Realschule Abschlussprüfung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Realschule Abschlussprüfung"

Transkript

1 Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) Skizze Berechnen aller Dreiecke, die jetzt gehen Eintragen der berechneten Werte in Skizze Noch einmal Skizze anschauen Auch, wenn noch nicht klar ist wozu: alles ausrechnen, was geht Immer wieder alles, was jetzt ausgerechnet ist, in Skizze eintragen Je mehr an der Figur bekannt ist, desto eher können die gesuchten Strecken/Winkel berechnet werden Oberflächenberechnungen an zusammengesetzten/veränderten Körpen Aufschreiben aller Formeln aus Formelsammlung Welche Flächen fallen weg welche kommen hinzu? Aufstellen der Gesamtformel Ausrechnen fehlender Größen Einsetzen in Formel und Berechnen des Körpers Berechnung der Seitenhalbierenden eines gleichschenkligen Dreiecks Berechnung der Strecke MB Berechnung der Seitenhalbierenden eines beliebigen Dreiecks Aufgabenstellung Anwenden des Kosinussatzes Berechnen der Höhe Berechnen der Seitenhalbierenden mit Pythagoras Parabelaufgaben Normalparabel y = x 2 + px + q Bestimmen einer Normalparabel Scheitelform bestimmen Nullstellen bestimmen gestreckte oder gestauchte Parabel y = ax 2 + c Geraden y = mx + b Schnittpunkte Verschiedenes

2 6 Pyramide Rechtwinklige Dreiecke an der quadratischen Pyramide Aufgaben Nachtermin Aufgabe P 1: Aufgabe P 2: Aufgaben Nachtermin Aufgabe P 1: Aufgabe P 2: Aufgaben Nachtermin Aufgabe P 2:

3 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 1.1 Skizze Markieren von allen angegebenen Größen Berechnung aller Winkel aus den Angaben und Eintragen in Skizze Rechtwinklige Dreiecke suchen, bei denen ein Winkel und eine Seite bekannt sind 30 /60 und 45 rechtwinklige Dreiecke suchen 1.2 Berechnen aller Dreiecke, die jetzt gehen Bei 30 /60 Dreiecken ist die kleinste Seite halb so groß wie die Hypotenuse. Ist die größere Kathete gegeben, muss man sie durch 3 teilen,um die andere Kathete zu erhalten. Bei 45 Dreiecken sind die Katheten gleich groß und die Hypotenuse berechnet sich aus der Kathete durch Multiplikation mit Eintragen der berechneten Werte in Skizze 1.4 Noch einmal Skizze anschauen Noch einmal Frage anschauen Was wäre schön, wenn ich es berechnen könnte Kann man z.b. Höhen an Dreiecken einzeichnen, die nicht rechtwinklig sind 1.5 Auch, wenn noch nicht klar ist wozu: alles ausrechnen, was geht 1.6 Immer wieder alles, was jetzt ausgerechnet ist, in Skizze eintragen 1.7 Je mehr an der Figur bekannt ist, desto eher können die gesuchten Strecken/Winkel berechnet werden 3

4 2 Oberflächenberechnungen an zusammengesetzten/veränderten Körpen 2.1 Aufschreiben aller Formeln aus Formelsammlung Auswählen der Formeln, die in der Aufgabe gebraucht werden Quader : O = 2(ab + ac + bc) Würfel: O = 6a 2 P risma : O = 2G + M = 2G + U h QuadratischeP yramide : O = G + M = a 2 + 2a h s Zylinder : O = 2G + M = 2πr 2 + 2πrs Kegel : O = G + M = 2πr 2 + πrs Kugel : O = 4πr Welche Flächen fallen weg welche kommen hinzu? Vergleichen der Grundkörper mit den in der Aufgabe vorkommenden veränderten Körpern. 2.3 Aufstellen der Gesamtformel Aufstellen einer grundsätzlichen Formel für die gesuchte Oberfläche also welche Grundflächen welche Mäntel braucht man bzw. welche Teile davon. Es ist leichter nur G und M der enthaltenen Körper zu verwenden. Einsetzen der Grundformeln für die verschiedenen Grund- und Mantelflächen. 2.4 Ausrechnen fehlender Größen Welche Variablen der Formel fehlen? Wie können diese berechnet werden? Die Aufgabenstellung kann auch zweistufig sein, wenn z.b. ein Schnitt gegeben ist, und zunächst bestimmte Werte aus der Fläche dieses Schnitts zu berechnen sind. Dann muss evtl. auch die Formel für die Fläche des Schnitts verwendet werden. 2.5 Einsetzen in Formel und Berechnen des Körpers 4

5 3 Berechnung der Seitenhalbierenden eines gleichschenkligen Dreiecks Abbildung 1: gleichschenkliges Dreieck gegeben sei ein gleichschenkliges Dreieck mit den Seiten a und c berechnet werden soll die Seitenhalbierende M B 3.1 Berechnung der Strecke M B nach Strahlensatz ist MD = 1 2 h und AD = 1 4 c h 2 = a 2 ( c 2 )2 also kann MB mit Pythagoras berechnet werden (MB) 2 = ( h 2 )2 + ( 3c 4 )2 5

6 4 Berechnung der Seitenhalbierenden eines beliebigen Dreiecks 4.1 Aufgabenstellung Abbildung 2: beliebiges Dreieck gegeben seien die Seiten a,b,c berechnet werden soll die Seitenhalbierende SC AS = SB 4.2 Anwenden des Kosinussatzes a 2 = b 2 + c 2 2bc cos α b 2 = a 2 + c 2 2ac cos β c 2 = a 2 + b 2 2ab cos γ Durch Umstellen wie cos α = b2 +c 2 a 2 2bc kann jeder Winkel im Dreieck berechnet werden 6

7 4.3 Berechnen der Höhe sowohl die Höhe h als auch die Strecke AH kann so berechnet werden, wenn der Winkel CAHbekannt ist Beachtet werden muss ob S links oder rechts neben H liegt. 4.4 Berechnen der Seitenhalbierenden mit Pythagoras SH 2 + h 2 c = SC 2 5 Parabelaufgaben 5.1 Normalparabel y = x 2 + px + q Bestimmen einer Normalparabel Ist der Scheitel S(d c) gegeben, stellt man die Scheitelform auf: y = (x d) 2 + c und multipliziert gegebenenfalls aus Merkspruch: Den Parabelscheitel setzen wir sofort in die Scheitelform am richt gen Ort. Dabei drehn wir gar nicht dumm nur dem x sein Zeichen um. Sind 2 Punkte gegeben, setzt man die Punke in die Grundformel ein und erhält so zwei Gleichungen für p und q Merkspruch: Zwei Punkte der Parabel setzt man ein in die p-q-form das ist fein. Es kann auch ein Punkt gegeben sein und entweder p oder q steht schon als Zahl in der Gleichung. Dann diesen Punkt einsetzen und die fehlende Variable (p oder q) ausrechnen Scheitelform bestimmen Grundformel quadratisch ergänzen: y = (x + ( p 2 ))2 ( p 2 )2 + q Zahlen hinter der binomischen Formel verrechnen und Scheitel ablesen Beispiel: y = x 2 5x + 3 also ist p = 5 und q = 3. Quadratisch ergänzt ergibt das y = (x 5 2 )2 2, also y = (x 2, 5) 2 3, 25 7

8 5.1.3 Nullstellen bestimmen Nullstellen sind die Punkte der Parabel auf der x-achse, also y = 0. Sie werden auch als Schnittpunkte mit der x-achse bezeichnet. Grundformel gleich 0 setzen. x 2 + px + q = 0 Mit Mitternachtsformel x-werte der Nullstellen bestimmen. Der x-wert des Scheitels liegt übrigens genau in der Mitte zwischen den x-werten der Nullstellen. 5.2 gestreckte oder gestauchte Parabel y = ax 2 + c Diese Parabeln haben den Scheitel immer auf der y-achse nur für a = 1 oder a = 1 kann man sie mit der Schablone zeichnen. Sonst muss man eine Wertetabelle anlegen. Auch hier können wieder zwei Punkte gegeben sein, um a und c zu bestimmen. Es ist aber auch möglich, dass man a und c aus einem Schaubild ablesen muss. c ist dann der y- Achsenabschnitt und a muss aus dem Punkt (1 a + c) bestimmt werden. 5.3 Geraden y = mx + b Immer wieder müssen Geraden bestimmt werden. Gegeben sind dabei entweder zwei Punkte oder die Steigung und ein Punkt. Also auch hier Punkte einsetzen und m und/oder b bestimmen. Geraden, die parallel sind, haben die gleiche Steigung. Der Steigungswinkel der Geraden kann aus der Steigung berechnet werden: tan α = m also ist tan 1 (m) = α 5.4 Schnittpunkte Schnittpunkte muss man entweder zwischen zwei Parabeln oder zwischen einer Gerade und einer Parabel bestimmen. Schnittpunkte zwischen zwei Kurven erhält man immer, indem man sie gleichsetzt und die Gleichung löst. Die x-werte muss man dann in eine der beiden Gleichungen einsetzen, um den y-wert der Punkte zu berechnen. 5.5 Verschiedenes Bei Angabe eines Punktes kann eine Koordinate auch variabel sein z.b. P (1, 5 y p ) oder P (x p 4). Dann muss die jeweilige variable Koordinate aus der Gleichung der Kurve berechnet werden. Wenn man prüfen muss, ob ein Punkt auf einer Parabel oder Geraden liegt, einfach x-wert in die Gleichung einsetzen und nachrechnen, ob der y-wert rauskommt. Berechnung von Strecken zwischen zwei Punkten werden mit Pythagoras berechnet. Die folgende Abstandsformel steht in der Formelsammlung (meistens bei Geraden): d = (x 1 x 2 ) 2 + (y 1 y 2 ) 2, wobei x 1,x 2,y 1,y 2 die Koordinaten der Punkte sind. Vorsicht bei negativen Koordinaten: 3 ( 5) = 3+5 8

9 6 Pyramide 6.1 Rechtwinklige Dreiecke an der quadratischen Pyramide Abbildung 3: quadratische Pyramide 9

10 7 Aufgaben Nachtermin Aufgabe P 1: Im Rechteck ABCD gilt: AD = 3, 9cm AF = 6, 3cm ɛ = 64, 0 ϕ = 84, 8 Berechnen Sie die Länge AB. 7.2 Aufgabe P 2: Im Dreieck ABC sind gegeben: AB = 8, 4cm BE = DE = 4, 4cm β = 48 Berechnen Sie den Winkel α. Abbildung 4: Aufgabe P1 und P2 10

11 8 Aufgaben Nachtermin Aufgabe P 1: Das Viereck ABCD ist ein rechtwinkliges Trapez. Es gilt: BD = 7, 4cm β 1 = 40, 0 Berechnen Sie den Flächeninhalt des Vierecks ABCD. 8.2 Aufgabe P 2: Im rechtwinkligen Dreieck ABC sind gegeben: AB = 4, 4cm AC = 8, 3cm α 1 = 16, 5 Berechnen Sie die Länge DE. Abbildung 5: Aufgabe P1 Abbildung 6: Aufgabe P2 11

12 9 Aufgaben Nachtermin Aufgabe P 2: Auf dem Würfel liegt der Streckenzug DPQR. Es gilt: α = 21, 8 a = 8, 0cm DP = 8, 6cm P Q = 5, 5cm QR = 8, 9cm Berechnen Sie die Länge von RF Abbildung 7: Aufgabe P1 12

Muster für den Schultest. Muster Nr. 1

Muster für den Schultest. Muster Nr. 1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Becker I Brugger. Erfolg in Mathe Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen

Becker I Brugger. Erfolg in Mathe Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen Becker I Brugger Erfolg in Mathe 0 Realschulabschluss Baden-Württemberg Wahlteil Übungsbuch mit Tipps und Lösungen Inhaltsverzeichnis Vorwort Aufgaben 5 Algebra....................................... 5

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen

Mehr

Grundwissen Mathematik 9. Klasse

Grundwissen Mathematik 9. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative

Mehr

Lösungen zur Prüfung 2005: Pflichtbereich

Lösungen zur Prüfung 2005: Pflichtbereich 005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

Übungsaufgaben zu quadratischen Gleichungen und Parabeln Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten!

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten! Mathematik-Verlag Algebra: Quadratische Gleichungen 1. Wie lautet die p, q Formel zur Lösung der quadratischen Gleichung x 2 + px + q = 0? 2. Berechne mit der p, q Formel die Lösungen der Gleichungen:

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Kroemer

Kroemer Kroemer - 02011-1- Normalparabel 13 y 2.0 2.1 3.0 3.1 4.0 4.1 5.1 5.2 6.1 6.2 12 11 10 9 8 7 6 5 4 3 2 1 0-7 -6-5 -4-3 -2-1 0 1 2 3 4 5 6 7 8 9-1 -2 Aufgabe: a) Zeichne eine Normalparabel p: y= x² - erstelle

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Inhalt der Lösungen zur Prüfung 2005:

Inhalt der Lösungen zur Prüfung 2005: Inhalt der Lösungen zur Prüfung 005: Pflichtteil Wahlteil ufgabe W1 10 Wahlteil ufgabe W 14 Wahlteil ufgabe W3 18 Wahlteil ufgabe W4 3 Wichtige Hinweise zum opyright: Das Werk und seine Teile sind urheberrechtlich

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Berechnung der Länge einer Quadratseite a:

Berechnung der Länge einer Quadratseite a: 2006 Pflichtbereich erechnung der Länge einer Quadratseite a: Zur erechnung der Quadratseite a benötigt man die ilfslinie ür die Quadratseite a gilt dann: a = + 57 erechnung der Strecke : Im reieck kann

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert) Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.

Mehr

R4/R6. Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Mathematik II Nachtermin Aufgabe P 1.

R4/R6. Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Mathematik II Nachtermin Aufgabe P 1. Prüfungsdauer: Abschlussprüfung 008 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1 Gegeben ist das Trapez ABCD mit AB

Mehr

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten.

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. DIE ELLIPSE Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. Die Ellipse besteht aus allen Punkten, für die die Summe der Abstände von zwei festen Punkten - den

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Berufsmaturitätsprüfung 2006 Mathematik

Berufsmaturitätsprüfung 2006 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,

Mehr

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2.

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2. 3.6 m 1.69 m 6 m 1.69 m Seiten 9 / 10 / 11 1 Vorbemerkung: Alle abgebildeten Dreiecke sind ähnlich (weil sie lauter gleiche Winkel haben). Also gilt jeweils: 2 kurze Seite Dreieck 1 kurze Seite Dreieck

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses 0. Klasse der Haupt-/Mittelschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 0 Hinweise zur Auswahl, Korrektur und Bewertung der Prüfungsaufgaben Mathematik Nicht für den Prüfling bestimmt!

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis? Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

Planungsblatt Mathematik für die 4E

Planungsblatt Mathematik für die 4E Planungsblatt Mathematik für die 4E Woche 10 (von 03.11 bis 07.11) Hausaufgaben 1 Bis Dienstag 11.11: (i) Schreibe die Berechnungen zum Bastelauftrag gut übersichtlich auf (Kontrolle Anfang der Stunde),

Mehr

Ergänzungsheft Erfolg im Mathe-Abi

Ergänzungsheft Erfolg im Mathe-Abi Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-

Mehr

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 7 7. a) s = ; s = 5, 5, 5 Über den Satz des Pythagoras ist die Länge der Vektoren bestimmbar. Die Länge von = ist = + +. s 6,9 m und s 6,97

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Skript Mathematik Klasse 10 Realschule

Skript Mathematik Klasse 10 Realschule Skript Mathematik Klasse 0 Realschule Das vorliegende Skript wurde erstellt durch: Marco Johannes Türk marco.tuerk@googlemail.com Die aktuellste Version dieses Skriptes ist online auf www.marco-tuerk.de

Mehr

Hausaufgaben und Lösungen

Hausaufgaben und Lösungen Hausaufgaben und Lösungen Die folgenden Seiten sind nicht thematisch, sondern chronologisch geordnet. Die Lösungen der Hausaufgaben werden hier erst nach der Besprechung der Hausaufgaben veröffentlicht.

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

Aufwärmübung 1 Lösungen

Aufwärmübung 1 Lösungen Aufwärmübung 1 1) Die Tabellen gehören zu direkt proportionalen Zuordnungen. Ergänze die fehlenden Werte. a) b) Weg in km Zeit in h Menge in kg Preis in 20 1 1_ 4 4 1_ 4 60 120 12 24 2) Vereinfache. (n

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008 Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 8 Zusammenfassung IC Il Corso Advanzato I. Besondere Punkte, Geraden und Ebenen 1. Besondere Ebenen Koordinatenebenen: Wie in dem konkretes

Mehr

Quadratische Funktion Aufgaben und Lösungen

Quadratische Funktion Aufgaben und Lösungen Quadratische Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Graph und Eigenschaften. y = a x + b x + c...............................................

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe Klasse 9 GM_A0009 **** Lösungen Seiten www.mathematik-aufgaben.de . Mathematikschulaufgabe Klasse 9 GM_A00 **** Lösungen Seiten www.mathematik-aufgaben.de . Mathematikschulaufgabe

Mehr

Abbildungen im Koordinatensystem

Abbildungen im Koordinatensystem Klasse 0 I. Drehe die Gerade g mit y = x um O(0/0) mit α = 5. Bestimme die Gleichung der Bildgeraden g. Berechne das Maß des Winkels zwischen g und g.. Die Gerade g mit y = x + 5 soll um O(0/0) so gedreht

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr