Lösungslogik. Berechnung von als Ergänzungswinkel im. Dreieck 2. Berechnung von 1 aus der Differenz von 1 und 1. Berechnung von als Ergänzungswinkel

Größe: px
Ab Seite anzeigen:

Download "Lösungslogik. Berechnung von als Ergänzungswinkel im. Dreieck 2. Berechnung von 1 aus der Differenz von 1 und 1. Berechnung von als Ergänzungswinkel"

Transkript

1 Lösung W1a/2008 Lösungslogik Berechnung von als Ergänzungswinkel im Dreieck. Berechnung von. Berechnung von über den. Berechnung von über den Satz des Pythagoras. Berechnung von über. Berechnung von über den. Berechnung von als Differenz aus und. Wegen, ist. Berechnung von über die Winkelsumme im Dreieck. Berechnung von als Summe von und ,2 41 2,7554 $ %4,2 2, , ,0478 3,17 8,0 3,17 4,83 ( ) +,, 1,752,-..+ / 1,752 60, ,27 2, ,27 4 2,73 2,73 2,73 5,46 Der Winkel hat 5,5. Lösung W1a/2010 Lösungslogik Berechnung von 1 als Ergänzungswinkel im Dreieck 2. Berechnung von 1 aus der Differenz von 1 und 1. Berechnung von als Ergänzungswinkel im Dreieck 34. Berechnung von 2 über den 567. Berechnung von 2 über den Satz des Pythagoras. Berechnung von 4 über den. Berechnung von 3 über den Satz des Pythagoras. Berechnung von 3 aus der Differenz von 2 und 4. Berechnung von 8. Satz des Pythagoras

2 ; , , $ 2 %4, 1 1,67 Satz des Pythagoras 2 14,0211 3,74 4 < /; 4 ( 2) (6,3 1,67) 17 1, $( 2) 4 %(6,3 1,67) 1,42 ( 2) 3 %23,435 4,84 Satz des Pythagoras ,74 1,42 2, ,1 6,3 2,32 4,84 17,56 Der Umfang des Vierecks 3 beträgt 17,6 5>. Lösung W4b/2010 Lösungslogik (einfach) Berechnung von über den. Berechnung von 7 als Ergänzungswinkel zu 0. Berechnung von über den Kosinussatz. 0,4 / (0,4) 21, ,6 46,4 2 A 567 Kosinussatz A ,4 62,0761 A 7,87 Die Strecke ist 7, 5> lang.

3 Lösungslogik (umständlich) Berechnung von 1 über den. Durch das Umklappen ist 1 1. Berechnung von 1 über Berechnung von 3 über den 1, 2 ist gleich lang wie 3. Berechnung von 3 über den Satz des Pythagoras. Berechnung von 3 über ( 3), die Strecke 2 ist gleich lang wie 3. Berechnung von über den Satz des Pythagoras. 1 +,@ 1 / B. C 68,2 1 1 A ,4 43,6 3 1 A A 3 1 4,0 (43,6 ) 2, , ,76 7, $ A A 3 %4 2,76 Satz des Pythagoras 3 8,3824 2, E 3F 10 (4 2,852) 3, ,1048 $ 2 A 2 %3,1048 7,24 %62,0574 7,8777 Die Strecke ist 7, 5> lang. Satz des Pythagoras Lösung W1a/2011 Lösungslogik (einfach) Bestimmung von, 7, G und. Berechnung von über den Sinussatz. Berechnung von über den Sinussatz. Berechnung von über den trigonometrischen Flächeninhalt. 40 (gleichschenkliges Dreieck) G G G

4 Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von HIJK HIJL 40 7,05 HIJM HIJN G HIJN -,@. 80 8,1 HIJ., Sinussatz G Sinussatz trigonometrischer Flächeninhalt 7,05 8,1 42 1,32 Der Flächeninhalt des Dreiecks beträgt 1,3 5>. Lösungslogik (umständlich) Berechnung von über den 56. Hierzu Berechnung von über gleichschenkliges Dreieck und O als halbe Strecke. Berechnung von über den G. Berechnung von über den. Berechnung von als Ergänzungswinkel zu G und im Dreieck. Berechnung des Flächeninhalts des Dreiecks über den trigonometrischen Flächeninhalt. 56 P ; 56 P RSHT U 40 (gleichschenkliges Dreieck ) O O 5,4 (gleichschenkliges Dreieck ).,+ RSH+@ G G (gleichschenkliges Dreieck ) G G , ,4 ; HIJN HIJ., 180 G trigonometrischer Flächeninhalt 7,05 8, ,2 Der Flächeninhalt des Dreiecks beträgt 1,3 5>.

5 Lösung W1b/2011 Lösungslogik Bestimmung von über die Eckwinkel im Achteck. Bestimmung von als Ergänzungswinkel zu 180. Berechnung von 2 über. Berechnung von aus der Summe von und 2. Berechnung von über. Berechnung von (Winkelsumme im -Eck) W 67, q.e.d. 2 ; Y 2 6,2 45 4,38 2 6,2 4,38 10,58 10,58 67,5 25, E F 2 36,12 72,24 Der Umfang des Vierecks beträgt 72,2 5>. Lösung W1a/2012 Lösungslogik Berechnung von über. Berechnung von über die Flächenformel des Trapezes. Bestimmung von Z. Berechnung von [ über die Flächenformel des Trapezes. Berechnung von über den Satz des Pythagoras. Berechnung von [ als Differenz von [ und. Berechnung von 3 als Differenz von und [. Berechnung von [ über den Satz des Pythagoras.

6 4,8 70 4,51 E F (,2 4,1) 4,51 30,0 Z Z \]^_ 15,0 [ Z ([+) 15,0 30 ([+4,0) 4,51 4,51; 4,0 4,0 2,65 +,. $ %4, 8 4,51 Satz des Pythagoras 2,6 1,64 [ [ [ 2,65 1,64 1, [ 4,0 1,01 2, [ [ $ 3 %2, 4,51 Satz des Pythagoras [ 2,2802 5,41 Die Strecke [ ist 5,4 5> lang. Lösung W1a/2013 Lösungslogik Berechnung 3 im Dreieck 3 über 567. Berechnung von 3 im Dreieck 3 über 7. Das Dreieck ist gleichschenklig, damit ist 3 3. Berechnung von 3 über 3 (identisch mit 3) Berechnung von im Dreieck 3 über den. Berechnung von als Ergänzungswinkel zu 180 im Dreieck. Berechnung von als Differenzwinkel von 0 und 7. Berechnung von über den im Dreieck. Berechnung von mit dem Sinussatz über, und. Berechnung des Umfangs Dreiecks über.

7 ,5 5651,2 2, ,5 51,2 2, ,5 2,131 4,306,--- 0,6333 +,@WX / (0,6333) 32, ,35 57, ,2 38,8 6,5 32,35 4,1165 HIJN HIJK Sinussatz HIJN HIJ,,, 3,5 2,56 HIJK HIJ.-,W ,5 2,56 4, ,2125 Der Winkel ist 32,4 groß, der Umfang des Dreiecks beträgt 10,2 5>. Lösung W1a/2014 Lösungslogik (einfach) Berechnung von als Ergänzungswinkel zu 0. Das Dreieck ist gleichschenklig, Berechnung von als Spitzenwinkel. Berechnung von 7 als Ergänzungswinkel zu 0. Berechnung von im Dreieck 3 über. Berechnung von über den Kosinussatz ,,00 `YJK `YJ. ; $ Kosinussatz %6,8 2 6, ,7858 Die Strecke ist 5,8 5> lang.

8 Lösungslogik (umständlich) Berechnung von als Ergänzungswinkel zu 0. Das Dreieck ist gleichschenklig, Berechnung von als Spitzenwinkel. Berechnung von 7 als Ergänzungswinkel zu 0. Berechnung von im Dreieck 3 über. Berechnung von 2 über den 7. Berechnung von 2 über den Satz des Pythagoras. Berechnung von 2 aus Differenz von und 2. Berechnung von über den Satz des Pythagoras ,,00 `YJK `YJ. 2 7 ; 2 7 6,8 40 4,37 ; 2 2 $ 2 %6,8 4,37 Satz des Pythagoras 2 27,1431 5, ,00 5,21 3,7 $ 2 2 %4,37 3,7 Satz des Pythagoras 2 33,461 5,785 Die Strecke ist 5,8 5> lang. Lösung W1a/2015 Lösungslogik (einfach) Berechnung von über den Kosinussatz. Berechnung von über den Sinussatz. Berechnung von als Ergänzungswinkel zu 180.

9 Berechnung von 7 im gleichschenkligen Dreieck (7.und sind Wechselwinkel). Berechnung der Fläche des Dreiecks über den trigonometrischen Flächeninhalt Kosinussatz %7,8 8,4 2 7,8 8, ,868 HIJT U HIJK HIJK,,+ HIJ.@ W,,W, 0,362 / (0,362) 6, ,54 110,46,@ /T a,@ /@,+W 34, ,77 Sinussatz trigonometrischer Flächeninhalt 6, ,46 22,06 Der Winkel 7 hat 34,8, die Fläche des Dreiecks beträgt 22,1 5>. Lösungslogik (umständlich) Berechnung von 2 über den. Berechnung von 2 über den Satz des Pythagoras. Berechnung von 2 aus der Differenz von und 2. Berechnung von über den. Berechnung von als Ergänzungswinkel zu 180. Berechnung von 7 im gleichschenkligen Dreieck (7.und sind Wechselwinkel). Berechnung von 2 über den tan. Berechnung von aus der Differenz von 2 und 2. Berechnung der Fläche über die Grundseite und die Höhe 2.

10 2 ; 2 8,4 50 6, $ 2 %8,4 6,4348 Satz des Pythagoras 2 %2,1533 5, ,8 5,3 2,401 ; ; W,++,,+@ 2,680 / (2,680) 6, ,54 110,46,@ /T a ,77 2 ; ;,@ /@,+W 34,77 2 ; W,++,,2688 `YJN efg +,-- 2 2,2688 2,401 6,8678 2; 2 Die Höhe 2 liegt außerhalb 6,8678 6, ,06 Der Winkel 7 hat 34,8, die Fläche des Dreiecks beträgt 22,1 5>.

Klausuraufschrieb. )(: )( $!) $ 0!( $ 12!)!( 23- Kosinussatz : 45# $ 6. wegen gleichschenkligem Trapez )(77,8 $ 05,6 $ 12 7,8 5, ,8 )(11,41

Klausuraufschrieb. )(: )( $!) $ 0!( $ 12!)!( 23- Kosinussatz : 45# $ 6. wegen gleichschenkligem Trapez )(77,8 $ 05,6 $ 12 7,8 5, ,8 )(11,41 Lösung W1b/2003 Lösungslogik In nebenstehender Grafik sind aus Übersichtsgründen nur die Werte 1; 3; 5 und 7 dargestellt. Der jeweilige Winkel ergibt sich aus dem über. Tabelle und Schaubild siehe. bis

Mehr

Aufgabe W1b/2006. Gegeben ist das rechtwinklige Trapez. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt:.

Aufgabe W1b/2006. Gegeben ist das rechtwinklige Trapez. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt:. Realschulabschluss Trigonometrie (Wahlteil nur e-aufgaben) von 2003-2009 7 Aufgaben im Dokument Aufgabe W4b/2003 Im nebenstehenden Dreieck ist der Mittelpunkt von. Zeigen Sie ohne Verwendung gerundeter

Mehr

Aufgabe W1b/2003. Aufgabe W4a/2003. Aufgabe W3a/2004. Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von

Aufgabe W1b/2003. Aufgabe W4a/2003. Aufgabe W3a/2004. Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von 8 Aufgaben im Dokument Aufgabe W1b/2003 Die Punkte 4 0 und 0 bilden mit dem Koordinatenursprung ein rechtwinkliges Dreieck. Der Punkt ist auf der Achse beweglich. Der Innenwinkel des Dreiecks bei wird

Mehr

Aufgabe W4b/2010. Im Quadrat gilt:. 66,0 97,0 6,3 4,1 Berechnen Sie den Umfang des Vierecks. Lösung: 17,6.

Aufgabe W4b/2010. Im Quadrat gilt:. 66,0 97,0 6,3 4,1 Berechnen Sie den Umfang des Vierecks. Lösung: 17,6. Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von 2008-2015 9 Aufgaben im Dokument Aufgabe W1a/2008 Gegeben ist das Trapez. Es gilt 8,0 4,2 41,0 Berechnen Sie den Winkel. Lösung 59,5. Aufgabe

Mehr

9, Im Dreck gilt: Berechnen Sie den Umfang des Dreiecks. Lösung: 27,9. und. Tipp: Dreimal Sinussatz für,

9, Im Dreck gilt: Berechnen Sie den Umfang des Dreiecks. Lösung: 27,9. und. Tipp: Dreimal Sinussatz für, Aufgabe P1/2014 Im Viereck sind gegeben 3,2 5,8 54,6 Berechnen Sie den Umfang des Dreiecks Lösung 17,4 14 Aufgaben im Dokument Aufgabe P2/2014 Das Dreieck und das Dreieck überdecken sich teilweise Es gilt

Mehr

Klausuraufschrieb : : : 3,5 ' ( ') # * Satz des Pythagoras +5 (3,5 6,1 5. Satz des Pythagoras : ' ( ' () #

Klausuraufschrieb : : : 3,5 ' ( ') # * Satz des Pythagoras +5 (3,5 6,1 5. Satz des Pythagoras : ' ( ' () # Lösung Aufgabe W1a/2003 Berechnung der Teilstrecke über die halbe Diagonale des großen Quadrates. Berechnung der Teilstrecke über die halbe Diagonale des kleinen Quadrates. Berechnung der Teilstrecke über

Mehr

Berechnen Sie die Länge von % im Körper. Tipp: Berechnung von % über den Kosinussatz. Lösung: (=69,1 ) %=8,3

Berechnen Sie die Länge von % im Körper. Tipp: Berechnung von % über den Kosinussatz. Lösung: (=69,1 ) %=8,3 Aufgabe W1a/2003 Zwei Quadrate mit den Seitenlängen 10,0 bzw. 7,0 werden wie rechts skizziert aneinandergelegt. und sind die Mittelpunkte der Diagonalen. ist der Mittelpunkt der Strecke. Berechnen Sie

Mehr

: /1 4 ; /1. : 40 (gleichschenkliges Dreieck )

: /1 4 ; /1. : 40 (gleichschenkliges Dreieck ) Lösung W1a/2011 (einfach) Bestimmung von,, und. Berechnung von über den Sinussatz. Berechnung von über den Sinussatz. Berechnung von über den trigonometrischen Flächeninhalt. : 40 (gleichschenkliges Dreieck)

Mehr

6,46 A 3, ,46 3,23 112,5 68, ,1345 8,2544 Das Volumen der Pyramide beträgt 69,1 D. Die Strecke ist 8,3 D lang.

6,46 A 3, ,46 3,23 112,5 68, ,1345 8,2544 Das Volumen der Pyramide beträgt 69,1 D. Die Strecke ist 8,3 D lang. Lösung W2b/2003 Volumen der Pyramide über (quadratische Pyramide). Berechnung des Innenwinkels und des Fünfecks. Berechnung von über den. Hieraus folgt. Berechnung der Strecke (entspricht der halben Diagonalen

Mehr

=329 (Volumen der Pyramide) =7,0

=329 (Volumen der Pyramide) =7,0 Aufgabe W1a/2011 Im Dreieck gilt: =10,8 =40,0 =58,0 = Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: =19,3. Tipp: Zweimal Sinussatz für und dann trigonometrischen Flächeninhalt. Aufgabe W1b/2011

Mehr

329 (Volumen der Pyramide) 7,0

329 (Volumen der Pyramide) 7,0 7 Aufgaben im Dokument Aufgabe W2b/2003 Die vier dunkel eingefärbten Teilflächen eines regelmäßigen Fünfecks mit der Seitenlänge 7,6 bilden den Mantel einer quadratischen Pyramide. Berechnen Sie das Volumen

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung In diesem Kapitel bekommst du Zeichnungen von zusammengesetzten Figuren aus Dreiecken, Quadraten, Rechtecken, Parallelogrammen, Trapezen und eventuell Kreisbögen. Einige Streckenlängen

Mehr

Klausuraufschrieb. : 60 wegen gleichseitigem Dreieck das Dreieck ist rechtwinklig !

Klausuraufschrieb. : 60 wegen gleichseitigem Dreieck das Dreieck ist rechtwinklig ! Hinweis zum Lösungsteil In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

Aufgabe W2a/ Berechnen Sie die Länge. 28,8

Aufgabe W2a/ Berechnen Sie die Länge. 28,8 4 Aufgaben im Dokument Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0. Berechnen Sie die Länge. Diese Pyramide hat das Volumen 836. Berechnen Sie die Länge. Tipp: Kosinussatz

Mehr

!( :!( 4? 6 2 2<> 2 !1 :!1 2< D2 2 2? 3 !1 2<> 2 (1 : (1 3 3? 3? 3 3<> 2E2< > ? 3 q.e.d. = C

!( :!( 4? 6 2 2<> 2 !1 :!1 2< D2 2 2? 3 !1 2<> 2 (1 : (1 3 3? 3? 3 3<> 2E2< > ? 3 q.e.d. = C Lösung W1a/007 Berechnung von über die Ergänzungswinkel (Das Dreieck ist gleichschenklig). Berechnung von. Berechnung von über. Berechnung von über. Berechnung von als Differenz von und. Berechnung von

Mehr

'4% : '4% () trigonometrischer Flächeninhalt '4% 6,868 ()110,46 22,096

'4% : '4% () trigonometrischer Flächeninhalt '4% 6,868 ()110,46 22,096 Aufgabe W1a/2014 Im Rechteck sind gegeben: =6,8 =4,2 =25,0 = Berechnen Sie die Länge. Lösung: =5,8 Tipp: Kosinussatz für. Aufgabe W1b/2014 Gegeben ist das Dreieck. ist der Mittelpunkt von. Weisen Sie ohne

Mehr

Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0 Berechnen Sie die Länge!". Diese Pyramide hat das Volumen 70,1

Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0 Berechnen Sie die Länge!. Diese Pyramide hat das Volumen 70,1 Aufgabe W2b/2003 Die vier dunkel eingefärbten Teilflächen eines regelmäßigen Fünfecks mit der Seitenlänge 7,6 bilden den Mantel einer quadratischen Pyramide. Berechnen Sie das Volumen der Pyramide. Der

Mehr

+,,-'. 0, 12, ,76

+,,-'. 0, 12, ,76 Lösung W1a/2017 Der Abstand von zur Strecke ist der kürzeste Abstand (Senkrechte auf ). ist so lang wie.. Berechnung der Strecke über den. Berechnung des Abstandes über. Der Winkel ist (wegen des gleichschenkligen

Mehr

Abschluss Realschule BW 2005 Lösung W1a/2005 Lösungslogik Für die Strecke : Berechnung des Spitzenwinkels über die Ergänzungswinkel.

Abschluss Realschule BW 2005 Lösung W1a/2005 Lösungslogik Für die Strecke : Berechnung des Spitzenwinkels über die Ergänzungswinkel. Abschluss Realschule BW 2005 Lösung W1a/2005 Für die Strecke : Berechnung des Spitzenwinkels über die Ergänzungswinkel. Berechnung von über den. Berechnung von aus der Differenz von und. Berechnung von

Mehr

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung:

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung: Aufgabe W1a/2005 Für die quadratische Pyramide gilt: =5,6 =65,0. = =3,0 Berechnen Sie die Länge sowie den Flächeninhalt des Vierecks. Lösung: =2,8 =13,6 Aufgabe W1b/2005 Gegeben ist das rechtwinklige Trapez.

Mehr

Tipp: Strecke % über den

Tipp: Strecke % über den Aufgabe W1a/2010 Im Quadrat gilt: =66,0 =97,0 =6,3 =4,1 Berechnen Sie den Umfang des Vierecks. Lösung: =17,6. Aufgabe W1b/2010 Im Dreieck liegt das gleichseitige Dreieck. Der Mittelpunkt der Strecke wird

Mehr

Aufgabe W2a/2004 = 2. Zeichnen Sie ein Schrägbild des Körpers mit dem Dreieck maßgerecht für =

Aufgabe W2a/2004 = 2. Zeichnen Sie ein Schrägbild des Körpers mit dem Dreieck maßgerecht für = Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: =12,4 =52,8 Das Volumen der unteren Pyramide

Mehr

Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben:

Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben: Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben: 10,7 5,5 9,6 48,2 Berechnen Sie den Winkel. Wie groß ist der Flächeninhalt des Dreiecks? Lösung: 42 21,9 Tipp: Sinussatz und trigonometrischen

Mehr

Die Ankathete ist die Kathete, die an dem Winkel, um den es geht, anliegt.

Die Ankathete ist die Kathete, die an dem Winkel, um den es geht, anliegt. Themenerläuterung Ähnlich dem Kapitel Quadratische Pyramiden geht es in diesem Kapitel um regelmäßige Pyramiden mit anderen Grundflächen als einem Quadrat. Es kommen dreiseitige, fünfseitige, sechsseitige

Mehr

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 ;<.

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 ;<. Lösung W1a/2004 Zur Beachtung: die Skizze zeigt den Diagonalschnitt, nicht den Parallelschnitt. Berechnung von über den und daraus. Berechnung von über den Satz des Berechnung der Kantenlänge der quadratischen

Mehr

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung: 1 = R\4 ; 5; 6 = { 3}

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung: 1 = R\4 ; 5; 6 = { 3} Aufgabe W1a/007 Gegeben ist das gleichschenklige Dreieck und das rechtwinklige Dreieck. Es gilt: = = 10,0 = 3,6 = 58,0 Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: = 5,3. Tipp: Trigonometrischer

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung Bei diesem Thema werden die unterschiedlichsten Körper vorgegeben wie Würfel, Prisma, Zylinder, Kegel und Pyramide. Auf den Außenflächen bzw. in den Körpern befinden sich Strecken, deren

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung Ähnlich dem Kapitel Quadratische Pyramiden geht es in diesem Kapitel um regelmäßige Pyramiden mit anderen Grundflächen als einem Quadrat. Es kommen dreiseitige, fünfseitige, sechsseitige

Mehr

Aufgabe W1b/2017. Aufgabe W2a/ ,5. Lösung: Abstand von 5,2. Gegeben sind ein rechtwinkliges Trapez ABCD und ein regelmäßiges Sechseck.

Aufgabe W1b/2017. Aufgabe W2a/ ,5. Lösung: Abstand von 5,2. Gegeben sind ein rechtwinkliges Trapez ABCD und ein regelmäßiges Sechseck. Aufgabe W1a/2017 Das rechtwinklige Dreieck ABD und das gleichschenklige Dreieck ABC haben die Seite gemeinsam. Es gilt: 7,2 3,0 42. Berechnen Sie den Abstand des Punktes von sowie den Winkel. Lösung: Abstand

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Zeichnungen von zusammengesetzten Figuren aus Dreiecken, Quadraten, Rechtecken, Parallelogrammen, Trapezen und eventuell Kreisbögen. Einige Streckenlängen

Mehr

Aufgabe W1b/ ,0 11,6 54,0. sowie den Abstand des Punktes zur Strecke. Gegeben ist das Dreieck ABC. Es gilt: Berechnen Sie den Winkel

Aufgabe W1b/ ,0 11,6 54,0. sowie den Abstand des Punktes zur Strecke. Gegeben ist das Dreieck ABC. Es gilt: Berechnen Sie den Winkel Aufgabe W1a/2018 Gegeben ist das Dreieck ABC. Es gilt: 12,0 11,6 54,0 Berechnen Sie den Winkel sowie den Abstand des Punktes zur Strecke. Lösung: 62,5 Abstand von 5,9. Aufgabe W1b/2018 Im rechtwinkligen

Mehr

Klausuraufschrieb. Das Dreieck ist gleichschenklig. Deswegen gilt. : * : 3 49, Satz des Pythagoras 10,73043,2757

Klausuraufschrieb. Das Dreieck ist gleichschenklig. Deswegen gilt. : * : 3 49, Satz des Pythagoras 10,73043,2757 Lösung W1a/2016 Wegen mit einem Abstand von 9 lässt sich die Strecke über den berechnen. Wegen ist das Dreieck gleichseitig. Damit ist. Darüber berechnen wir die Strecke über den. Wir berechnen die Strecke

Mehr

14,8 12,3 67,75 8, , ,0 ; 2 2 8, ,67 )* +! 8,23 )*36 6,66 . /0' 1 ' 1 9, , /0' 5 67,69338,45

14,8 12,3 67,75 8, , ,0 ; 2 2 8, ,67 )* +! 8,23 )*36 6,66 . /0' 1 ' 1 9, , /0' 5 67,69338,45 Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

Aufgabe P3/2008 6,6 10,8 47,0 132,0 8,4 10,2. Im Viereck sind bekannt:

Aufgabe P3/2008 6,6 10,8 47,0 132,0 8,4 10,2. Im Viereck sind bekannt: Aufgabe P1/2008 Gegeben sind das Rechteck und das gleichschenklige Dreieck. Es gilt: 38,0 5,4 4,2 Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: 5,1. Tipp: Trigonometrischen Flächeninhalt für das

Mehr

Tipp: Kosinussatz für Pyramidenkante.

Tipp: Kosinussatz für Pyramidenkante. 3 Aufgaben im Dokument Aufgabe W2b/2014 Aus einer Kreisfläche werden die Mantelflächen einer quadratischen Pyramide und eines Kegels ausgeschnitten. Der Kreis hat den Radius 20. Berechnen Sie die Differenz

Mehr

Klausuraufschrieb. Berechnung von 0 über den Sinus. Berechnung von über den Sinus. Berechnung von über den Ergänzungswinkel

Klausuraufschrieb. Berechnung von 0 über den Sinus. Berechnung von über den Sinus. Berechnung von über den Ergänzungswinkel Lösung P1/2004 (einfach) Der Winkel wird direkt mit dem Sinussatz ermittelt. Berechnung von. läche des Dreiecks dann über den trigonometrischen lächeninhalt. : 96066883 # $066883%42 : 90 ( 90 (42 48 )

Mehr

Lösung Aufgabe P1: 1. Berechnung der Grundseite a : zusammenfassen. Seiten tauschen

Lösung Aufgabe P1: 1. Berechnung der Grundseite a : zusammenfassen. Seiten tauschen Lösung Aufgabe P1: 1. Berechnung der Grundseite a : zusammenfassen Seiten tauschen 2. Berechnung der Pyramidenhöhe h: Pythagoras im gelben Schnittdreieck 3. Berechnung des Pyramidenvolumens V: 1 von 46

Mehr

6,5 32,35 4,1165. = 3 : = 3 3,52,5964,116510,2125 Der Winkel ist 32,4 groß, der Umfang des Dreiecks beträgt 10,2 >.

6,5 32,35 4,1165. = 3 : = 3 3,52,5964,116510,2125 Der Winkel ist 32,4 groß, der Umfang des Dreiecks beträgt 10,2 >. Lösung W1a/2013 Berechnung im Dreieck über. Berechnung von im Dreieck über. Das Dreieck ist gleichschenklig, damit ist. Berechnung von über identisch mit ) Berechnung von im Dreieck über den. Berechnung

Mehr

Klausuraufschrieb. Berechnung von über den Satz des Pythagoras. Berechnung von als Differenz von und. Berechnung von als Differenz von und.

Klausuraufschrieb. Berechnung von über den Satz des Pythagoras. Berechnung von als Differenz von und. Berechnung von als Differenz von und. Lösung W1a/2012 Berechnung von über. Berechnung von über die Flächenformel des Trapezes. Bestimmung von. Berechnung von über die Flächenformel des Trapezes. Berechnung von über den Satz des Pythagoras.

Mehr

Aufgabe W1b/2013. Aufgabe W2a/2013 =3 (3+ 3) =3,4

Aufgabe W1b/2013. Aufgabe W2a/2013 =3 (3+ 3) =3,4 Aufgabe W1a/2013 Im rechtwinkligen Dreieck liegt das gleichschenklige Dreieck. Es gilt =6,5 =51,2 = =3,5 Berechnen Sie den Winkel. Berechnen Sie den Umfang des Dreiecks. Tipp Sinussatz für Lösung =32,4

Mehr

Aufgabe W2a/2016. Aus einer Kreisfläche wird die Mantelfläche einer regelmäßigen, fünfseitigen Pyramide ausgeschnitten.

Aufgabe W2a/2016. Aus einer Kreisfläche wird die Mantelfläche einer regelmäßigen, fünfseitigen Pyramide ausgeschnitten. Aufgabe W1a/2016 Die Eckpunkte des Vierecks ABCD liegen auf den Parallelen g und h. Die Parallelen haben einen Abstand von 9,0. Es gilt: 10,4 70. Berechnen Sie den Umfang des Vierecks. Lösung: 39,5 Aufgabe

Mehr

Dreiecke (in der Ebene)

Dreiecke (in der Ebene) Dreiecke (in der Ebene) 1) EinfÄhrung Trigonometrie bedeutet: die Lehre von den Dreiecken. Ein Dreieck entsteht aus drei geraden, nicht parallelen Seiten, die sich jeweils unter einem Winkel treffen. Dies

Mehr

Inhalt der Lösungen zur Prüfung 2017:

Inhalt der Lösungen zur Prüfung 2017: Inhalt der Lösungen zur Prüfung 017: Pflichtteil Wahlteil ufgabe W1a 10 Wahlteil ufgabe W1b 1 Wahlteil ufgabe Wa 14 Wahlteil ufgabe Wb 15 Wahlteil ufgabe W3a 18 Wahlteil ufgabe W3b 0 Wahlteil ufgabe W4a

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung Ähnlich dem Kapitel Quadratische Pyramiden geht es in diesem Kapitel um regelmäßige Pyramiden mit anderen Grundflächen als einem Quadrat. Es kommen dreiseitige, fünfseitige, sechsseitige

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung Im Kapitel Zusammengesetzte Körper geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. Es

Mehr

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 ;<.

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 ;<. Lösung W1a/2004 Zur Beachtung die Skizze zeigt den Diagonalschnitt, nicht den Parallelschnitt. Berechnung von über den und daraus. Berechnung von über den Satz des Berechnung der Kantenlänge der quadratischen

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Ausführliche Lösungen 11.1 Die Aussage gilt für a) Rechteck, Quadrat b) Raute, Quadrat, Drachen c) Parallelogramm, Raute, Rechteck, Quadrat d) Rechteck, Quadrat e) Parallelogramm 11.2 Bei einem Parallelogramm

Mehr

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse. Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck

Mehr

größer ist als die des Zylinders. Lösung: 311,0

größer ist als die des Zylinders. Lösung: 311,0 Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen der unteren Pyramide

Mehr

Aufgabe W3b/2007. Aufgabe W2b/2009

Aufgabe W3b/2007. Aufgabe W2b/2009 8 Aufgaben im Dokument Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN Mathematik Mag. Schmid Wolfgang Arbeitsblatt 4 3. Semester ARBEITSBLATT 4 VERMESSUNGSAUFGABEN Nun wollen wir unser Wissen über recht- und schiefwinkelige Aufgaben an einigen Aufgaben beweisen Beispiel

Mehr

Aufgabe P2/2015. Aufgabe P3/2015 7, ; 30,0 16 ; 24,0 Läuft das Wasser über? Überprüfen Sie durch Rechnung. Berechnen Sie den Radius der Kugel.

Aufgabe P2/2015. Aufgabe P3/2015 7, ; 30,0 16 ; 24,0 Läuft das Wasser über? Überprüfen Sie durch Rechnung. Berechnen Sie den Radius der Kugel. Aufgabe P1/2015 Im Dreck gilt: 9,2 64 40 Berechnen Sie den Umfang des Dreiecks. Lösung: 27,9 Tipp: Dreimal Sinussatz für, und. Aufgabe P2/2015 Das Viereck ist ein Quadrat. Es gilt: 7,8 34 Berechnen Sie

Mehr

Inhalt der Lösungen zur Prüfung 2015:

Inhalt der Lösungen zur Prüfung 2015: Inhalt der Lösungen zur Prüfung 015: Pflichtteil Wahlteil ufgabe W1a 1 Wahlteil ufgabe W1b 16 Wahlteil ufgabe Wa 17 Wahlteil ufgabe Wb 19 Wahlteil ufgabe Wa 1 Wahlteil ufgabe Wb Wahlteil ufgabe W4a 5 Wahlteil

Mehr

Lösung Aufgabe P1: 1. Berechnung der Strecke : Sinusfunktion im gelben rechtwinkligen Teildreieck. Seiten tauschen

Lösung Aufgabe P1: 1. Berechnung der Strecke : Sinusfunktion im gelben rechtwinkligen Teildreieck. Seiten tauschen Lösung Aufgabe P1: 1. Berechnung der Strecke : Sinusfunktion im gelben rechtwinkligen Teildreieck Seiten tauschen 2. Berechnung des Winkels : Kosinusfunktion im hellblauen rechtwinkligen Teildreieck 3.

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Trigonometrische Berechnungen

Trigonometrische Berechnungen Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =

Mehr

Lösung Aufgabe P1: Berechnung der Höhe der Seitenfläche : Seiten tauschen. Berechnung der Grundseite a: Seiten tauschen

Lösung Aufgabe P1: Berechnung der Höhe der Seitenfläche : Seiten tauschen. Berechnung der Grundseite a: Seiten tauschen Lösung Aufgabe P1: Berechnung der Höhe der Seitenfläche : Seiten tauschen Berechnung der Grundseite a: Seiten tauschen Berechnung der Pyramidenhöhe h: Satz des Pythagoras 1 von 39 Berechnung des Pyramidenvolumens

Mehr

Aufgabe W2a/2012 =2 21. Das Dreieck und haben die Seite gemeinsam. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt:

Aufgabe W2a/2012 =2 21. Das Dreieck und haben die Seite gemeinsam. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt: Aufgabe W1a/2012 Vom Trapez sind bekannt =9,2 =4,8 =4,0 =70 Ein Punkt liegt auf. ie Strecke halbiert die Trapezfläche. Berechnen Sie die Länge. Lösung =5,4 Aufgabe W1b/2012 as reieck und haben die Seite

Mehr

Aufgabe P4/2005. Aufgabe P5/2005 !"6;10% ' 57,0. Lösen Sie die Gleichung:

Aufgabe P4/2005. Aufgabe P5/2005 !6;10% ' 57,0. Lösen Sie die Gleichung: Aufgabe P1/2005 Von einer quadratischen Pyramide sind bekannt: 54,9 (Mantelfläche) 6,1. (Höhe einer Seitenfläche) Berechnen Sie das Volumen der Pyramide. Aufgabe P2/2005 Ein zusammengesetzter Körper besteht

Mehr

Lösung Aufgabe P1: 1. Berechnung der Strecke : Kosinusfunktion im gelben rechtwinkligen Teildreieck ADE

Lösung Aufgabe P1: 1. Berechnung der Strecke : Kosinusfunktion im gelben rechtwinkligen Teildreieck ADE Lösung Aufgabe P1: 1. Berechnung der Strecke : Kosinusfunktion im gelben rechtwinkligen Teildreieck ADE 2. Berechnung des Winkels : Tangensfunktion im hellblauen rechtwinkligen Teildreieck CDE 1 von 61

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Problem des Monats Februar 2019

Problem des Monats Februar 2019 Problem des Monats Februar 09 Bei welcher Lage ist die Fläche maximal? In ein regelmäßiges n-eck soll ein möglichst großes regelmäßiges m-eck gezeichnet werden. ie bbildungen zeigen die eingeschlossenen

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Lösung P2/2016. Lösungslogik : ,4 110,6. trigonometrischer Flächeninhalt. Das Dreieck hat eine Fläche von 16,4 %.

Lösung P2/2016. Lösungslogik : ,4 110,6. trigonometrischer Flächeninhalt. Das Dreieck hat eine Fläche von 16,4 %. Lösung P1/2016 Berechnung von über. Berechnung von über. Berechnung von über. Berechnung von als Ergänzungswinkel von zu 180. Berechnung der Fläche des Dreiecks über den trigonometrischen Flächeninhalt

Mehr

Die Oberfläche der Verpackung besteht aus sechs Teilen: 2 Trapeze (vorne und hinten), und 4 Rechtecke.

Die Oberfläche der Verpackung besteht aus sechs Teilen: 2 Trapeze (vorne und hinten), und 4 Rechtecke. Aufgabe 1a) Schritt 1: Oberflächenformel aufstellen Gesucht ist die Oberfläche des Prismas. Das heißt, 2, mit G als Grundfläche und M als Mantel. Die Oberfläche der Verpackung besteht aus sechs Teilen:

Mehr

2 063,4,. % 7. : ,4 26,6 Die Innenwinkel des Dreiecks *) betragen 63,4, 26,6 und :90.

2 063,4,. % 7. : ,4 26,6 Die Innenwinkel des Dreiecks *) betragen 63,4, 26,6 und :90. Lösung W3a/2003 Aufstellung der Funktionsgleichung. Bestimmung der Schnittpunkte von mit durch Gleichsetzung. Bestimmung der Funktionsgleichung von über die beiden Schnittpunkte. Erstellung einer Graphik,

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Inhalt der Lösungen zur Prüfung 2014:

Inhalt der Lösungen zur Prüfung 2014: Inhalt der Lösungen zur Prüfung 2014: Pflichtteil 2 Wahlteil ufgabe W1a 11 Wahlteil ufgabe W1b 1 Wahlteil ufgabe W2a 15 Wahlteil ufgabe W2b 17 Wahlteil ufgabe Wa 18 Wahlteil ufgabe Wb 21 Wahlteil ufgabe

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Trigonometrie. Unterrichtsinhalte und Beispiele. Olaf Schimmel

Trigonometrie. Unterrichtsinhalte und Beispiele. Olaf Schimmel Trigonometrie Unterrichtsinhalte und Beispiele Olaf Schimmel 1 Die Definition der Winkelfunktioen 1.1 Die Winkelfunktionen im rechtwinkligen Dreieck Gegeben sei ein rechtwinkliges Dreieck mit den Katheten

Mehr

Die Mittelsenkrechte im deduktiven Aufbau

Die Mittelsenkrechte im deduktiven Aufbau Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1

Mehr

Aufgabe W2a/2005 Eine Parabel hat die Gleichung 4 1. Durch den Scheitelpunkt der Parabel und durch den Punkt %6 5 geht die Gerade. Berechnen Sie die G

Aufgabe W2a/2005 Eine Parabel hat die Gleichung 4 1. Durch den Scheitelpunkt der Parabel und durch den Punkt %6 5 geht die Gerade. Berechnen Sie die G Dokument mit 10 Aufgaben Aufgabe W3a/2003 Die Normalparabel hat die Gleichung 4 6. Die Normalparabel ist nach unten geöffnet und hat den Scheitel 0 6. Durch die Schnittpunkte beider Parabeln verläuft die

Mehr

Inhalt der Lösungen zur Prüfung 2016:

Inhalt der Lösungen zur Prüfung 2016: Inhalt der Lösungen zur Prüfung 06: Pflichtteil Wahlteil ufgabe Wa 0 Wahlteil ufgabe Wb Wahlteil ufgabe Wa Wahlteil ufgabe Wb 6 Wahlteil ufgabe W3a 9 Wahlteil ufgabe W3b Wahlteil ufgabe Wa Wahlteil ufgabe

Mehr

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018 Propädeutikum 018 1. September 018 Denition Trigonometrie Die Trigonometrie beschäftigt sich mit dem Messen (µɛτ ρoν) von dreiseitigen (τ ρίγωνo) Objekten. Zunächst gilt in Dreiecken: A = 1 g h Abbildung:

Mehr

Lösungen zur Prüfung 2005: Pflichtbereich

Lösungen zur Prüfung 2005: Pflichtbereich 005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Das komplette Material finden Sie hier: School-Scout.de Hinweise zur Arbeit mit den Kopiervorlagen

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen

Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen Mathematik Klasse 10c Vorbereitung Klassenarbeit Nr. 3 am 1.3.019 Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen Checkliste Was ich alles können soll Ich erkennen die Strahlensatzfiguren

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2006 BW

Abituraufgaben Analytische Geometrie Wahlteil 2006 BW Aufgabe B1.1 Die Punkte 3 5 4, 4 1 4 und 4 9 0 legen eine Ebene fest. a) Bestimmen Sie eine Koordinatengleichung der Ebene. Zeigen Sie, dass das Dreieck gleichschenklig, aber nicht gleichseitig ist. Bestimmen

Mehr

Rechnung: Wir betrachten Dreieck BHS und wenden den Satz von Pythagoras an:

Rechnung: Wir betrachten Dreieck BHS und wenden den Satz von Pythagoras an: Blatt Nr 17.06 Mathematik Online - Übungen Blatt 17 Trapeze Satz von Pythagoras Nummer: 40 0 009010068 Kl: 9X Grad: 10 Zeit: 0 Quelle: eigen W Aufgabe 17.1.1: h, der Seitenflächenhöhe h s und der Seitenkantenlänge

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Die Mittelsenkrechte im deduktiven Aufbau

Die Mittelsenkrechte im deduktiven Aufbau Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1 Die Mittelsenkrechte

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Mittlerer Schulabschluss 2013

Mittlerer Schulabschluss 2013 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Bildung, Jugend und Sport Brandenburg und der Senatsverwaltung für Bildung, Jugend und

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

Semesterprüfung Mathematik 2. Klasse KSR 2010

Semesterprüfung Mathematik 2. Klasse KSR 2010 Erreichte Punktezahl: / 58 Note: (Maximale Punktezahl: 58) Semesterprüfung Mathematik 2. Klasse KSR 2010 Montag, 31. Mai 2010 13.10-14.40 Das GROSSGEDRUCKTE: Unbedingt zuerst durchlesen! Prüfung auf jeder

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen quadratischer Pyramiden genannt, wie z. B. Höhe, Seitenhöhe, Seitenkante, Grundkante, Mantel, Oberfläche und Volumen. Aus den Teilangaben

Mehr