Absolute und relative en Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder mit einer Reißzwecke würfeln zu müssen, kann man mit einer größeren Anzahl gleichzeitig würfeln. Am Besten geht dies mit einer Schachtel als Unterlage. Nach dem Versuch wird das Ergebnis ausgezählt. Beschreibe dein Ergebnis in einem kurzen Text: Zahl der Reißzwecken Kopf Spitze Rel. Kopf Rel. Spitzel
Absolute und relative en In der sind Würfel Zufallsgeneratoren. Wir wollen untersuchen wie wahrscheinlich es ist, eine 7 zu würfeln. Dazu wird in Schülergruppen gewürfelt und die Ergebnisse werden in der Liste unten notiert. Begriffe: Wir warten auf eine 7 beim Würfeln mit zwei Würfeln. Dies nennt man in der ein Ereignis!. Würfel 4 5 7 8 9 0 4 5 7 8 9 0 4 5. Würfel Ergebnis abs. rel.
Der schnellste Weg Zu Beginn des Spieles wird von jedem Mitspieler ein Spielstein auf eine Startzahl zwischen und gesetzt. Anschließend wird mit zwei Würfeln gewürfelt und die Augensumme gebildet. Stimmt die Augensumme mit der besetzten Startzahl überein, darf man ein Feld vorrücken und nochmals würfeln. Stimmen Augensumme und Startzahl nicht überein, ist der nächste Spieler dran. Wer mit seinem Spielstein auf ein Zielfeld (Z) kommt, hat einen Gewinnpunkt gemacht und darf seinen Stein wieder auf eine beliebige Startzahl setzen. Gewonnen hat derjenige, der zuerst Gewinnpunkte hat.
Kreisel Zeichne für die beiden dargestellten Kreisel ein Baumdiagramm und untersuche folgende Ereignisse: E: E: E: E4: Man erhält einen Pasch Man erhält eine ungerade Gesamtzahl Man erhält zwei rote Zahlen Man erhält eine Zahl größer als 5 Gebe die Wahrscheinlichkeiten als Bruch und als Dezimalzahl an! Wahrscheinlich wirst du das Baumdiagramm nicht vollständig zeichnen können. Es reicht wenn du mit der Zeichnung andeutest, wie das Diagramm weiter geführt wird.
Kreisel Obwohl drei Kreisel abgebildet sind, werden wir zunächst nur zwei Kreisel benutzen. Alle Ergebnisse, die mit diesen beiden Kreisel ermittelt werden können, bilden den Ereignisraum. Ermittle die Größe des Ereignisraums! Stelle den Ereignisraum strukturiert dar. Dazu müssen nicht alle möglichen Ergebnisse aufgelistet werden. Strukturierte Darstellung des Ereignisraums: Weitere Fragen: Man gewinnt beim Drehen mit zwei Kreiseln, wenn man eine doppelte Zahl (Pasch) dreht. Wie groß ist die Wahrscheinlichkeit für dieses Ereignis. Das Kleeblatt ersetzt jede beliebige Zahl. Es hat die Funktion eines Jockers. Wie groß ist die Wahrscheinlichkeit für einen Pasch nun? Wie groß wird der Ereignisraum, wenn man mit drei solchen Kreiseln dreht? Beschreibe, wie man für mehrere beliebige Zufallsgeräte die Größe des Ereignisraums bestimmen kann. Wie groß ist die Wahrscheinlichkeit, die Zahlenkombination ; und zu drehen?
Lotto aus 9 Anstelle des bekannten Lottos aus 49 sollt ihr den kleinen Ableger davon aus 9 spielen. Dafür müsst ihr zunächst 9 Papierschnipsel mit den Zahlen -9 beschriften und dann in einen undurchsichtigen Behälter füllen. Jeder aus der Klasse tippt eine Dreierkombination aus der Menge {,,,4,5,,7,8,9} (z.b. --7). Es darf dabei keine Zahl doppelt vorkommen. Im Anschluss daran zieht der Lehrer drei Schnipsel aus dem Behälter. a) Nachdem an der Tafel die Ergebnisse aller Schüler notiert wurden (absolute ), berechne die relative der einzelnen Zahlen. b) Wie groß war rein rechnerisch die Wahrscheinlichkeit, 0,, oder Richtige zu haben. c) Vergleiche das Ergebnis aus Teil b) mit dem aus a). Was könnte die Ursache für die Differenzen sein? Erstelle ein Baumdiagramm für diesen mehrstufigen Zufallsversuch und bestimme die Wahrscheinlichkeiten für die Ereignisse E => keine Kugel wird richtig gezogen E => eine Kugel wird richtig gezogen E => zwei Kugeln werden richtig gezogen E4 => drei Kugeln werden richtig gezogen.
Das -Türen-Problem In der amerikanischen Fernsehshow Let s make a deal ist ein Auto ein Hauptpreis. Um ihn zu gewinnen, muss sich der Kandidat schließlich für die richtige von drei verschlossenen Türen entscheiden. Hinter einer befindet sich das Auto, hinter den beiden anderen jeweils eine Ziege. Wenn sich der Kandidat für eine der drei Türen entschieden hat, zum Beispiel für Tür, öffnet der Moderator, der weiß, was sich hinter den Türen befindet, mit den Worten Soll ich Ihnen mal was zeigen? eine der beiden anderen Türen, zum Beispiel Tür, und eine Zeige schaut ins Publikum, denn der Moderator öffnet niemals die Tür, hinter der das Auto steht. Der Kandidat hat nun noch die Möglichkeit, sich für die andere verschlossene Tür (hier Tür ) zu entscheiden oder bei seiner ursprünglichen Wahl zu bleiben(hier Tür ). Was soll der Kandidat machen? Diese Frage wurde der Journalistin Marilyn vos Savant, die angeblich der Mensch mit dem höchsten Intelligenzquotienten ist, von einem Leser der Zeitschrift Parade gestellt. In ihrer Kolumne Ask Marylin antwortete sie, dass der Kandidat auf jeden Fall wechseln sollte. Dieses Vorgehen würde seine Gewinnwahrscheinlichkeit verdoppeln, nämlich von / auf /. Daraufhin erhielt sie etwa zehntausend Leserbriefe, die diese Strategie für falsch hielten. Was ist deine Meinung?
Zufallsgerät: Unten siehst du ein Netz eines Körpers, der einem Oktaeder recht ähnlich ist. Auf den Körperflächen sollen die Zahlen von bis 8 so verteilt werden, dass der Würfel nach Möglichkeit große Zahlen erzeugt. Allerdings ist die Verteilung der Zahlen auf den Würfelflächen nicht beliebig. Die gegenüberliegenden Seiten sollen als Augensumme immer 9 ergeben. Eine Bedingung für benachbarte Zahlen gibt es nicht. Überlege dir genau, wie du die Zahlen anordnest. Dann schreibe die Zahlen vor dem Zusammenkleben auf den Körper! Nach dem Zusammenbau soll der Würfel getestet werden. Es wird 5 Mal mit dem Körper gewürfelt und die Ergebnisse werden notiert. Ist die 8 wirklich besonders häufig aufgetreten?
Die Würfel des Herrn Efron Die rechts abgebildeten Würfel tragen die Zahlen o bis 8. Auch die Verteilung der Zahlen ist nicht gleich. Sie ist durch die Netzdarstellung leicht ersichtlich. Der erste Spieler wählt einen Würfel. Danach wählt der Gegenspieler. Nun wird gewürfelt und die Ergebnisse werden in der Tabelle auf diesem Blatt notiert. Berechnet zum Schluss die Gewinn- des ersten und zweiten Spielers. Eine zweite Variante besteht darin, dass der erste Spieler würfelt und danach wählt der zweite Spieler seinen Würfel. Kann man dadurch die Chancen für den zweiten Spieler erhöhen? 0 0 7 7 7 Ergebnis Spieler Ergebnis Spieler 8 8 Gewinner Spieler 5 5 5 Gewinner Spieler
Die Würfel des Herrn Efron Die rechts abgebildeten Würfel tragen die Zahlen bis 5. Auch die Verteilung der Zahlen ist nicht gleich. Sie wird durch die Würfelnetz-Darstellung leicht ersichtlich. Der erste Spieler wählt einen Würfel. Danach wählt der Gegenspieler. Nun wird gewürfelt und die Ergebnisse werden in der Tabelle auf diesem Blatt notiert. Berechnet zum Schluss die Gewinn- des ersten und zweiten Spielers. Eine zweite Variante besteht darin, dass der erste Spieler würfelt und danach wählt der zweite Spieler seinen Würfel. Kann man dadurch die Chancen für den zweiten Spieler erhöhen? 5 5 4 4 4 4 Ergebnis Spieler Ergebnis Spieler Gewinner Spieler Gewinner Spieler
Merkwürdige Würfel: Dieses Zufallsgerät wurde aus zwei Würfeln zusammengeklebt. Die Verteilung der Zahlen auf den Seitenflächen kann man der Netzdarstellung entnehmen. Schätze zunächst die Wahrscheinlichkeit für das Auftreten einer Vier und einer Sechs. Nun soll 5 mal mit diesem Würfel gewürfelt werden. Danach wird die relative für das Auftreten Vier und einer Sechs ermittelt. 4 5 Wurf 4 5 7 8 9 0 4 5 7 8 9 0 Abs (4) rel. Rel. abs. (4) () ()
Kubusoktaeder oder Würfel mit abgeschnittenen Ecken Eine Bezeichnung für diesen archimedischen Körper ist mit Sicherheit schwer zu finden. Skizziere ein Netz dieses Körpers. Bau den abgebildeten Körper mit Klickies auf. Achte darauf, dass die Dreiecke und die Quadrate verschiedene Farben besitzen. Du kannst wie im Beispiel blaue Quadrate und rote Dreiecke verwenden. Nun soll mit diesem Körper gewürfelt werden. Dabei kann der Körper auf ein Dreieck oder auf ein Quadrat fallen. Wir unterscheiden also die beiden Ergebnisse Dreieck und Quadrat. Schätze: Mit welcher Wahrscheinlichkeit tritt das Ergebnis Dreieck und das Ergebnis Quadrat auf? Fertige eine Tabelle für deine Würfelergebnisse an Notiere in der Tabelle das Werte für das Ereignis: Liegt auf einer Dreieck Seite. abs. Ergebnis 4 5 7 8 9 0 relative abs. Ergebnis 4 5 7 8 9 0 relative
Würfel mit abgeschnittenen Kanten Eine Bezeichnung für diesen archimedischen Körper ist mit Sicherheit schwer zu finden. Skizziere ein Netz dieses Körpers. Bau den abgebildeten Körper mit Klickies nach. Achte darauf, dass die Sechsecke und die Quadrate verschiedene Farben besitzen. Du kannst wie im Beispiel blaue Quadrate und rote Sechsecke verwenden. Nun soll mit diesem Körper gewürfelt werden. Dabei kann der Körper auf ein Sechseck oder auf ein Quadrat fallen. Wir unterscheiden also die beiden Ergebnisse Sechseck und Quadrat. Schätze: Mit welcher Wahrscheinlichkeit tritt das Ergebnis Dreieck und das Ergebnis Quadrat auf? Fertige eine Tabelle für deine Würfelergebnisse an Notiere in der Tabelle das Werte für das Ereignis: Liegt auf einer Sechseck Seite. abs. Ergebnis 4 5 7 8 9 0 relative abs. Ergebnis 4 5 7 8 9 0 relative
Quadratdreieckling (die Namensschöpfung eines Schülers) Eine Bezeichnung für diesen archimedischen Körper ist mit Sicherheit schwer zu finden. Skizziere ein Netz dieses Körpers. Bau den abgebildeten Körper mit Klickies nach. Achte darauf, dass die Dreiecke und die Quadrate verschiedene Farben besitzen. Du kannst wie im Beispiel blaue Dreiecke und rote Quadrate verwenden. Nun soll mit diesem Körper gewürfelt werden. Dabei kann der Körper auf ein Dreieck oder auf ein Quadrat fallen. Wir unterscheiden also die beiden Ergebnisse Sechseck und Quadrat. Schätze: Mit welcher Wahrscheinlichkeit tritt das Ergebnis Dreieck und das Ergebnis Quadrat auf? Fertige eine Tabelle für deine Würfelergebnisse an Notiere in der Tabelle das Werte für das Ereignis: Liegt auf einer Quadrat Seite. abs. Ergebnis 4 5 7 8 9 0 relative abs. Ergebnis 4 5 7 8 9 0 relative