1.3 Wiederholung der Konvergenzkonzepte

Ähnliche Dokumente
3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

Zufallsvariablen [random variable]

3.3 Methoden zur Evaluierung von Schätzern

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

Mathematische Ökonometrie

Satz von Borel-Cantelli. Limes inferior von Mengen. Limes superior von Mengen. Stetigkeit. Konvergenz von Zufallsvariablen. Kolmogorow-Ungleichung

Einführung in die (induktive) Statistik

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Schätzer und Konfidenzintervalle

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr

Kapitel 1 Einführung. Angewandte Ökonometrie WS 2012/13. Nikolaus Hautsch Humboldt-Universität zu Berlin

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden

5. Spezielle stetige Verteilungen

6. Schätzverfahren für Parameter

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

3 Grundlagen statistischer Tests (Kap. 8 IS)

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Einführung in die Maximum Likelihood Methodik

5. Statistische Schätztheorie

Stochastik. 1. Wahrscheinlichkeitsräume

4 Messbare Funktionen

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Einführung in die Induktive Statistik: Testen von Hypothesen

Statistik I für Betriebswirte Vorlesung 14

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

9 Die Normalverteilung

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Die Varianz (Streuung) Definition

Allgemeines zu Tests. Statistische Hypothesentests

Elementare Wahrscheinlichkeitsrechnung

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Konvergenz im quadratischen Mittel - Hilberträume

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Gesetze der großen Zahlen

2 Zufallsvariable, Verteilungen, Erwartungswert

7.5 Erwartungswert, Varianz

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Bootstrap: Punktschätzung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Kapitel 1: Elemente der Statistik

Grundbegriffe der Wahrscheinlichkeitsrechnung

Willkommen zur Vorlesung Statistik (Master)

18 Höhere Ableitungen und Taylorformel

Varianz und Kovarianz

Vorlesung: Statistik II für Wirtschaftswissenschaft

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

8 Verteilungsfunktionen und Dichten

Kapitel 2 Wahrscheinlichkeitsrechnung

8. Stetige Zufallsvariablen

Unabhängige Zufallsvariablen

Spezielle stetige Verteilungen

Grundlagen der Mathematik II (LVA U)

Einführung in die statistische Testtheorie II

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Stochastik für die Naturwissenschaften

2 Multivariate Normalverteilung

11. Übungsblatt zur Mathematik I für Maschinenbau

Seminar stabile Zufallsprozesse

Diskrete Wahrscheinlichkeitstheorie

P (X = 2) = 1/36, P (X = 3) = 2/36,...

Folgen und Reihen von Funktionen

7.2 Moment und Varianz

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Lösungen zu Übungsblatt 9

2 Aufgaben aus [Teschl, Band 2]

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, (

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings

Zusammenfassung der Lebesgue-Integrationstheorie

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

Multivariate Verteilungen

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 10

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und

Statistische Intervalle

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Stochastische Prozesse

Stochastik I. Vorlesungsmitschrift

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Lösungen der Übungsaufgaben von Kapitel 3

4 Fehlerabschätzungen und Konvergenz der FEM

Klassifikation von Signifikanztests

5 Optimale erwartungstreue Schätzer

Extremwertverteilungen

Vorlesung: Statistik II für Wirtschaftswissenschaft

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Brückenkurs Rechentechniken

7. Die Brownsche Bewegung

Zentraler Grenzwertsatz/Konfidenzintervalle

Transkript:

1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche Approximationen für den endlichen Fall. Wir betrachten jetzt 3 Typen von Konvergenz. Speziell wird X n, das Mittel von n Beobachtungen, untersucht. 1.3.1 Konvergenz in Wahrscheinlichkeit Definition 1.3.1: Eine Folge von Zufallsvariablen X 1, X 2,... konvergiert in Wahrscheinlichkeit gegen eine Zufallsvariable X, falls für jedes ɛ > 0 gilt was äquivalent ist mit lim ( X n X ɛ) = 0, n lim ( X n X < ɛ) = 1. n Wir schreiben dafür X n X. 28

Hierbei sind die X 1, X 2,... nicht notwendigerweise iid Variablen. Statistiker beschäftigen sich häufig mit Situationen in denen die Grenzvariable eine Konstante und die Zufallsvariablen in der Folge das Stichprobenmittel ist. Satz 1.3.1: (Schwaches Gesetz der großen Zahlen WLLN) Seien X 1, X 2,... iid Zufallsvariablen mit E(X i ) = µ und var(x i ) = σ 2 <. Dann gilt für jedes ɛ > 0 lim n ( X n µ < ɛ) = 1, also konvergiert das Stichprobenmittel X n in Wahrscheinlichkeit gegen das opulationsmittel µ, d.h. X n µ. Das WLLN sagt aus, dass sich unter recht allgemeinen Bedingungen das Stichprobenmittel dem opulationsmittel nähert falls n. Diese Eigenschaft, dass sich eine Folge der gleichen Stichprobengröße für n einer Konstanten nähert, nennt man auch Konsistenz. 29

Zentrale Bedeutung hat im Folgenden auch die Chebychev sche Ungleichung. Zur Erinnerung gilt für jedes beliebige ɛ > 0 und speziell, dass ( X a ɛ) 1 ɛ2e(x a)2 ( X E(X) ɛ) 1 ɛ 2var(X). Damit kann recht einfach der Satz 1.3.1 bewiesen werden. 30

Beispiel 1.3.1: Sei X 1, X 2,... eine Folge von iid Variablen mit E(X i ) = µ und var(x i ) = σ 2 <. Hält das WLLN auch für S 2 n = 1 n 1 n (X i X n ) 2 i=1 Chebychev sagt aus, dass ( S 2 n σ 2 ɛ) 1 ɛ 2var(S2 n). Somit ist var(s 2 n) 0 für n eine hinreichende Bedingung dafür, dass S 2 n in Wahrscheinlichkeit gegen σ 2 konvergiert. 31

Eine natürliche Erweiterung von Definition 1.3.1 bezieht sich auf Funktionen von Zufallsvariablen. Wir wollen der Frage nachgehen, ob bei Konvergenz in Wahrscheinlichkeit der Folge X 1, X 2,... gegen X oder gegen a, auch die Folge h(x 1 ), h(x 2 ),... konvergiert. Satz 1.3.2: Angenommen die Folge von Zufallsvariablen X 1, X 2,... konvergiert in Wahrscheinlichkeit gegen eine Zufallsvariable X, und sei h eine stetige Funktion. Dann konvergiert h(x 1 ), h(x 2 ),... in Wahrscheinlichkeit gegen h(x). Beispiel 1.3.1 Fortsetzung: Falls die Stichprobenvarianz S 2 n konsistent ist für σ 2, dann ist somit auch die Stichprobenstandardabweichung konsistent für σ. S n = S 2 n = h(s 2 n) Bemerke jedoch, dass S n verzerrt ist für σ. Diese Verzerrung verschwindet aber asymptotisch. 32

1.3.2 Fast sichere Konvergenz Dieses Konzept ist stärker als die Konvergenz in Wahrscheinlichkeit. Manchmal bezeichnet man es auch als Konvergenz mit Wahrscheinlichkeit 1. Es ist ähnlich zur punktweisen Konvergenz einer Funktionenfolge: überall bis auf einer Ausnahmemenge (mit Wahrscheinlichkeit 0, almost sure, a.s.). Definition 1.3.2: Eine Folge von Zufallsvariablen X 1, X 2,... konvergiert fast sicher gegen eine Zufallsvariable X, falls für jedes ɛ > 0 gilt Wir schreiben dafür X n f.s. X. ( ) lim X n X < ɛ = 1. n 33

Eine Zufallsvariable ist eine reellwertige Funktion definiert auf einem Stichprobenraum S. Falls die Elemente in S mit s bezeichnet sind, dann sind X n (s) und X(s) Funktionen die auch auf S definiert sind. X n (s) konvergiert fast sicher gegen X(s), für alle s S, ausgenommen vielleicht für s N, mit N S und (N) = 0. Beispiel 1.3.2: Sei S das abgeschlossene Intervall [0, 1] mit der Gleichverteilung darauf definiert. Sei X n (s) = s + s n und X(s) = s. Für jedes s [0, 1) gilt s n 0 für n und X n (s) s = X(s). Jedoch ist X n (1) = 2 für alle n, sodass X n (1) 1 = X(1). Aber Konvergenz tritt ein auf dem Bereich [0, 1) und ([0, 1)) = 1. Damit konvergiert X n gegen X fast sicher. 34

Fast sichere Konvergenz impliziert die Konvergenz in Wahrscheinlichkeit. Das Starke Gesetz der großen Zahlen (SLLN) beschreibt die fast sichere Konvergenz zu einer Konstanten. Satz 1.3.3: (Starkes Gesetz der großen Zahlen SLLN) Seien X 1, X 2,... iid Zufallsvariablen mit E(X i ) = µ und var(x i ) = σ 2 <. Dann gilt für jedes ɛ > 0 ( ) lim X n µ < ɛ n = 1, also konvergiert das Stichprobenmittel X n fast sicher gegen das opulationsmittel f.s. µ, d.h. X n µ. 35

1.3.3 Konvergenz in Verteilung Definition 1.3.3: Eine Folge von Zufallsvariablen X 1, X 2,... konvergiert in Verteilung gegen eine Zufallsvariable X, falls lim n F X n = F X in allen unkten x, in denen F X (x) stetig ist. Wir schreiben dafür X n D X. Hierbei konvergieren eigentlich die Verteilungsfunktionen (und nicht die Zufallsvariablen)! Was ist eigentlich die Grenzverteilung von X n? 36

Satz 1.3.4: Falls die Folge von Zufallsvariablen X 1, X 2,... in Wahrscheinlichkeit gegen die Zufallsvariable X konvergiert, dann konvergiert diese Folge auch in Verteilung gegen X. Satz 1.3.5: Die Folge von Zufallsvariablen X 1, X 2,..., konvergiert in Wahrscheinlichkeit gegen eine Konstante µ, dann und nur dann, wenn diese Folge auch in Verteilung gegen µ konvergiert. Die Aussage ist daher äquivalent mit ( X n µ > ɛ) 0 für jedes ɛ > 0 (X n < x) { 0, falls x < µ, 1, falls x > µ. 37

Satz 1.3.6: (Zentraler Grenzwertsatz CLT) Seien X 1, X 2,... iid Zufallsvariablen mit E(X i ) = µ und var(x i ) = σ 2 <. Bezeichne G n (x) die Verteilungsfunktion von n(x n µ)/σ. Dann gilt für jedes x R lim G n(x) = n x 1 2π e y2 /2 dy. Also hat n(x n µ)/σ als Grenzverteilung die Standard-Normalverteilung. Bemerkungen: Wir beginnen eigentlich ohne Annahmen (bis auf Unabhängigkeit und endliche Varianzen) und enden in der Normalverteilung. Diese Normalität stammt von den Summen von kleinen (endliche Varianzen) Störtermen. Einschränkung: Keine Kenntnis wie gut diese Approximation ist! 38

Beispiel 1.3.3: Sei X 1,..., X n eine Zufallsstichprobe aus einer Negativ-Binomial Verteilung für die gilt (X 1 = x r, p) = ( ) r + x 1 p r (1 p) x, x = 0, 1,... x mit r(1 p) E(X 1 ) =, var(x 1 ) = p Das CLT sagt aus, dass X n r(1 p) p n r(1 p) p 2 asymptotisch N(0, 1) verteilt ist. r(1 p) p 2. Weiters gilt die Faltungseigenschaft n i=1 X i Negativ-Binomial(nr, p). Wir betrachten die Situation: r = 10, p = 1/2 und n = 30. 39

Exakt: Damit ergibt sich exakt (X 30 11) = ( 30 i=1 X i 330 ) = 330 x=0 ( 300 + x 1 x ) ( ) 300 ( ) x 1 1 = 0.8916. 2 2 Diesem Ergebnis liegt eine ziemlich komplexe Berechnung zugrunde. Approximativ: Das CLT liefert mit E(X 30 ) = r = 10 und var(x 30 ) = 2r/n = 20/n die Approximation (X 30 11) = ( 30 X 30 10 ) 11 10 30 (Z 3/2) = 0.88966, 20 20 wobei Z N(0, 1). 40

Ein Approximationswerkzeug, das häufig zusammen mit dem CLT verwendet wird, ist der folgende Satz: Satz 1.3.7: (Satz von Slutsky) Falls X n D X und Yn a, mit einer Konstanten a, dann gilt (a) Y n X n D ax, (b) Y n + X n D a + X. 41

Beispiel 1.3.4: Angenommen n X n µ σ D N(0, 1) aber σ 2 sei unbekannt. Aus Beispiel 1.3.1 wissen wir, dass Sn 2 lim n var(sn) 2 = 0. σ 2 falls Für stetige Transformationen g( ) liefert Satz 1.3.2: X n X g(xn ) g(x). Hier: S 2 n σ 2 S 2 n σ 2 und S 2 n σ 2 1/S n 1/σ. Also gilt auch σ/s n 1. Mittels Slutsky (Satz 1.3.7) folgt damit: X n µ σ n }{{ σ }}{{} S n D N(0,1) 1 = n X n µ S n D N(0, 1). 42

Satz 1.3.8: (Delta Methode) Sei Y n eine Folge von Zufallsvariablen die n(yn θ) D N(0, σ 2 ) genügt. Sei g eine reellwertige Funktion mit g (θ) 0. Dann gilt ( ) ( D n g(y n ) g(θ) N 0, σ 2 [g (θ)] 2). Satz 1.3.9: (Delta Methode 2. Ordnung) Sei Y n eine Folge von Zufallsvariablen die n(yn θ) D N(0, σ 2 ) genügt. Für eine Funktion g und für den Wert θ sei g (θ) = 0 und es existiere g (θ) 0. Dann gilt ( ) D n g(y n ) g(θ) σ 2 g (θ) 2 χ2 1. 43