Verletzung der Ward-Identitäten in zeitgeordneter Störungstheorie und Seiberg-Witten-Abbildungen in allen Ordnungen

Größe: px
Ab Seite anzeigen:

Download "Verletzung der Ward-Identitäten in zeitgeordneter Störungstheorie und Seiberg-Witten-Abbildungen in allen Ordnungen"

Transkript

1 Verletzung der Ward-Identitäten in zeitgeordneter Störungstheorie und Seiberg-Witten-Abbildungen in allen Ordnungen Thorsten Ohl, Reinhold Rückl, Jörg Zeiner Universität Würzburg 36. Herbstschule für Hochenergiephysik, Maria Laach 2004

2 Teil I 1 Teil I Verletzung der Ward-Identitäten in zeitgeordneter Störungstheorie

3 Nichtkommutative (NC) Raumzeit bedeutet: Einleitung 2 [ˆx µ, ˆx ν ] 0 analog zur Quantenmechanik: [ˆx, ˆp] 0 Die Motivationen: Mechanik Quantenmechanik [x, p] = 0 [ˆx, ˆp] 0 Kommutative Raumzeit nichtkommutative Raumzeit [x µ, x ν ] = 0 [ˆx µ, ˆx ν ] 0 Verknüpfung der allgemeinen Relativitätstheorie mit der Quantenmechanik Nichtkommutative Yang-Mills-Theorien ergeben sich als Niederenergielimes der String-Theorie [N. Seiberg und E. Witten hep-th: ] Natürliche Fortsetzung der quantenmechanischen Prinzipien auf die Raumzeit

4 Hier: sogenannte kanonische nichtkommutative Raumzeit: Grundlagen 3 [ˆx µ, ˆx ν ] = i θ µν Λ 2 NC wobei θ µν reell, antisymmetrisch und konstant - Nichtkommutativer Parameter θ µν analog zum Planck schen Wirkungsquantum h [ˆx µ, ˆx ν ] = i Λ 2 NC θ µν i h = [ˆx, ˆp] - Nichtkommutative Skala Λ NC : zwischen einigen TeV und der Planck-Skala - Konstantes θ einzige Verletzung der Poincaréinvarianz

5 Grundlagen 4 Konsequenzen: Unschärferelation zwischen zwei Raumzeit- Punkten : ˆx µ ˆx ν 1 2 kleinste Länge Brechung der Lorentzinvarianz, da θ festgehalten Gesucht: Stern -Produkt, so dass: θ µν Λ 2 NC x µ x ν x ν x µ [x µ, x ν ] = i θµν Λ 2 NC = ˆx µ ˆx ν ˆx ν ˆx µ [ˆx µ, ˆx ν ] Man findet Moyal-Weyl-Produkt: [ (f g)(x) = lim e i ξ η f(x + ξ)g(x + η) ] ; p q = 1 p µ θ ξ,η 0 2Λ 2 µν q ν NC

6 Nichtkommutative Feldtheorien 5 Korrespondenzprinzip: (L, ) (L, ) das heisst für n-punkt-vertex: Fouriertransformation: (Φ 1 Φ 2... Φ n )(x) (Φ 1 Φ 2... Φ n )(x) (Φ 1 Φ 2 Φ n )(x) F.T. e iϕ(,p 2,...,p n ) Φ 1 ( )Φ 2 (p 2 ) Φ n (p n ) mit nichtkommutativer Phase: ϕ(, p 2,..., p n ) = i<j p i p j ; p q = 1 p µ θ 2Λ 2 µν q ν NC

7 Nichtkommutative Feldtheorien 6 Nichtkommutative Raumzeit nennt man raumartig: θ 12 = θ 13 = θ 23 0 aber θ 01 = θ 02 = θ 03 = 0 zeitartig: θ 12 = θ 13 = θ 23 0 und θ 01 = θ 02 = θ 03 0 θ µν = 0 θ 01 θ 02 θ 03 θ 01 0 θ 12 θ 13 θ 02 θ 12 0 θ 23 θ 03 θ 13 θ 23 0 = 0 E 01 E 02 E 03 E 01 0 B 12 B 13 E 02 B 12 0 B 23 E 03 B 13 B 23 0 Theorie konsistent für raumartige Nichtkommutativität θ ij 0, θ 0i = 0 Theorie nicht unitär für zeitartige Nichtkommutativität θ 0i 0 Grund: Verletzung der Schnittregeln bei Anwendung der gewöhnlichen kovarianten Störungstheorie! [J. Gomis und T. Mendes hep-th: ] Möglicher Ausweg: Zeitgeordnete Störungstheorie (Time-Ordered Perturbation Theory, TOPT): Manifest unitärer, nicht kovarianter Zeitentwicklungsoperator

8 Zeitgeordnete Störungstheorie 7 Aufspaltung des Feynman-Propagators in negativen und positiven Energieanteil p 2 t t p 2 t t p 2 p 2 p 1 = p 2 q (+) p 1 + p q ( ) 2 p 1 Viererimpulse sind auf Massenschale: q (±) = (± q 2 + m 2, q ) Das heisst: Keine Energieerhaltung in nichtkommutativen Phasen! Daraus folgt: Phasen nicht mehr zyklisch invariant in den Impulsen: ϕ(, p 2,..., p n ) ϕ(p 2,..., p n, ) Zeitartige NCQFT ist unitär! [Y. Liao und K. Sibold hep-th: , hep-th: ]

9 Frage: Auch Eichtheorien unitär? Insbesondere: Kann Ward-Identität erfüllt werden? Ergebnisse 8 [T. Ohl, R. Rückl, J. Zeiner Nucl. Phys. B 676 (2004), hep-th: ] Daher: Test der Ward-Identität anhand Compton-Streuung: p 2 p 2 p 2 q s q u q t k 1 k 2 k 1 k 2 k 1 k 2 Amplitude: ε µ 1 (κ) (k 1)ε µ 2 (κ) (k 2) ( M s µ 1 µ 2 + M u µ 1 µ 2 + M t µ 1 µ 2 ) Ward-Identität mit Photon-Polarisation κ = ±: k µ 1 1 εµ 2 (κ) (k 2) ( M s µ 1 µ 2 + M u µ 1 µ 2 + M t µ 1 µ 2 )! = 0

10 Ergebnisse 9 Notwendige Voraussetzungen, damit Ward-Identität erfüllt werden kann: Punkt 1: Pole von s-, u- und t-kanal müssen sich wegheben p 2 p 2 p 2 1 s 1 u 1 t k 1 k 2 k 1 k 2 k 1 k 2 Ist erfüllt, wie bei QCD!

11 Ergebnisse 10 Punkt 2: Nichtkommutative Phasen dürfen nicht vom Kanal abhängen p 2 p 2 p 2 q s qu q t k 1 k 2 k 1 k 2 k 1 k 2 s-kanal : ϕ( p 2, k 2, q s ) + ϕ( q s, k 1, ) = ϕ( p 2, k 2, k 1, ) u-kanal : ϕ( p 2, k 1, q u ) + ϕ( q u, k 2, ) = ϕ( p 2, k 1, k 2, ) t-kanal : ϕ( p 2, q t, ) + ϕ( k 2, k 1, q t ) ϕ(, p 2, k 2, k 1 ) Das heisst: s- und u-kanal unabhängig von internen Impulsen, aber t-kanal nicht! Grund: Interne Impulse auf Massenschale Keine zyklische Invarianz in Impulsen Interne Impulse heben sich nicht weg Zusammenfassung: Die zeitgeordnete Störungstheorie (TOPT) kann nicht das Unitaritätsproblem bei zeitartigen nichtkommutativen Eichtheorien lösen

12 Teil II 11 Teil II Seiberg-Witten-Theorie in allen Ordnungen in θ

13 Neue Klasse nichtkommutativer Eichtheorien Motivation: Aus Stringtheorie (a.a.o.) Natürliche Forderung für Eichtheorien Seiberg-Witten Eichtheorien 12 Neue zusätzliche Forderung: Realisierung der nichtkommutativen Eichtransformation ˆδˆλ Eichtransformation δ λ A: durch gewöhnliche Â(A; θ) + ˆδˆλÂ(A; θ) = Â(A + δ λ A; θ) Zu bestimmen: Seiberg-Witten-Abbildungen (SWM) Â(A; θ) und ˆλ(λ, A; θ), die Eichäquivalenzbedingung erfüllen. SWM: Abbildung nichtkommutativer Felder auf gewöhnliche Felder

14 Grundlegende Forderungen 13 Jetzt zwei grundlegende Forderungen. Zusätzlich zu: Forderung: [ˆx µ, ˆx ν ] = i Λ 2 NC θ µν Konsequenz: (L, ) (L, ) Neu: [ (f g)(x) = lim e i ξ η f(x + ξ)g(x + η) ] ; p q = 1 ξ,η 0 2Λ 2 p µ θ µν q ν NC Forderung: Â(A) + ˆδˆλÂ(A) = Â(A + δ λ A) Konsequenz: L(A, λ) L(Â(A), ˆλ(λ, A)) Zusammengefasst für Seiberg-Witten-Theorie: ( L(A, λ), ) ( L(Â, ˆλ), )

15 Seiberg-Witten-Abbildungen 14 Erste Herrausforderung: Bestimmung der SWMs in erster Ordnung in θ Vorgehen: Eichäquivalenzbedingung in erste Ordnung in θ entwickeln Beispiel für Lösung:  µ (A) = 1 4 θρσ {A ρ, σ A µ + F σµ } + O(θ 2 ) Problem gelöst. SWMs auch in 2. Ordnung in θ vorhanden Zweite Herrausforderung: Bestimmung der SWMs in beliebig hoher Ordnung in θ Vorgehen: Lösung der Seiberg-Witten-Differentialgleichung Beispiel: θ ρσ µ = 1 4 [Âρ ( σ  µ + ˆF σµ ) + ( σ  µ + ˆF σµ ) Âρ ] Vollständiges Ergebnis existiert noch nicht

16 Ziele 15 Beobachtung von rekursiven Lösungen der SWMs. Entwicklung nicht nur in θ: Â(A) = A + Â (1) + Â (2) +... Â (i) θ i sondern auch in kommutativen Eichfeld A: Â(A) = A + Â [2] + Â [3] +... Â [i] A i Vorläufiges Ziel: Berechnung der Compton-Streuung in allen Ordnungen in θ mit Test der Ward-Identitäten Benötigt: SWM in allen Ordnungen in θ aber nur 2. Ordnung im Eichfeld A, da nur zwei externe Photonen.

17 Allgemeine Lagrangedichte 16 Im Allgemeinen ergibt sich für die NCQED durch die Brechung der zyklischen Invarianz folgender Vertex: ψ /A ψ (c 1 ψ α A µ ψ β + c 2 A µ ψ β ψ α + c 3 ψ β ψ α A µ )γ µ αβ F.T. 3 c i e iϕ i( p,k,p) ψ( p) /A(k)ψ(p) i=1 mit c 1 + c 2 + c 3 = 1 und c 1i µ A ν A µ A ν + c 2A µ A ν i µ A ν + c 3A ν i µ A ν A µ c 1i µ A ν A ν A µ c 2A ν A µ i µ A ν c 3A µ i µ A ν A ν 3 F.T. c i ( k µ 2 1 gµ 1µ 3 k µ ) ( ) 3 1 gµ 1µ 2 e iϕ i(k 1,k 2,k 3 ) e iϕ i(k 1,k 3,k 2 ) i=1 mit c 1 + c 2 + c 3 = 1 + zyklisch {1, 2, 3}

18 Vollständiger Phasenvergleich 17 s-kanal: e i(ϕ i( p 2, k 2,q (λ) s )+ϕ j ( q (λ) s,k 1, )) = e i p 2 e ik 1 k 2 1 e 2iδq(λ) s p 2 e 2iδq(λ) s q s e 2iδq(λ) s q s e 2iδq(λ) s k 2 1 e 2iδq(λ) s e 2iδq(λ) s q t e 2iδq(λ) s k 1 ij u-kanal: e i(ϕ i( p 2,k 1,q (λ) u )+ϕ j ( q (λ) u, k 2, )) = e i p 2 e ik 1 k 2 1 e 2iδq(λ) u p 2 e 2iδq(λ) u q u e 2iδq(λ) u q u e 2iδq(λ) u k 1 1 e 2iδq(λ) u e 2iδq(λ) u q t e 2iδq(λ) u k 2 ij t-kanal: e i(ϕ i( p 2,q (λ) t, )+ϕ j (k 1, k 2, q (λ) t )) + (k 1 k 2 ) = e i p 2 e ik 1 k 2 e 2iδq(λ) t e 2iδq(λ) t q s e 2iδq(λ) 1 e 2iδq(λ) t p 2 t k 1 e 2iδq(λ) t q t e 2iδq(λ) t q t e 2iδq(λ) t k 2 1 ij + (k 1 k 2 )

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Eichtheorien auf zeitartiger nicht-kommutativer Raumzeit: Streuquerschnitte und Ward-Identitäten

Eichtheorien auf zeitartiger nicht-kommutativer Raumzeit: Streuquerschnitte und Ward-Identitäten Eichtheorien auf zeitartiger nicht-kommutativer Raumzeit: Streuquerschnitte und Ward-Identitäten Diplomarbeit von Jörg Zeiner vorgelegt bei Prof. Dr. Reinhold Rückl am Institut der Theoretischen Physik

Mehr

Teilchenphysik II, Sommersemester 2018 Prüfungsfragen

Teilchenphysik II, Sommersemester 2018 Prüfungsfragen Teilchenphysik II, Sommersemester 2018 Prüfungsfragen 1. Einleitung 1.1. Was versteht man unter der Comptonlänge eines Teilchens mit Masse m? Geben Sie ihre Größenordnung für ein Elektron (Pion, Proton,

Mehr

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012 Theorie der kondensierten Materie Fraktionaler Quanten-Hall-Effekt Seite 2 Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Dirac-Gleichung und Eichtheorien

Dirac-Gleichung und Eichtheorien Dirac-Gleichung und Eichtheorien Hauptseminar Theoretische Grundlagen der Teilchenphysik Mustafa Tabet 22. Mai 2015 INSTITUT FÜR THEORETISCHE PHYSIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Supersymmetrie. Jan Uphoff. 19. August Goethe-Universität Frankfurt am Main

Supersymmetrie. Jan Uphoff. 19. August Goethe-Universität Frankfurt am Main Jan Uphoff Goethe-Universität Frankfurt am Main 19. August 2008 Jan Uphoff 1/42 Gliederung Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem 1 Motivation Physik jenseits

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Maike Tormählen Übung 1, 11.4.213 Lösungen zu Übungsblatt 1 Aufgabe 1: Large Extra Dimensions & lanck-länge Die Newtonsche Gravitation ist hinreichend, um fundamentale Größen wie die lanck- Länge in diversen

Mehr

Modifikation der Eigenschaften von Antikaonen in dichter Materie

Modifikation der Eigenschaften von Antikaonen in dichter Materie Modifikation der Eigenschaften von Antikaonen in dichter Materie Thomas Roth 7. Juli 2004 Motivation Kaonen...... in dichter Materie Motivation Kaonen... sind die leichtesten Mesonen mit Strangeness ±1...

Mehr

Seminarvortrag. Spinoren der Lorentzgruppe

Seminarvortrag. Spinoren der Lorentzgruppe Seminarvortrag Spinoren der Lorentzgruppe Juli 2003 Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Tensoren und Spinoren........................ 3 1.2 Lorentzgruppe............................ 3 2 Spinoren 4

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

T2 Quantenmechanik Lösungen 7

T2 Quantenmechanik Lösungen 7 T2 Quantenmechanik Lösungen 7 LMU München, WS 7/8 7.. Lineare Algebra Prof. D. Lüst / Dr. A. Schmidt-May version: 28.. Gegeben sei ein komplexer Hilbert-Raum H der Dimension d. Sei { n } mit n,..., d eine

Mehr

Eichtheorien und das Standardmodell der Elementarteilchenphysik

Eichtheorien und das Standardmodell der Elementarteilchenphysik Eichtheorien und das Standardmodell der Elementarteilchenphysik Mark Hamilton 21. Juli 2014 1 / 35 Inhaltsverzeichnis 1 Das Standardmodell 2 3 2 / 35 Das Standardmodell Das Standardmodell ist die erfolgreichste

Mehr

Übungen zur Feldtheorie

Übungen zur Feldtheorie Übungen zur Feldtheorie (wird fortgesetzt) Klaus Morawetz, Zi 564, klaus.morawetz@physik.tu-chemnitz.de, www.mpipks-dresden.mpg.de/ morawetz I. Relativistische Kinematik und Kovarianz 1. Leiten Sie das

Mehr

6 Spontane Symmetriebrechung

6 Spontane Symmetriebrechung 6 SPONTANE SYMMETRIEBRECHUNG 84 6 Spontane Symmetriebrechung In diesem Abschnitt behandeln wir die Theorien weitgehende auf dem klassischen Niveau. 6.1 Spontan gebrochene diskrete Symmetrie Betrachte die

Mehr

F-Theory und der Open String Landscape

F-Theory und der Open String Landscape September 11, 2007 Institut für theoretische Physik, Universität Heidelberg 39. Herbstschule für Hochenergiephysik Maria Laach Typ IIB In diesem Vortrag geht es darum aus der String Theorie heraus Modelle

Mehr

Dirac Gl. relativistischer Fall

Dirac Gl. relativistischer Fall Dirac Gl. relativistischer Fall Freie Dirac Gleichung ohne Feld: ħ = c = iħ Ψ t α = Lösungsansatz: Ψx = = [ α p + mβ]ψ σ, β = σ 2 2 Pauli Matrizen ϕp χp pos. Energie e ipx iet p x neg. Energie Lösungen

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

8 Spontane Symmetriebrechung

8 Spontane Symmetriebrechung 8 SPONTANE SYMMETRIEBRECHUNG 111 8 Spontane Symmetriebrechung 8.1 Gebrochene diskrete Symmetrie Betrachte die φ 4 -Theorie eines reellen Skalarfeldes mit der Lagrangedichte L = 1 ( µφ)( µ φ) 1 m φ λ 4!

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Die Einsteinsche Feldgleichung

Die Einsteinsche Feldgleichung Die Einsteinsche Feldgleichung Volker Perlick ZARM, Univ. Bremen, Germany Eisenbahnfriedhof Uyuni, Bolivien Heraeus-Seminar 100 Jahre Allgemeine Relativitätstheorie Potsdam, 11 März 2015 Newton Einstein

Mehr

6 Der Fixpunktsatz von Banach

6 Der Fixpunktsatz von Banach 6 Der Fixpunktsatz von Banach Es sei (V, ) ein vollständiger NLR Satz 24 (Fixpunktsatz von Banach) Ist A V abg und nicht leer, und g : A A eine Abbildung mit g(x) g(y) q x y (x, y V ) für ein 0 q < 1 Dann

Mehr

7. Kritische Exponenten, Skalenhypothese

7. Kritische Exponenten, Skalenhypothese 7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut

Mehr

Mathematische Grundlagen der Stringtheorie und Supersymmetrie. Klausur 1,

Mathematische Grundlagen der Stringtheorie und Supersymmetrie. Klausur 1, Universität Duisburg-Essen Wintersemester 2009/2010 - Campus Duisburg - Fakultät für Mathematik Wolfgang Hümbs Mathematische Grundlagen der Stringtheorie und Supersymmetrie Klausur 1, 30.11.2009 Name:

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

Chirale Symmetrie, ihre Brechung und Restauration

Chirale Symmetrie, ihre Brechung und Restauration Chirale Symmetrie, ihre Brechung und Restauration Kathrin Leonhardt 14.06.2006 Gliederung 1. Motivation 2. Grundlagen 1. Lagrangeformalismus 2. Transformationen 3. Symmetriebrechung 4. Beispiel masseloser

Mehr

Das 2-Higgs-Dublett-Modell (2HDM)

Das 2-Higgs-Dublett-Modell (2HDM) Das 2-Higgs-Dublett-Modell 2HDM Lukas Emmert, 17.12.2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT 1 KIT Universität des Landes Baden-Württemberg und Das 2-Higgs-Dublett-Modell Lukas Emmert nationales Forschungszentrum

Mehr

H ± Das Higgs-Teilchen. Manuel Hohmann Universität Hamburg. 11. Januar 2005

H ± Das Higgs-Teilchen. Manuel Hohmann Universität Hamburg. 11. Januar 2005 H 0 Das Higgs-Teilchen Manuel Hohmann Universität Hamburg 11. Januar 2005 H 0 Inhaltsverzeichnis 1 Der Higgs-Mechanismus 3 2 Das Higgs im Standardmodell 11 3 Das Higgs und die Neutrinos 19 H 0 1. Der Higgs-Mechanismus

Mehr

CP-Verletzung im K-System

CP-Verletzung im K-System Kapitel 3. CP-Verletzung im K-System B. Cahn 3. CP-Verletzung im K-System Gliederung: Teil 3..: Hist.: Experimentelle Beobachtung CPV Teil 3..: CP-Phänomenologie Teil 3..3: Erklärung CPV im Standardmodell

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack. Das Noether-Theorem. for Pedestrians

Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack. Das Noether-Theorem. for Pedestrians ITP ITP ÍÒ Ú Ö ØĐ Ø Ö Ñ Ò ÁÒ Ø ØÙØ ĐÙÖ Ì ÓÖ Ø È Ý Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack A Einleitung Das Noether-Theorem for Pedestrians Das Noether-Theorem [E. Noether: Nachr.Gesellsch.Wiss.

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

Warum haben Teilchen eine Masse 0?

Warum haben Teilchen eine Masse 0? Warum haben Teilchen eine Masse 0? In der heutigen Doppelstunde werde ich versuchen, den Higgs-Mechanismus zu erklären, der nach heutiger Meinung dafür verantwortlich ist, dass Teilchen überhaupt eine

Mehr

Mic ael Flohr Gamma-itis 16. und 17. Januar 2003

Mic ael Flohr Gamma-itis 16. und 17. Januar 2003 Handout X zur Vorlesung THEORETISCHE PHYSIK III Mic ael Flohr Gamma-itis 16. und 17. Januar 23 KOVARIANZ DER DIRAC-GLEICHUNG In de Vorlesung haben wir die Dirac-Gleichung über das Transformationsverhalten

Mehr

Materie. Symmetrie. und. H.G. Dosch

Materie. Symmetrie. und. H.G. Dosch Materie und Symmetrie H.G. Dosch 3.12 2005 Dynamik und Symmetrie H.G. Dosch 2006 Ouverture Werden und Vergehen Heraklit Sein Eleaten Synthese: Atome und das Leere Demokrit, 5. Jh. v. Chr. Ewig Seiendes:

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik

Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik 22.03.2011 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 2 1.1 Grundlagen................................... 2 1.2 Minkowski-Raum................................

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Nachklausur. Name: Vorname: Matrikel-Nr.: Mittwoch, 13. April 2005, 16:00 Uhr, Gaede-Hörsaal. Bearbeitungszeit: Stunden

Nachklausur. Name: Vorname: Matrikel-Nr.: Mittwoch, 13. April 2005, 16:00 Uhr, Gaede-Hörsaal. Bearbeitungszeit: Stunden Institut für Theoretishe Physik der Universität Karlsruhe Prof. Dr. F. R. Klinkhamer, Dr. Ch. Rupp Theoretishe Physik C im Wintersemester 2004/2005 Nahklausur Name: Vorname: Matrikel-Nr.: Mittwoh, 13.

Mehr

String Theory for Pedestrians (Stringtheorie für Fußgänger)

String Theory for Pedestrians (Stringtheorie für Fußgänger) String Theory for Pedestrians (Stringtheorie für Fußgänger) Johanna Knapp Institut für Theoretische Physik, TU Wien Resselpark, 17. Mai 2016 Inhalt Fundamentale Naturkräfte Was ist Stringtheorie? Moderne

Mehr

Warum haben Teilchen eine Masse 0?

Warum haben Teilchen eine Masse 0? Warum haben Teilchen eine Masse 0? In dieser Woche werde ich versuchen, den Higgs-Mechanismus zu erklären, der nach heutiger Meinung dafür verantwortlich ist, dass Teilchen überhaupt eine Masse aufweisen.

Mehr

Die Dichtematrix. Sebastian Bröker. 2.November 2011

Die Dichtematrix. Sebastian Bröker. 2.November 2011 Die Dichtematrix Sebastian Bröker 2.November 2011 Westfälische Wilhelms-Universität Münster BSc Physik Seminar zur Theorie der Atome, Kerne und kondensierter Materie Die Dichtematrix Bröker 2 Inhaltsverzeichnis

Mehr

8. Relativistische Mechanik

8. Relativistische Mechanik 8. Relativistische Mechanik 8.1 Einleitung Einige experimentelle Tatsachen zeigen, dass die Galileiinvariante Mechanik nur begrenzte Gültigkeit haben kann. Konstanz der Lichtgeschwindigkeit Die Invarianz

Mehr

Die Suche nach dem Higgs-Teilchen

Die Suche nach dem Higgs-Teilchen Die Suche nach dem Higgs-Teilchen Eva Ziebarth. Dezember 005 Theoretische Herleitung. Eichsymmetrien Das aus der Elektrodynamik bewährte Prinzip der Eichsymmetrien wird auf die Teilchenphysik übertragen.

Mehr

1.5 Relativistische Kinematik

1.5 Relativistische Kinematik 1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Elemente der Gruppentheorie

Elemente der Gruppentheorie Elemente der Gruppentheorie Tobias Sudmann 06.11.2006 Rolle der Gruppentheorie in der Physik abstraktes mathematisches Modell Symmetriebegriff historisch: Harmonievorstellung bei Plato, Pythagoras, Kepler,...

Mehr

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen Diracs kanonische von Systemen mit Nebenbedingungen Christof Witte HU Berlin Seminar zur theoretischen Physik WS 08/09 Christof Witte kanonische 1 / 46 Motivation bewährt: Übergang von klassischer zu quantenmechanischer

Mehr

Quantenchromodynamik: Grundlagen

Quantenchromodynamik: Grundlagen Quantenchromodynamik: Grundlagen SU(3) Symmetrie und Quarkmodell Quark-Antiquark Zustände MESONEN 3-Quark Zustände BAYONEN Farbe: theoretische Notwendigkeit und experimentelle Evidenz Gluonfeld Lagrangian

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

Kerne und Teilchen. Symmetrien. Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. Symmetrien. Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kerne und Teilchen Moderne Exerimentalhysik III Vorlesung 11 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Symmetrien KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Geometrische Algebra

Geometrische Algebra Geometrische Algebra Florian Jung Institut für Physik, WA THEP Universität Mainz Klausurtagung des Graduiertenkollegs Bullay, 13. September 2006 Florian Jung: Geometrische Algebra 1 / 24 Gliederung Grundlagen

Mehr

Decoupling in der Sozialpolitik

Decoupling in der Sozialpolitik Research Programme SocialWorld World Society, Global Social Policy and New Welfare States University of Bielefeld, Germany Institute for World Society Studies Julia Hansmeyer Decoupling in der Sozialpolitik

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

ÜBUNGEN UR THEORETISCHEN PHYSIK C Bewertungsschema für Bachelor Punkte Note < 6 5. 6-7.5 4.7 8-9.5 4. -.5 3.7-3.5 3.3 4-5.5 3. 6-7.5.7 8-9.5.3 3-3.5. 3-33.5.7 34-35.5.3 36-4. nicht bestanden bestanden

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

Die Einsteinschen Feldgleichungen

Die Einsteinschen Feldgleichungen Die Einsteinschen Feldgleichungen 1 Forderungen an die Feldgleichungen 2 2 Forderungen an die Feldgleichungen Es ist nicht möglich die Einsteinschen Feldgleichungen strikt aus bekannten Tatsachen abzuleiten.

Mehr

Obwohl sie ein Prinzip der klassischen Feldtheorie ist, hat die

Obwohl sie ein Prinzip der klassischen Feldtheorie ist, hat die Lokale Eichtheorien 5247 Einführung Obwohl sie ein Prinzip der klassischen Feldtheorie ist, hat die Eichinvarianz der Elektrodynamik erst im Zusammenhang der Quantenmechanik von Elektronen und der Schrödinger-Gleichung

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

Modul 1: RELATIVISTISCHE QUANTENMECHANIK

Modul 1: RELATIVISTISCHE QUANTENMECHANIK Modul : RELATIVISTISCHE QUANTENMECHANIK Zusatz zur Vorlesung Atom- und Molekülphysik LVA Nr. 42.73) H. Leeb, Wintersemester 25 Einleitung Die Schrödingergleichung ist nicht geeignet um die Bewegung eines

Mehr

Ljapunov Exponenten. Reiner Lauterbach

Ljapunov Exponenten. Reiner Lauterbach Ljapunov Exponenten Reiner Lauterbach 28. Februar 2003 2 Zusammenfassung n diesem Teil betrachten wir ein wichtiges Thema: sensitive Abhängigkeit. Zunächst hat man ja stetige Abhängigkeit, wie man sie

Mehr

Spline-Räume - B-Spline-Basen

Spline-Räume - B-Spline-Basen Spline-Räume - B-Spline-Basen René Janssens 4. November 2009 René Janssens () Spline-Räume - B-Spline-Basen 4. November 2009 1 / 56 Übersicht 1 Erster Abschnitt: Räume von Splinefunktionen Grundlegende

Mehr

Wie erhalten Teilchen Masse? Higgs-Suche. Markus Backes 21. Juni 2004

Wie erhalten Teilchen Masse? Higgs-Suche. Markus Backes 21. Juni 2004 Wie erhalten Teilchen Masse? Higgs-Suche Markus Backes 21. Juni 2004 Überblick Theorie Warum Higgs-Theorie? Higgs-Mechanismus Higgs-Physik an den großen Beschleunigern LEP Tevatron LHC Wie erhalten Teilchen

Mehr

Algebra I Klausur 1. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer

Algebra I Klausur 1. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer Technische Universität Berlin Wintersemester 2014/2015 Prof. Dr. Martin Henk 19. Februar 2014 Algebra I Klausur 1 Name: Vorname: Matrikelnummer: Aufgabe: 1 2 3 4 5 6 Σ Note Maximale Punktzahl: 10 5 6 6

Mehr

Institut für Produktion und Industrielles Informationsmanagement. Vorgehensmodell zur Auswahl einer Variante der Data Envelopment Analysis

Institut für Produktion und Industrielles Informationsmanagement. Vorgehensmodell zur Auswahl einer Variante der Data Envelopment Analysis Institut für Produktion und Industrielles Informationsmanagement Universität Duisburg-Essen / Campus Essen Fachbereich 5: Wirtschaftswissenschaften Universitätsstraße 9, 45141 Essen Tel.: ++ 49 (0) 201

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA : Table of Contents 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik: 5 Deskriptive Statistik

Mehr

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.) Datum: 13.4.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung 1 Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

Teilchenphysik für Fortgeschrittene

Teilchenphysik für Fortgeschrittene Teilchenphysik für Fortgeschrittene Notizen zur Vorlesung im Wintersemester 2015-2016 Peter Schleper 15. Oktober 2015 Institut für Experimentalphysik, Universität Hamburg peter.schleper@physik.uni-hamburg.de

Mehr

Handout zur Suche nach dem Higgs

Handout zur Suche nach dem Higgs Handout zur Suche nach dem Higgs Martin Ripka 21.6.2010 1 Theorie 1.1 Physikalischer Hintergrund In der Lagrangedichte des Standardmodells müssen die Eichbosonen wegen der Eichinvarianz masselos sein.

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Das starke Banach-Tarski Paradox und Satz von Tarski (Teil I)

Das starke Banach-Tarski Paradox und Satz von Tarski (Teil I) Das starke Banach-Tarski Paradox und Satz von Tarski (Teil I) Lukas Fischer 17. Oktober 2017 Die folgenden Inhalte entstammen dem Buch Lectures on Amenability von Volker Runde, insbesondere den Seiten

Mehr

Stabilitätsfragen bei autonomen Systemen

Stabilitätsfragen bei autonomen Systemen 1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität

Mehr

Teil IV. Elektromagnetische Strahlung im Vakuum. 9. Das elektromagnetische Feld im Vakuum E = 0; B = 0; t ; t. (9.1) ( B) = ( t 2. (9.2) t = t B. t 2.

Teil IV. Elektromagnetische Strahlung im Vakuum. 9. Das elektromagnetische Feld im Vakuum E = 0; B = 0; t ; t. (9.1) ( B) = ( t 2. (9.2) t = t B. t 2. 9. Das eletromagnetische Feld im Vauum 9.1 Homogene Wellengleichungen Im Vauum ρ = 0; j = 0 lauten die Maxwell-Gleichungen Teil IV = 0; B = 0; = B t ; B = ɛ 0 µ 0 t. 9.1 letromagnetische Strahlung im Vauum

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

B Tastatur, Schriftzeichen, Beschleuniger

B Tastatur, Schriftzeichen, Beschleuniger 1 Copyright 1994, 1996 by Axel T. Schreiner. All Rights Reserved. B Tastatur, Schriftzeichen, Beschleuniger Je nach Plattform verwendet OPENSTEP verschiedene Tastaturen. Trotzdem sind überall alle Zeichen

Mehr

Massive Neutrinos: Theory und Phänomenologie. Werner Rodejohann PIzzA Night 02/11/09

Massive Neutrinos: Theory und Phänomenologie. Werner Rodejohann PIzzA Night 02/11/09 Massive Neutrinos: Theory und Phänomenologie Werner Rodejohann PIzzA Night 02/11/09 1 ERC: European Research Council, gegründet 2007 von der EU, finanziert durch das 7. Forschungsrahmenprogramm der EU,

Mehr

Kapitel 18. Spezielle Relativitätstheorie Einleitung

Kapitel 18. Spezielle Relativitätstheorie Einleitung Kapitel 18 Spezielle Relativitätstheorie Wir werden im Kap. 19 die Lorentz-Invarianz der Maxwell-Gleichungen nachweisen. Historisch ist dieses vor der Entwicklung der relativistischen Mechanik geschehen.

Mehr

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6 Das Noether-Theorem Philipp Arras, Jakob Moritz 18. Juli 013 Inhaltsverzeichnis 1 Herleitung des Noether-Theorems in der Feldtheorie 1 1.1 Voraussetzungen.......................................... 1 1.

Mehr

Veranschaulichungen der Faktorisierung mit klassischer Feldtheorie und relativistischer Dynamik

Veranschaulichungen der Faktorisierung mit klassischer Feldtheorie und relativistischer Dynamik Veranschaulichungen der Faktorisierung mit klassischer Feldtheorie und relativistischer Dynamik Klaus Stöckel Betreuer: Prof. Dr. Dominik Stöckinger Hauptseminar 26. Juni 2012 Klaus Stöckel (Hauptseminar)

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Aufgaben GDGL SS 1998

Aufgaben GDGL SS 1998 Aufgaben GDGL SS 1998 Frank Wübbeling 17. September 1998 Aufgabe 1: (4 Punkte) Stellen Sie eine Differentialgleichung 1. Ordnung auf für die Schar der Parabeln mit der x-achse als Achse und dem Ursprung

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 2018 Grundbegriffe der Statistik statistische Einheiten = Objekte an denen interessierende Größen erfaßt werden z.b. Bevölkerung einer Stadt; Schüler einer bestimmten Schule; Patienten

Mehr

Wir betrachten hier den Polarisationszustand einer Normalmode

Wir betrachten hier den Polarisationszustand einer Normalmode Kapitel 5 Die Polarisation elektromagnetischer Wellen 5.1 Einführung Der zeitliche Verlauf des reellen elektrischen Feldvektors E r r,t) bestimmt den Polarisationszustand des Feldes. Wir betrachten hier

Mehr

Die Robertson- Walker Metrik. Marcus Tassler

Die Robertson- Walker Metrik. Marcus Tassler Die Robertson- Walker Metrik Marcus Tassler 0. Juli 005 1 Raum und Zeit in der allgemeinen Relativitätstheorie 1.1 Äquivalenzprinzip Über die heute mit einer Genauigkeit von 10 13 bestätigte Gleichheit

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Baustatik & Festigkeitslehre Vorlesung & Übung

Baustatik & Festigkeitslehre Vorlesung & Übung Baustatik & Festigkeitslehre Vorlesung & Übung Vortragender: O.Univ.Prof. DI Dr. Dr. Konrad Bergmeister Spannungen A F p p lim A 0 F A F p F A F p* F A* A A* a b Spannungen Normal und Schubspannungen z

Mehr

Minimierung der Energie

Minimierung der Energie Grundlagen Minimierung der Energie Im Ausdruck für die Energie finden sich die Spinorbitale χ j (Raumorbitale ψ i. Welche Orbitale geben die beste Annäherung an die gesuchte Mehrelektronenwellenfunktion

Mehr

KAPITEL 10 DIE INNERE-PUNKTE-METHODE

KAPITEL 10 DIE INNERE-PUNKTE-METHODE KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach

Mehr