glühbirne Den Kaltwiderstand haben wir mit Hilfe eines Ohmmeters zu R = 71,97Ω gemessen. Damit ist dieser wesentlich kleiner als der in der Vorbereitung berechnete Betriebswiderstand von 806,667Ω. Dies hatten wir erwartet, da es sich bei Wolfram wie bei gewöhnlichen Metallen um einen Kaltleiter handelt, das heißt der Widerstand ist mit geringerer Temperatur kleiner. 2.3 Kaltwiderstand einer 50W-Kohlefadenlampe Wie in der vorherigen Aufgabe haben wir den Kaltwiderstand bestimmt. Er beträgt hier R = 1,705kΩ und ist damit wesentlich größer als der Betriebswiderstand von 968Ω. Somit handelt es sich bei Kohlenstoff um einen Heißleiter handelt. Vergleicht man bei ähnlicher elektrischer Leistung die beiden Glühlampen, so kann man beobachten, dass die Wolframwendel-Glühbirne deutlich heller ist als die Kohlefadenlampe, da letztere mehr im nicht sichtbaren Bereich strahlt. 3 I (U)-Abhängigkeit verschiedener Dioden und eines Varistors Wir haben die Spannung über dem jeweiligen Bauteil auf der X-Achse des Oszilloskops und die Spannung über den bekannten 101Ω-Widerstand auf die Y- Achse aufgetragen um die Kennlinie darzustellen. Dabei haben wir alle Bauteile in beiden Polungen betrachtet. 3.1 Siliziumdiode Die SID hat sich in beiden Polungen wie erwartet verhalten (links Sperrrichtung, rechts Durchlassrichtung): 4

In Durchlassrichtung lässt sich die Schleusenspannung zu etwa U S = 550mV bestimmen. Wir haben die Temperaturabhängigkeit der Kennlinie untersucht indem wir die Diode mit einem Fön erhitzt haben. Leider konnten wir keine Veränderung des Schaubilds feststellen. Erwartet hätten wir, dass die Kennlinie nach links verschoben wird, also die Schleusenspannung früher erreicht wird. 3.2 Zenerdiode Auch hier haben sich unsere Erwartungen erfüllt. In Zenerrichtung (links) sieht man einen deutlichen Knick der allerdings erst bei höherer Spannung al der normale Knick in Durchlassrichtung (rechts) auftritt. Die Spannungen betragen U S = 630mV in Durchlassrichung und U Z = 6,3V in Zenerrichtung. 3.3 Germanium-Diode Die Kennlinie der Germanium-Diode zeigte in Durchlassrichtung (rechts) einen früheren und weicheren Anstieg als die Silizium-Diode. 5

Die Schleusenspannung kann zu U S = 300mV am Oszilloskop abgelesen werden. Auch hier haben wir versucht die Temperaturabhängigkeit der Kennlinie zu untersuchen, doch auch hier hatten wir leider keinen Erfolg. 3.4 Varistor Wie erwartet ergibt sich ein zum Nullpunkt der Spannung symmetrisches Kennlinienbild. In beiden Richtungen ergibt sich die Schleusenspannung zu U = 2V. 4 Punktweise Messung der Varistorkennlinie Wir haben nun Strom und Spannung mit entsprechenden Messgeräten an Stelle des Oszilloskops gemessen. Trägt man ln (U) über ln (I) auf und führt eine lineare Regression durch, so erhält man folgendes Bild: 6

3 Varistor: Bestimmung der Koeffizienten 2.5 2 1.5 ln(spannung [V]) 1 0.5 0 0.5 1 1.5 2 2.5 12 11 10 9 8 7 6 5 4 3 ln(stromstärke [A]) Wider Erwarten liegen die Messwerte nicht auf einer Geraden wodurch die aus der Regression bestimmten Koeffizienten b = 0,496 und c = 84,529 für U = ci b unsere Messwerte nur schlecht annähern. 40 35 Messwerte Aus Rechnung erhaltene Funktion Direkt genäherte Funktion Kennlinie eines Varistors 30 Stromstärke [ma] 25 20 15 10 5 0 0 2 4 6 8 10 12 14 Spannung [V] Zusätzlich zu der aus der linearen Regression berechneten Funktion haben wir die Funktion eingezeichnet, die wir aus einer nichtlinearen Anpassung der Messwerte an die Funktion U = ci b erhalten. In diesem Fall ergeben sich die Koeffizienten zu b = 0,315 und c = 36,222. Leider können wir uns nicht erklären 7

warum sich für den ersten Ansatz so schlechte Werte ergeben. Ursächlich dafür ist vor allem, dass sich nach Auftragung der Logarithmen keine Gerade sondern eine leicht gebogene Kurve ergibt. Insgesamt entsprechen die Messwerte der Kennlinie die wir auf dem Oszilloskop beobachtet haben. 5 Tunneldiode 5.1 Punktweise Messung der I (U)-Abhängigkeit Wir haben die Spannungsteilerschaltung des Experimentiergerätes verwendet um die Kennlinie einer Tunneldiode im Bereich zwischen 0mV und 400mV aufzunehmen. Trägt man I über U auf, so erhält man: 110 100 Kennlinie Kennlinie einer Tunneldiode 90 80 Stromstärke [µa] 70 60 50 40 30 20 10 0 50 100 150 200 250 300 350 400 450 Spannung [mv] Wie erwartet erkennt man einen deutlichen Hochpunkt und ein ausgeprägtes Tal. Der Hochpunkt liegt bei 45mV und 102µA. Dies kommt den gegebenen Daten der Tunneldiode (50mV und 100µA) sehr nahe. Der Talpunkt liegt im Bereich von 265mV und einem Strom von 12µA. Auch dies stimmt mit der angegebenen Talspannung von 300mV und dem Talstrom von 10µA überein. 8

110 100 Kennlinie und Widerstand einer Tunneldiode Kennlinie Widerstand 25000 90 20000 80 Stromstärke [µa] 70 60 50 15000 10000 Widerstand [Ω] 40 30 5000 20 10 0 0 50 100 150 200 250 300 350 400 450 Spannung [mv] Zeichnet man zusätzlich den Widerstand der Tunneldiode ein, so beobachtet man, dass der Widerstand in der Nähe des Talpunktes am größten ist. Da dort auch am wenigsten Strom fließt haben wir dieses Verhalten erwartet. Der differentielle Widerstand du di tient zweier benachbarter Messwerte gebildet haben: du haben wir berechnet indem wir den Quo- di = U2 U1 I 2 I 1. Würden wir dies über U auftragen, so erhalten wir eine Kurve mit äußerst starken Schwankungen aus der sich keine Aussage ablesen lässt. Deshalb haben wir immer fünf benachbarte du- und di-werte gemittelt und über das Mittel der jeweiligen Spannung aufgetragen: 9

30000 Messwerte Differentieller Widerstand einer Tunneldiode 20000 10000 Widerstand [Ω] 0 10000 20000 30000 0 50 100 150 200 250 300 350 400 Spannung [mv] Der differentielle Widerstand nimmt mit zunehmender Spannung leicht ab bis er auf eine Resonanz bei etwa U = 270V stößt. Die Unterbrechung der Kurve dort entsteht, da der Strom an dieser Stelle über mehrere Spannungswerte konstant blieb. 5.2 Sprungverhalten des Stroms Das Sprungverhalten des Stroms konnten wir bei der Messung im 300µA-Bereich bereits bei etwa 130mV beobachten. Nach dem Umschalten des Messbereichs auf 100µA war dies jedoch deutlich ausgeprägter. 10

Arbeitsgerade der Tunneldiode 140 Kennlinie Arbeitsgerade (R = 1700 Ω) Arbeitsgerade (R = 600 Ω) 120 100 Stromstärke [µa] 80 60 40 20 0 0 50 100 150 200 250 300 350 400 450 Spannung [mv] Die Sprungstellen können beobachten werden, wenn die Arbeitsgerade für einen Wert von U 0 die Kennlinie an mehreren Stellen schneidet. Dann gibt es keine eindeutige Lösung und die Anzeige des Messgeräts schwankt. Im 100µA- Bereich ist die Gerade aufgrund des höheren Instrumenteninnenwiderstands flacher wodurch sie die Kennlinien in mehreren Fällen mehrmals Die weiteren Kennlinien liegen jeweils parallel zu den exemplarisch eingezeichneten des jeweiligen Messbereichs. 5.3 Oszillographische Beobachtung des Sprungs Nachdem wir in die Schaltung zusätzlich eine Spule eingebaut haben konnten wir das Sprungverhalten auf dem Oszilloskop darstellen. Da die Spule der Änderung des Stroms entgegenwirkt wird die Periodendauer der Schwankungen vergrößert wodurch wir sie auf dem Oszilloskop erkennen können. 11

An der Sprungstelle sieht man Sinusschwankungen der Spannung mit der Zeit. Entfernt man sich von der Sprungstelle, so werden die Schwankungen flacher bis sie in einem Bereich wo die Arbeitsgerade eine eindeutige Lösung besitzt ganz verschwinden. 6 Fazit Im Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit wurden die verschiedenen Abhängigkeiten der Widerstände sehr gut verdeutlicht. Der Vergleich der verschiedenen Halbleiterwiderstände und des Metallwiderstands war sehr interessant und stimmte mit unseren Vorüberlegungen überein. Auch das Vergleichen der Kohlefadenlampe mit der Wolframwendellampe war eindrücklich und könnte auch als Versuch in der Schule gezeigt werden. Vor allem die Kennlinie der uns zuvor unbekannten Tunneldiode war für uns interessant zu beobachten, da sie sich gänzlich anders verhält als wir es von anderen Dioden erwarten würden. 12