Fachhochschule Hannover Radioökologie und Strahlenschutz

Größe: px
Ab Seite anzeigen:

Download "Fachhochschule Hannover Radioökologie und Strahlenschutz"

Transkript

1 Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau Zeit: 90 min Fach: R&S im WS0607 Hilfsmittel: diverse nlagen a. Beschreiben Sie Eigenschaften des sichtbaren Lichtes. b. Charakterisieren Sie Strahlungsbereiche des elektromagnetischen Spektrums, die weniger bzw. mehr Energie besitzen als sichtbares Licht (Bezeichnungen, Eigenschaften, Besonderheiten). c. Welche Beziehungen bestehen zwischen der Energie E, der Frequenz ν und der Wellenlänge λ einer elektromagnetischen Strahlung? Wie müssen man die Zusammenhänge nach Einsteins Erkenntnissen interpretiert werden? d. Berechnen Sie für sichtbares Lichtes ( λviolett 400nm - λrot 700nm ) zunächst die Energie in der SI-Einheit 1 J und dann in der Energieeinheit 1 ev. e. Was versteht man unter einem "kontinuierlichen", was unter einem "diskreten" Lichtspektrum? Erläutern Sie Entstehung der beiden Spektrumsarten. 2a. Beschrieben Sie den ufbau der tome: Was sind die Bestandteile der Hülle und des Kern? Welche Struktur hat die Hülle (Schalenbezeichnung, Besetzungszahlen,..)? Welche Größe bzw. welche Masse haben tome bzw. tomkerne? b. Beschreiben Sie Eigenschaften und Unterschiede von α-, β-, γ- und Röntgenstrahlung. Wie lauten die Reaktionsgleichungen der Kernumwandlungen, bei denen α- und β-strahlung freigesetzt werden. c. Was versteht man unter einer Elektroneneinfangsreaktion (EC)? Welche Strahlungsarten werden beim EC frei? d. Nennen Sie die Isotope der Elemente Wasserstoff und Helium. Welche sind radioaktiv, welche sind stabil? e. Was bezeichnet man mit den Begriffen Isotope, Isotone und Isobare? f. Betrachten Sie dien usschnitte der Nuklidkarte im nhang 1: Isobare mit der Massenzahl 5, und die Isotope 8 Be und 9 B existieren nicht, weil sie spontan zerfallen. In welche Bestandteile? Nennen Sie den Zerfallsprozess und berechnen Sie die frei werdende Energie. g. Welche Uranisotope gibt es in der Natur? Welches Isotop wird als Spaltstoff in Kernreaktoren verwendet? Warum sind andere Uranisotope nicht als Spaltstoff verwendbar? Gibt es Isotope anderer Elemente, die ebenfalls als Spaltstoff verwendet werden können? 3. In der Kernfusionstechnik versucht man durch Verschmelzen leichter tomkerne Energie zu erzeugen. Beispiele für Fusionsreaktionen sind die von Lithium mit Deuterium, bei denen u. a. 4 He als Endprodukt entsteht (nwendung finden die gesuchten Reaktionen in Fusionssprengsätzen, die das bei Normaltemperatur feste Lithiumdeuterid entghalten). a. us welchen Isotopen besteht natürliches Lithium? b. Stellen Sie für die Lithiumisotope und Deuterium die zu 4 He führende Reaktionsgleichungen auf. c. Berechnen Sie die frei werdende Energie pro Reaktion. d. Welche Energie wird bei der kompletten Fusion von 1 kg Lithium frei. (Betrachten Sie zu Vereinfachung 1 kg des Isotops, bei dem die meiste Energie frei wird.) Welcher Menge des 12 Sprengstoffs TNT einspricht diese Energie, wenn 1 kt( Kilotonne TNT ) = 4, J 4a. Erläutern Sie (kurz) die in nlage 4 gezeigten Zerfallsschemata von 137 Cs und 241 m. b. Wie groß ist die Masse bestehend aus dem Isotop 241 m, die eine ktivität 1 GBq besitzt? c. Wie groß ist der nteil einer gegebenen ktivität von 137 Cs und 241 m, der nach 1000 jähriger Endlagerzeit zerfallen ist? d. Die mittlere Flächenaktivität des 137 Cs betrug nach dem Unfall von Tschernobyl in Deutschland (alte Bundesländer) etwa 10 kbq m -2 bei einer Gesamtfläche von 2, m 2. Welche Masse des radioaktiven Cäsiums wurde insgesamt auf diese Fläche verteilt?

2 nlage 1 usschnitt aus der Karlsruher Nuklidkarte (1995) nlage 2 usschnitt aus der Karlsruher Nuklidkarte (1995)

3 nlage 3 Mass excess Table Mass Excess in kev N= Z = n ,32 H , , , , , ,76 He , , , , , , ,47 Li , , , , , , , ,14 Be , , , , , , , , ,40 B , , , , , , , , , , ,31 C , , , ,16 0, , , , , , ,03 N , , , , ,42 101, , , , ,44 O , , , , ,00-809,00-782, , ,90 F , , , ,70 873, ,41-17,40-47,58 Ne , , , , , , , ,35 Na , , , , , , ,50 Mg , , ,66-396, , ,40 l , , ,17-55, ,76 Si , , , , ,65 P , , ,00-752,94 S , , ,07 Cl , ,00 r ,00

4 nlage 4 Zerfallsschemata

5 nlage 5 Konstanten

6 Lösungen: 1a. Elektromagnetische Welle: Welleneigenschaften - Beugung und Interferenz, Teilcheneigenschaften - Photoeffekt. 1b. Weniger Energie als sichtbares Licht: Infrarotstrahlung, Mikrowellenstrahlung, Radarstrahlung, Radiostrahlung. Mehr Energie als sichtbares Licht: Ultraviolettstrahlung, Röntgenstrahlung, Gamma-Strahlung hc 1c. Energie der Strahlung: E = h ν =. Nach Einstein kann Licht (auch) als λ Teilchenstrahlung interpretiert werden, die Photonen der Energie E = h ν enthält hc 6,62 10 J s 2,99 10 ms 1d. Energie des violetten Lichts: Eviolett = = = 4,94 10 J 9 λviolett m 1 18 Umrechnungsfaktor: 1eV = 1, J oder 1J = ev = 6,24 10 ev 1, Eviolett = 4,94 10 ev = 3,08eV 1, hc 6,62 10 J s 2,99 10 ms Energie des roten Lichts: Erot = = = 2,83 10 J 9 λviolett m 19 1 Erot = 2,33 10 ev = 1,76eV 1, e. Kontinuierliche Spektren enthalte alle Frequenzen, diskrete Spektren Linien bestimmter fester Frequenzen. Kontinuierliche Spektren, auch Planck-Spektren genannt, charakterisieren die Wärmestrahlung. Diskrete Spektren entstehen nach einer nregung von tomen: Die Hüllenelektronen, die durch die nregung in höherenergetische Zustände gebracht worden sind, können ihre nregungsenergie in Form von elektromagnetischer Strahlung mit fester Frequenz wieder abgeben. Jedes Element hat ein eindeutiges diskretes Spektrum. 2a. Stichwort zum tomaufbau: Kern enthält praktisch gesamte Masse, hat aber vsehr kleines Volumen. tomhülle enthält die Elektronen in bestimmte festen Energiezuständen. Masse der Hülle weniger als 1/2000 der Kernmasse. Energiezustände der Hülle besitzen Schalenstruktur: K, l, M, N, Schalen, Besetzungszahlen: 2, 8, 18, * n**2 für n = 1, 2, 3, 4,... tome haben etwa eine Durchmesser von 0,1 nm = 10**-10 m, tomkernradien liegen im Bereich von 10**-14m. 2b. α-teilchen: 4 2He 2 Kern bzw 4 2He ++ 2 Ion wird aus dem tomkern ausgesandt. 4 4 Umwandlungsreaktion: ZE(1) N Z 2E(2) N 2 + 2He2 + Q α β-teilchen: Elektron oder Positron (negatives oder positives Elektron) Umwandlungsreaktion: ZE(1) N Z+ 1E(1) N 1+ e + ν + Q β + ZE(1) N Z 1E(1) N+ 1+ e + ν + Q β + γ-strahlung: Elektromagnetische Wellenstrahlung, meist sehr großer Frequenz, die aus diesem Grund sehr ausgeprägte Teilcheneigenschaft (Photon) besitzt. Umwandlungsreaktion: ( (1) ) * ZE N ZE(1) N + γ + Q γ 2c. EC-Elektroneneinfang: EC-ist die lternative zum β + -Zerfall. Da für die Bildung eines Positrons (ntimaterie) eine Energie vom zweifachen der Elektronenruhemasse 2 me = 2 511keV = 1022keV erforderlich ist, ist der β + -Zerfall nicht möglich, wenn die E- nergiedifferenz zwischen usgangs- und Endzustand kleiner als 1022 kev ist. lternativ

7 kann eines der Hüllenelektronen (am häufigsten das K-Elektron der innersten Schale) eingefangen werden. Umwandlungsreaktion: E(1) + e 1E(1) + 1+ ν + Q Z N Z N EC 2d. Karlsruher Nuklidkarte von 1995 enthält folgende Wasserstoff- und Heliumisotope: Wasserstoff: 1 H, 2 H, 3 H. Stabile Isotope Wasserstoff: 1 H, 2 H. Radioaktive Isotope von H: 3 H. Helium: 3 He, 4 He, 6 He, 6 He. Stabile Isotope Helium: 3 He, 4 He. Radioaktive Isotope des He: 6 He, 6 He. 2e. Isotope: tome mit, Z, N, für die gilt: Z = konst. Isotone: tome mit, Z, N, für die gilt: N = konst. Isobare: tome mit, Z, N, für die gilt: = konst. 2f. Bezeichnung: mass excess (,Z) = m (, Z ) Massenzahl 5: He He + n + Q exc ( ) exc ( ) exc ( ) exc ( ) ( ( )) kev Q1 = m 5, 2 c m 4, 2 c + m 1, 0 c Q1 = 11386, , ,32 Q1 = 890, 00 kev Li He + H + Q ( ) exc ( ) exc ( ) exc ( ) ( ( )) kev Q2 = m 5,3 c m 4, 2 c + m 1,1 c Q2 = 11678, , ,97 Q2 = 1965, 00 kev Massenzahl 8: Massenzahl 9: Be He + He + Q exc ( ) exc ( ) ( ) kev Q3 = m 8, 4 c 2 m 4, 2 c 2 2 Q3 = 4941, ,91 Q3 = 91,84keV B He + He + H + Q ( ) exc ( ) exc ( ) exc ( ) ( ) kev Q4 = m 9,5 c 2 m 4, 2 c + m 1, 0 c Q4 = 12415, , ,97 Q3 = 277, 02keV 2g. Uranisotope: Spaltstoff: 234 U, 235 U, 238 U. 235 U Die Isotope 234 U, und 238 U besitzen gg-kerne. Spaltstoffe in Kernreaktoren mit thermischen Neutronen bestehen aus ug-kernen, da diese nach dem Einfang von Neutronen einen gg- Kern bilden, der wegen der frei werdenden Paarungsenergie eine große nregungsenergie besitzt. Die große nregungsenergie verhilft dem Zwischenkern über die Spaltschwelle. ndere Spaltsstoffe sind: 239 Pu 3a. Lithium: 3b. Lithium + Deuterium: 6 Li und 7 Li Li + H He + He + Q Li + H He + He + n + Q

8 c. Reaktionsenergien: Q1 = mexc ( 6,3) c + mexc ( 2,1) c 2 mexc ( 4, 2) c = ( + ) = 2 exc ( 7,3) exc ( 2,1) 2 exc ( 4,2) exc ( 1,0 ) Q = ( + ) Q , , ,91 kev 22372, 24keV Q = ( m + m m m 2 ) c , , , ,32 kev Q2 = 15122, 28keV 3d. Man betrachte die (vollständige) Fusion von 1 kg des 6 Li mit 2 H. Masse von 1 kg des g Li: n= = 166, 66mol. 1 6gmol Zahl der Li-tome in 1 kg: N = n N = 166,66mol 6, mol = 1, Gesamtenergie: Eges = Q1 N = 22, ev 1, = 2, ev 33 1, J 14 Eges = 2, ev = 3, J 1eV 14 1 TNT-Äquivalent: Eges = 3, J 12 4, J / KilotonneTNT = 86 Kilotonnen TNT Eges 4a. 137 Cs wandelt sich durch β - -Zerfall in 137 Ba um. Die Halbwertszeit beträgt 30,1 Jahre. 94,4% der Zerfälle führen in ein nregungsniveau des 137 Ba mit der Energie 662 kev, das anschließend eine γ-strahlung der Energie 662 kev aussendet. 5,6 % der Zerfälle speisen den Grundzustand des 137 Ba. Beim β - -Zerfall wird eine Gesamtenergie von 1175 kev frei. 241 m zerfällt durch α-emission in 237 Np. Die Halbwertszeit beträgt 432 Jahre. Der α- Zerfall speist nur zu 0,34% den Grundzustand des 237 Np. Die Hauptintensität des α-zerfalls führt zum zweiten nregungsniveau der Energie 59,5 kev, 0,2% zum ersten nregungszustand bei 33,2 kev. Die restlichen 14,3% der α-zerfallsintensität speisen verschiedene höherenergetische nregungszustände. Der zweite nregungszustand des 237 Np zerfällt zu 94% direkt durch γ-bstrahlung zum Grundzustand, während 6% in Form einer γ-γ-kaskade (Energien:26,3 kev und 33,2 kev)die nregungsenergie übertragen. Die gesamte Q α - Energie beträgt 5638 kev. 4b. Zerfallsgesetz: dn t () = = λ Nt () dt Zerfallskonstante λ: ln 2 0, λ = = = 5, s T1/2 432,2 365, s 9 1 ktivität: 0 = 1GBq = 10 s Zahl der 241 m-tome: s 19 N0 = = = 1, λ 5,08210 s 23 1 Zahl pro Mol: N = 6,02210 mol Zahl der Mole: 19 N0 1, n= = = 3, mol 23 1 N 6,02210 mol Masse: g 5 3 m= r n= 241 3, mol = 7,86 10 g = 7,86mg mol

9 4c. 137 Cs: 241 m: ( = 1000 a) t 0 ( = 1000 a) t 0 ln a 30,1a = e = 9,97 10 ln a 432,2a 11 = e = = 11 9, ,20 4d. Gesamtaktivität: Zahl der tome: Masse: 3 Bq ges = Fges = ,5 10 m = 2,5 10 Bq 2 F m N ges mittel ges T ges = = = λ ln 2 0,6931 N = 3, ges / 2 2, ,1 365, N 3, g m= = 137 = 780 g 24 ges rel 23 1 N 6, mol mol

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS07 Zeit: 90 min

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS07 Zeit: 90 min Fachhochschule Hannover Radioökologie und Strahlenschutz 18.06.07 Fachbereich Maschinenbau SS07 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen ------------------------------------------------------------------------------------------------------------------------

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz 06.12.07 Fachbereich Maschinenbau WS0708 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen ------------------------------------------------------------------------------------------------------------------------

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS12 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS12 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 14.05.12 Fachbereich Maschinenbau SS12 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen Name:...Vorname:...Mtrl. Nr:... 1. Was sind

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS13 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS13 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 08.05.13 Fachbereich Maschinenbau SS13 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen Name:...Vorname:...Mtrl. Nr:... 1a. Beschreiben

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau WS17/18 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau WS17/18 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 4.11.17 Fachbereich Maschinenbau WS17/18 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen Name:...Vorname:...Mtrl. Nr:... 1. Das

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS16 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS16 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 1.05.16 Fachbereich Maschinenbau SS16 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen Name:...Vorname:...Mtrl. Nr:... 1. Das Bohrsche

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau WS14/15 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau WS14/15 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 4.11.14 Fachbereich Maschinenbau WS14/15 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen Name:...Vorname:...Mtrl. Nr:... 1. Nennen

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS15 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS15 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 15.05.15 Fachbereich Maschinenbau SS15 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen ame:...vorname:...mtrl. r:... 1. Welche

Mehr

A Z+1T + e + ν e. symbolisieren. Die Erhaltung der in III.4.1 b aufgelisteten Quantenzahlen ist trivial erfüllt.

A Z+1T + e + ν e. symbolisieren. Die Erhaltung der in III.4.1 b aufgelisteten Quantenzahlen ist trivial erfüllt. III.4.3 β-zerfall und verwandte Zerfälle Dieser bschnitt befasst sich mit einer zweiten häufig auftretenden rt von Zerfallsprozessen, in denen sich ein Neutron in ein Proton umwandelt oder umgekehrt, während

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe 1: Radon im Keller a) 222 86Rn hat 86 Protonen, 86 Elektronen und 136 Neutronen. Der Kern hat demnach eine gerade Anzahl Protonen und eine gerade Anzahl Neutronen und gehört

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS14 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS14 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 13.05.14 Fachbereich Maschinenbau SS14 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen ame:...vorname:...mtrl. r:... 1. Beschreiben

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

9. Dosimetrie 2L. 1. Radioaktivität. Stabile Kerne. Kern oder A Kern oder Kern A,

9. Dosimetrie 2L. 1. Radioaktivität. Stabile Kerne. Kern oder A Kern oder Kern A, 9. 2L 1. Radioaktivität Stabile Kerne tome enthalten Elektronenhüllen, welche die meisten makroskopischen Eigenschaften der Materie bestimmen (Magnetismus, Lichtabsorption, Leitfähigkeit, chemische Struktur,

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

1.4. Aufgaben zum Atombau

1.4. Aufgaben zum Atombau 1.4. Aufgaben zum Atombau Aufgabe 1: Elementarteilchen a) Nenne die drei klassischen Elementarteilchen und vergleiche ihre Massen und Ladungen. b) Wie kann man Elektronen nachweisen? c) Welche Rolle spielen

Mehr

NR Natürliche Radioaktivität

NR Natürliche Radioaktivität NR Natürliche Radioaktivität Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 rten der Radioaktivität........................... 2 1.2 ktivität und Halbwertszeit.........................

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau WS1112 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau WS1112 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 30.11.11 Fachbereich Maschinenbau WS1112 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse Anlagen Name:...Vorname:...Mtrl. Nr:... Nur eine

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Kernphysik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1.

Mehr

1. Aufbau des Atomkerns

1. Aufbau des Atomkerns 801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

Lösungsvorschlag Übung 5

Lösungsvorschlag Übung 5 Lösungsvorschlag Übung 5 Aufgabe : Zerfallsprozesse Um zu erörtern, welche Zerfallsprozesse für einen gegebenen Kern zu erwarten sind, lassen sich empirische Regeln zur Abschätzung der Stabilität heranziehen.

Mehr

Versuch A07: Zählstatistik und β-spektrometer

Versuch A07: Zählstatistik und β-spektrometer Versuch A07: Zählstatistik und β-spektrometer 5. April 2018 I Theorie I.1 Das Zerfallsgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall dt, mit einer Wahrscheinlichkeit, die

Mehr

Bitte beachten Sie, dass bei einigen Fragen mehrere Antworten angekreuzt werden müssen.

Bitte beachten Sie, dass bei einigen Fragen mehrere Antworten angekreuzt werden müssen. Fachhochschule Hannover Radioökologie und Strahlenschutz 18.11.09 Fachbereich Maschinenbau WS0910 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse Anlagen ame:...vorname:...mtrl. r:... Bitte beachten

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

AKTIVITÄTSKONZENTRATION

AKTIVITÄTSKONZENTRATION Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik AKTIVITÄTSKONZENTRATION Natürliche Radioaktivität Christian Gumpert Dresden, 10.07.2009 Gliederung 1. Einleitung 1.1 Was

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - )

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - ) Grundlagen der Strahlenmesstechnik Atome (Nuklide) Atombausteine Protonen p (1,672 10-24 g; 938 MeV; e + ) Neutronen n (1,675 10-24 g; 939 MeV; 0) Elektronen e - (9,11 10-28 g; 0,511 MeV; e - ) Nuklide

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

11. Kernzerfälle und Kernspaltung

11. Kernzerfälle und Kernspaltung 11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

Strahlungslose Übergänge. Pumpen Laser

Strahlungslose Übergänge. Pumpen Laser Prof Ch Berger, Physik f Maschinenbauer, WS 02/03 15 Vorlesung 44 Strahlungsprozesse 441 Das Zerfallsgesetz Elektronen aus energetisch hoher liegenden Zustanden gehen in die tieferen Zustande uber, falls

Mehr

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25 Physik V Kern- und Teilchenphysik Dr. Daniel Bick 12. Januar 2016 Daniel Bick Physik V WS 2015/16 12. Januar 2016 1 / 25 Korrektur Verlauf des Stabilitätstals Z = A 2 1 1 + a CA 2/3 4a A Daniel Bick Physik

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Leistungskurs Physik Sporenberg Jahrg. 13/1 Datum:

Leistungskurs Physik Sporenberg Jahrg. 13/1 Datum: Klausur Leistungskurs Physik Sporenberg Jahrg. 13/1 Datum: 12.12.211 1.Aufgabe: a). In der hohen Atmosphäre wird durch eine Kernreaktion der kosmischen Höhenstrahlung fortwährend das Wasserstoffisotop

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

Radioaktivität und seine Strahlung

Radioaktivität und seine Strahlung Radioaktivität und seine Strahlung Radioaktivität (radioactivité wurde 1898 von Marie Curie eingeführt) ist ein Phänomen der Kerne von tomen. Darum ist die Radioaktivität heute in die Kernphysik eingeordnet.

Mehr

Kann-Liste. Jahrgangsstufe 9 Physik. TNW =Tätigkeitsnachweis Tax = x/xx/xxx/xxxx. Name:

Kann-Liste. Jahrgangsstufe 9 Physik. TNW =Tätigkeitsnachweis Tax = x/xx/xxx/xxxx. Name: Themenbereich 1: Magnetismus 1 die Stoffe, die ferromagnetisch sind, benennen und ihren Aufbau und Eigenschaften erläutern 2, was man unter einem magnetischen Feld versteht 3 Feldlinienbilder für unterschiedliche

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 25..203 Oberstufe: se und ausführliche Lösungen zur Klassenarbeit zur Elektrik und Kernphysik se: E Eine Glühlampe 4V/3W (4 Volt, 3 Watt) soll an eine Autobatterie

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik Kinematik des γ-zerfalls. Mößbauer-Effekt Sei E die nregungsenergie des Mutterkerns, entsprechend einer Gesamtenergie in dessen Ruhesystem m Kern c 2 +E, mit m Kern der Masse des Tochternuklids. Unter

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Reichweite von α-strahlen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Übungsblatt 06. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 3. 6.

Übungsblatt 06. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 3. 6. Übungsblatt 06 PHYS400 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 2. 6. 2005 oder 3. 6. 2005 Aufgaben. Schätzen Sie die relativistische Korrektur E

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Atomkerne 2 Potentialtopfmodell In diesem Abschnitt 1 Atomkerne 1.1 Aufbau 1.2 Starke Wechselwirkungen 2 Potentialtopfmodell

Mehr

1 Dorn Bader Physik der Struktur der Materie

1 Dorn Bader Physik der Struktur der Materie 1 Dorn Bader Physik der Struktur der Materie 1.1 S. 308 Nachweisgeräte A 2: a) Was lässt sich aus der Länge der Spuren in einer Nebelkammer folgern? Die Länge der Spuren in der Nebelkammer sind ein Maß

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungsblatt Nr. 6: Musterlösungen Aufgabe 1: Zerfallsreihen und radioaktives Gleichgewicht a) Die Anzahl der Nuklide in

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

1 Einführung in den Strahlenschutz der Feuerwehr

1 Einführung in den Strahlenschutz der Feuerwehr 1 Einführung in den Strahlenschutz der Feuerwehr Als das erste Rote Heft»Strahlenschutz«im Jahr 1960 erschien, war das Thema radioaktive Stoffe Neuland für die Feuerwehren. Heute finden die Feuerwehren

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

Radioaktive Zerfälle. Kapitel 4

Radioaktive Zerfälle. Kapitel 4 Kapitel 4 Radioaktive Zerfälle In Kapitel 2 haben Sie Beispiele von Kernfusions- und -spaltungsreaktionen gesehen. Diese beiden Reaktionstypen bedingen jeweils zwei Edukte, die miteinander reagieren. D.h.,

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

3) Natürliche und künstliche Radioaktivität (1)

3) Natürliche und künstliche Radioaktivität (1) 3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf

Mehr

IV Atomlehre und Periodensystem (Mortimer: Kap. 2 u. 6; Atkins: Kap. 7)

IV Atomlehre und Periodensystem (Mortimer: Kap. 2 u. 6; Atkins: Kap. 7) IV Atomlehre und Periodensystem (Mortimer: Kap. u. 6; Atkins: Kap. 7) 13. Aufbau der Atome Stichwörter: Elementarteilchen und ihr Nachweis, Atom, Atomkern, Proton, Neutron, Kanalstrahlen, Kathodenstrahlen,

Mehr

Musterlösung Übung 5

Musterlösung Übung 5 Musterlösung Übung 5 Aufgabe 1: Elektromagnetische Wellen und die Wellengleichung a) Da das Magnetfeld B senkrecht zum elektrischen Feld E und senkrecht zum Wellenvektor k steht ( k E B), zeigt das Magnetfeld

Mehr

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter Aufbau und Struktur der Materie Atommodelle Energie Wellen- und Teilchencharakter Periodensystem der Elemente Radioaktivität Modell des Atomkerns Nukleonen: Teilchen des Atomkerns = Protonen+Neutronen

Mehr

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014 Elemententstehung 2. Cora Fechner Universität Potsdam SS 2014 alische Grundlagen Kernladungszahl: Z = Anzahl der Protonen Massenzahl: A = Anzahl der Protonen + Anzahl der Neutronen Bindungsenergie: B

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Radioaktivität & X-Strahlen Physikalbor 01 Michel

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Globale Eigenschaften der Kerne

Globale Eigenschaften der Kerne Kerne und Teilchen Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Globale Eigenschaften der Kerne KIT Universität des Landes Baden-Württemberg und nationales

Mehr

HAW Hamburg Fachbereich HWI Hamburg, Prof. Dr. Badura B. Hamraz, O. Zarenko, M. Behrens. Chemie Testat 2. Name: Vorname: Matrikelnummer:

HAW Hamburg Fachbereich HWI Hamburg, Prof. Dr. Badura B. Hamraz, O. Zarenko, M. Behrens. Chemie Testat 2. Name: Vorname: Matrikelnummer: Chemie Testat 2 Name: Vorname: Matrikelnummer: Bearbeitungszeit: 1 Stunde Zugelassene Hilfsmittel: Stifte, unbeschriebenes Papier, ein nichtprogrammierbarer Taschenrechner und ein Periodensystem Bitte

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Lösungsvorschlag Übung 5

Lösungsvorschlag Übung 5 Lösungsvorschlag Übung 5 Aufgabe 1: Massendefet a) Der Massendefet scheint der Massenerhaltung zu widersprechen, da die Masse eines aus Elementarteilchen zusammengesetzten Elements X nicht die Summe der

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:

Mehr

Radioaktivität Haller/ Hannover-Kolleg 1

Radioaktivität Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz

Mehr

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius Physik am Samstagmorgen 19. November 2005 Radioaktivität Ein unbestechlicher Zeitzeuge Christiane Rhodius Archäochronometrie Warum und wie datieren wir? Ereignisse innerhalb der menschlichen Kulturentwicklung

Mehr

Radioaktive Zerfallsarten

Radioaktive Zerfallsarten C1 Radioaktive Zerfallsarten Damit ein Nuklid radioaktiv zerfallen kann, muss die entsprechende Reaktion "exotherm" sein. Die Summe der Ruhemassen aller entstehenden Teilchen muss kleiner sein als die

Mehr