Exkurs Zahlbereichserweiterungen zu den Komplexen Zahlen

Ähnliche Dokumente
A Die Menge C der komplexen Zahlen

erfanden zu den reellen Zahlen eine neue Zahl

Körper der komplexen Zahlen (1)

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014

Die komplexen Zahlen

Abbildung 14: Winkel im Bogenmaß

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Stefan Ruzika. 24. April 2016

Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

2.9 Die komplexen Zahlen

Komplexe Zahlen. Rainer Hauser. Januar 2015

Brückenkurs Mathematik. Freitag Freitag

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

Mathematik 2 für Wirtschaftsinformatik

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

(a) Motivation zur Definition komplexer Zahlen

KAPITEL 1. Komplexe Zahlen

Körper sind nullteilerfrei

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5

Komplexe Zahlen. Darstellung

3.2. Polarkoordinaten

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

GRUNDLAGEN MATHEMATIK

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Grundlagen. Mathematik I für Chemiker. Daniel Gerth

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Ergänzungen in Mathematik Studierende Nanowissenschaften

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Komplexe Zahlen und konforme Abbildungen

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)

Vorlesung Mathematik 1 für Ingenieure (A)

2D-Visualisierung komplexer Funktionen

Komplexe Funktionen. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

$Id: reell.tex,v /11/18 10:54:24 hk Exp $ $Id: komplex.tex,v /11/19 15:35:32 hk Exp hk $

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

1. VORLESUNG,

Mathematik 1 für Wirtschaftsinformatik

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

KOMPLEXE ZAHLEN UND FUNKTIONEN

Brückenkurs Mathematik für Studierende der Chemie

Crash-Kurs Komplexe Zahlen

Serie 6: Komplexe Zahlen

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Mathematischer Vorkurs NAT-ING1

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung

ax 2 + bx + c = 0, (4.1)

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen.

Komplexe Zahlen und Allgemeines zu Gruppen

2.7. TEILMENGEN VON R 51

Vorlesung. Komplexe Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

Funktionen einer Variablen

Komplexe Zahlen. Wir beginnen mit Beispielen.

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen

Komplexe Zahlen (Seite 1)

Spezialthema Komplexe Zahlen Fragen

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Wirtschaftsingenieure

KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN N Z Q R C

Erster Zirkelbrief: Komplexe Zahlen

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

Modul 205 Schnecken und Spiralen!

Kapitel 10 Komplexe Zahlen

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

29 Komplexe Zahlen und Polynome

a(b + c) = ab + ac und (a, b) (c, d) a + d = b + c definiert. Der Quotientenraum Z := N 2 / ist versehen mit der Addition

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Die natürlichen Zahlen

Mathematischer Vorkurs NAT-ING II

12 3 Komplexe Zahlen. P(x y) z = x + jy

3 Der Körper der komplexen Zahlen

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Logische Grundlagen der Mathematik, WS 2014/15

Brückenkurs Mathematik für Studierende der Chemie

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

Die natürlichen Zahlen

Aufgabe 5.1 Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an, w z w z.

Grundlagen komplexe Zahlen. natürliche Zahlen

4.4 Die Potentialgleichung

Einiges über komplexe Zahlen

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen

Aufgaben zu Kapitel 5

Komplexe Zahlen. elektret.github.io 16. Mai 2014

Komplexe Zahlen. Inhaltsverzeichnis Version: 1.1. Tobias Brinkert Homepage: <

Serie 3 - Komplexe Zahlen II

6.1 Komplexe Funktionen

Transkript:

MT1 Einführung in die Höhere Mathematik 1 THM Friedberg IEM/MND Medieninformatik Thomas Eckert MT1 Einführung in die Höhere Mathematik WS 2014/2015 Exkurs Zahlbereichserweiterungen zu den Komplexen Zahlen Wozu neue Zahlen C? :: Zahlbereichserweiterungen Was sind Zahlen? Nun, zunächst wird mit ihnen gezählt: Begonnen wird also mit den natürlichen Zahlen N = {0,1,2,3,...}. Sie lassen sich zusammen-zählen addieren. Dann auch multiplizieren für mehrfaches Addieren gleicher Summanden und schließlich potenzieren. Umkehrung dieser Operationen führt allerdings zu Schwierigkeiten. So gelangt man über mehrere Zahlbereichserweiterungen zu vollständigeren Zahlkörpern : Hier sind N Z Q R C Z = { 0, ±1, ±2,... } = N N / mit negativen Zahlen ganze Zahlen { / } Q = p q p,q Z, q = 0 Brüche oder periodische Kommazahlen rationale Zahlen R = { a 0,b 1 b 2 b 3... a 0 Z, b i {0,...,9} } beliebige Kommazahlen, reelle Zahlen auch irrationale wie 2 oder π Mit jedem Schritt wird ein weiteres Umkehrproblem behoben: Subtrahieren, Dividieren, Wurzeln. Allerdings sind die Wurzeln nicht der wahre Gehalt für die Erweiterung zu R, da ja Wurzeln aus negativen Zahlen (in R) immer noch nicht gezogen werden können. Hier handelt es sich nicht um einen algebraischen Abschluss, sondern um einen eher geometrischen ( topologischen ), nämlich den bezüglich der Limes-Bildung bei dem die Wurzeln aus positiven Zahlen gleich mit abfallen. Jede immer näher zusammen rückende Folge in R besitzt dort auch einen Grenzwert. (Nicht so in Q, denn lim(1 + 1/n) n = e.) Die komplexen Zahlen C beheben nun dieses letzte Problem und man erhält einen in jeder Hinsicht abgeschlossenen Zahlkörper.

MT1 Einführung in die Höhere Mathematik 2 Exkurs :: Räume von Äquivalenzklassen Mit einer Äquivalenzrelation auf einer Menge X, die verschiedene Elemente von X als äquivalent ( gleichwertig ) erachtet, erhält man Äquivalenzklassen [x] = { y X y x }, welche sich zum Quotientenraum X / = { [x] x X } aller Klassen zusammensetzen. Die Klassen bilden eine Zerlegung der Menge X und der Quotientenraum enthält diese als Elemente. Klassenbildungen gibt es zuhauf und jede Abstraktion ist der Übergang zu einem Quotientenraum von Klassen äquivlanter Objekte bei denen eben von irrelevanten Eigenschaften abgesehen ( abstrahiert ) wird. Die ganzen Zahlen Z lassen sich als Quotientenraum konstruieren: Um die negativen ganzen Zahlen einzuführen, bildet man Paare (m, n) von natürlichen Zahlen nach dem Muster (Haben, Soll) bei Konten. Zwei solche Paare werden als äquivalent betrachtet, wenn sie gleiche Differenz haben was im Fall einer größeren zweiten Komponente noch zu vermeiden ist umgeformt also: (m,n) (k,l) m + l = k + n Das ist dasselbe wie erweitert : [m,n] = [m + d,n + d]. Dann finden sich die alten natürlichen Zahlen n eingebettet in den Quotientenraum Z := N N / als [n,0] und umgekehrt entsprechen Klassen [0,n] =: n gerade den negativen Zahlen. Auch die rationalen Zahlen Q lassen sich über eine völlig analoge Klassenbildung gewinnen nur alle Rechenoperationen eine Ebene hoch verschoben (also mal statt plus etc.). Hier sind die Klassen sogar in der Notation der Brüche p / q = [p,q] deutlich sichtbar. Hingegen gewinnt man die reellen Zahlen nicht aus 2-Tupeln von rationalen Zahlen, sondern aus unendlich langen Tupeln, also Folgen. Zwei rationale Folgen heißen dabei äquivalent, wenn ihre Differenzfolge eine Nullfolge ist. R = Q Q Q / Cauchy Jeder Rassismus tut das und der Geschlechter-Rassismus sortiert Leute gleich nur noch in die beiden Klassen Frau und Mann. Genauer: Cauchy-Folgen, was uns aber nicht interessieren soll. Was ist C? :: Gauß reife Leistung Für Wurzeln aus beliebigen, auch negativen Zahlen, hatte Carl Friedrich Gauß die Idee, den Zahlenraum zu erweitern schlicht durch Hinzunahme eines neuen Elementes i = 1, das also i 2 = 1 erfüllt (und damit Lösung der bisher unlösbaren Gleichung x 2 = 1 ist). Diese Hinzunahme musste unabhängig genug sein und sie landet schließlich in einer zweiten, völlig unanhängigen Komponente:

MT1 Einführung in die Höhere Mathematik 3 Definition. Die komplexen Zahlen C := R R = R 2 sind Tupel z = (x, y) =: x + iy, bestehend aus Realteil x = Re(Z) und Imaginärteil y = Im(z) beide reell! Hierbei ist die imaginäre Einheit i = (0,1) und man unterschlägt die 1 C = (1,0). Die reellen Zahlen R sind also eingebettet in die komplexen als erste (oder i-freie) Komponente oder Realteil und man spricht bei iy von rein imaginären Zahlen ir. Bemerkung. Dieser Name imaginär ist natürlich eine Naivität: die reellen seien real, während diese neu hinzugenommen nur vorgestellt, imaginär, seien. Aber alle Erweiterungen, angefangen bei den negativen Zahlen, sind höchst konstruiert und wenig echt/real. Sie existieren nicht, sondern sind gewachsene und höchst konstruierte Kulturleistungen. Und das gilt selbst beim Ausgangspunkt, den sogenannten natürlichen Zahlen so, als seien diese Natur-gegeben: Auch sie sind höchst abstrakte Objekte, nämlich eigentlich Abstraktionen aus Zählzeichen- Kalkülen, bei denen egal ist, ob man Strichlisten IIII, römisch verbesserte Strichlisten IV oder arabisch in geschicktem Stellenwert-oder Ziffernsystem 4 schreibt oder ähnliches. Komplexe Zahlen werden üblicherweise als z = x + iy und w = u + iv bezeichnet oder auch mit a + ib. Man spricht von kartesischen Koordinaten nach René Descartes, der solche rechtwinkligen Koordinatensysteme zuerst eingesetzt hat. Komplexe Zahlen als Tupel sind ja fast wie Vektoren im R 2. Man fasst sie aber eher als Punkte in der Ebene R 2 auf (oder gar geometrisch neutral) und spricht von der komplexen Zahlenebene im Kontrast zur reellen Zahlengeraden. In diesem Fall ist also gar keine Äquivalenzklassenbildung fällig, sondern die Zahlbereichserweiterung geschieht pur durch Tupel und wieder mit den neuen Bestandteilen in der zweiten Komponente. Eigentlich (x,y) = x 1 C + y i. Von dem Mahematiker Leopold Kronecker stammt der Ausspruch: Die natürlichen Zahlen hat der liebe Gott gemacht; alles andere ist Menschenwerk. Was nur im zweiten Teil stimmt! Bevor wir diese durch Rechenoperationen zu einem Zahlkörper machen, betrachten wir auch als Hilfsmittel zunächst ihre geometrischen Eigenschaften. Definition. Der Betrag z der komplexen Zahl z = x + iy ist wie der Vektorbetrag definiert als z := x 2 + y 2. Die zu z = x + iy C (komplex) Konjugierte z := x iy entsteht durch Umkehren des Vorzeichens des Imaginärteiles y. Bemerkung. Der Betrag ist nach Pythagoras der natürliche Abstand vom Ursprung 0 C = 0 = (0,0), so dass die Punkte mit Betrag 1 einen echten Kreis mit Radius 1 um dieses Zentrum bilden: S 1 := { z C z = 1}. Die Konjugierte z zu z entsteht geometrisch als deren Spiegelpunkt durch (vertikales) Spiegeln an der x-achse.

MT1 Einführung in die Höhere Mathematik 4 Nun können wir die komplexe Zahlenebene C tatsächlich zu einem Zahlkörper machen durch Rechenoperationen darauf, welche diejenigen der reellen Zahlen erweitern und alle üblichen Rechenregeln erfüllen. Wie bei Vektoren: z + w = (x + iy) + (u + iv) := x + u +i(y + v) komponentenweise Addieren z w = (x + iy) (u + iv) = x u +i(y v) analog Subtrahieren Für die Multiplikation ist eine Beobachtung nötig: Da alle Rechenregeln gelten sollen, können wir ausmultiplizieren: z w = (x + iy) (u + iv) = xu + xiv + iyu + i 2 yv. Wegen i 2 = 1 erhalten wir nach Sortieren in Real- und Imaginärteil z w = (x + iy) (u + iv) := xu yv +i(xv + yu) ausmultiplizieren Multiplizieren Damit ergibt sich insbesondere z z = xx ( yy) + i 0 = x 2 + y 2 = z 2 R C, also als rein reell. Dies erlaubt für die Division einen Trick: z w = z w (x + iy)(u iv) = w w u 2 + v 2 = Nenner reell machen Dividieren Beispiel. Mit z = 3 + 4i und w = 5 2i erhalten wir z (3 + 4i)(5 + 2i) 15 8 + i(6 + 20) = w 5 2 + 2 2 = 29 Die anderen Operationen sind einfacher: = 7 29 + 26 29 i C. z w = (3 + 4i) (5 2i) = 15 + 8 + ( 6 + 20)i = 23 + 14i z + w = (3 + 4i) + (5 2i) = 3 + 5 + (4 2)i = 8 + 2i z w = (3 + 4i) (5 2i) = 3 5 + (4 + 2)i = 2 + 6i Bisher haben wir aber noch keine gute Möglichkeit, Potenzen auszurechnen oder Wurzeln. Dazu benötigen wir ein weiteres Hilfsmittel. C anders aufgefasst :: Polarkoordinaten Definition. Zunächst ohne Bezug auf eigentlich schon bekannte Potenzausdrücke e x definieren wir für relle x: e ix := cos(x) + i sin(x) Diese Bezeichnung für solche Ausdrücke mit cos und sin wird später gerechtfertigt werden.

MT1 Einführung in die Höhere Mathematik 5 Proposition. Diese Ausdrücke haben folgende grundlegende Eigenschaften: e ix = e ix wegen sin( x) = sin(x). e ix = 1, nämlich = cos 2 (x) + sin 2 (x) = 1. Insbesondere liegen also alle diese komplexen Zahlen z = e ix S 1 auf dem Einheitskreis. e ix e iy = e i(x+y) Beweis. Mit den Additionstheoremen von Sinus und Kosinus ergibt sich: e ix e iy = ( cos(x) + i sin(x) ) (cos(y) + i sin(y) ) = cos(x)cos(y) sin(x)sin(y) + i (cos(x)sin(y) + sin(x)cos(y) ) = cos(x + y) + i sin(x + y) = e i(x+y) Solche Ausdrücke verhalten sich also wie Potenzen, was eine erste Rechtfertigung für den Namen e ix ist. Später wird man sehen, dass die Reihenentwicklung der e-funktion, welche das Einsetzen von ix natürlicherweise erlaubt, sich genau entsprechend der Definitionsgleichung auflöst in die Reihenentwicklungen von Sinus und Kosinus, so dass es sich dann gar nicht mehr um eine Definition handelt. Korollar. e z = e x+iy = e x eiy = e x (cos(y) + i sin(y) ) erklärt also Potenzausdrücke mit beliebigen komplexen Exponenten. Satz. Jede komplexe Zahl z = x + iy lässt sich schreiben als z = r e iϕ mit einem Radius (oder Betrag) r > 0 und einem Argument (oder der Phase) ϕ. Dabei geschieht die Umrechnung von den kartesischen Koordinaten x, y in Gelesen phi, was unserem f die sogenannten Polarkoordinaten r, ϕ und zurück durch: entspricht. r = z = x 2 + y 2 ϕ = arg(z) = tan 1( y / x) x = r cos(ϕ) y = r sin(ϕ) Beweis. Punkt z in komplexer Zahlenebene zeichnen und ein achsenparalles Dreieck zwischen 0 und z. Daran lässt sich alles ablesen. Bemerkung. Für die Phase oder das Argument ϕ akzeptiert man Angaben in Winkelmaß und Bogenmaß, je nach Kontext. Beispiel. Zu z = 2 3i ergibt sich r = 4 + 9 = 13. = 3,61 und ϕ = tan 1( 3 / 2 ). = 56,31. Rückwärts erhält man x = r cos ϕ. = 13 cos( 56,31 ) = 2 und analog y = 3.

MT1 Einführung in die Höhere Mathematik 6 Dafür C :: Potenzen und Wurzeln Einerseits lassen sich nun Potenzen über diese Polarzerlegung oft leichter ausrechnen als direkt: z 9 = (2 3i) 9 = ( (z 2 ) 2) 2 z =... versus z 9 = ( re iϕ) 9 = r9 e 9iϕ =... Andererseits kommt so überhaupt erst an Wurzeln aus komplexen Zahlen. Analog ist nämlich oder auch mit 360 statt 2π. n z = n r e i(ϕ+2πk)/n, k = 0,...,n 1,