Burgers Gleichung. Juri Chomé, Olaf Merkert. 2. Dezember J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

Größe: px
Ab Seite anzeigen:

Download "Burgers Gleichung. Juri Chomé, Olaf Merkert. 2. Dezember J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25"

Transkript

1 Burgers Gleichung Juri Chomé, Olaf Merkert 2. Dezember 2009 J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

2 Gliederung 1 Geschichte 2 Herleitung 3 Charakteristiken 4 Numerische Lösung J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

3 Gliederung 1 Geschichte 2 Herleitung 3 Charakteristiken 4 Numerische Lösung J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

4 Jan Burgers Johannes Martinus Burgers ( ) Physikstudium in Leiden Lernt Lorentz, Bohr, Einstein etc. kennen Professor mit 23 Jahren in Delft Bereich Schiffsbau, elektrische und mechanische Ingenieurwissenschaften Gründet ein Labor für Aero- und Hydrodynamik J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

5 Burgers Gleichung Burgers etabliert sich schnell als weltweiter Experte für Strömungsdynamik Studiert grossteils Turbulenzen, theoretisch und statistisch Hieraus geht u.a. die Burgers Gleichung hervor: Beispiel einer nicht-linearen partiellen Diffglch. J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

6 Burgers Gleichung Die viskose Version lautet: u t (u2 ) x = νu xx Nicht-viskose Form (ν = 0) hängt mit den Euler-Gleichungen zusammen Keine unmittelbare physikalische Anwendung Wird zur Veranschaulichung von Shocks benutzt Unstetigkeiten und nicht-eindeutigkeit der Lösung, trotz glatter Anfangsdaten J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

7 Gliederung 1 Geschichte 2 Herleitung 3 Charakteristiken 4 Numerische Lösung J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

8 Modellierung φ : Y T X Abbildung, X,Y,T R Intervalle x = φ(y,t) Ort eines Teilchens y zur Zeit t Geschwindigkeit t φ(y,t) = φ t (y,t) und Beschleunigung tt φ(y,t) = φ tt (y,t) eines Teilchens y. Keine Überholmanöver : d.h. φ(, t) t T streng monoton. Umkehrfunktionen t: ψ : X T Y y = ψ(x,t) ist das Teilchen an der Stelle x zur Zeit t Definiere u(x,t) = φ t (ψ(x,t),t) die Geschwindigkeit des Teilchens bei x zur Zeit t. J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

9 Ersetze x = φ(y,t): φ t (y,t) = u(φ(y,t),t) φ tt (y,t) = t u(φ(y,t),t) Ersetze y = ψ(x,t): = u x (φ(y,t),t) φ t (y,t) + u t (φ(y,t),t) 1 φ tt (ψ(x,t),t) = u t (x,t) + u x (x,t) φ t (ψ(x,t),t) = u t (x,t) + u x (x,t) u(x,t) Annahme: Keine Wechselwirkung, also keine Beschleunigung zwischen Teilchen: φ tt = 0 J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

10 Hyperbolische Gleichung Das gibt die Burgers Gleichung: u t + u u x = 0 u t + x ( 1 2 u2 ) = 0 Das ist eine hyperbolische Erhaltungsgleichung: u t + x (F(u)) = 0 Testproblem: u t + u u x = 0 u(0,t) = u(2π,t) = 0 u(x,0) = u 0 (x) = sin(x) F(u) = 1 2 u2 in (0,2π) R 0 für alle t für alle x J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

11 Gliederung 1 Geschichte 2 Herleitung 3 Charakteristiken 4 Numerische Lösung J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

12 Allgemeine Idee Man betrachtet eine Schar von Kurven γ : (ξ,η) (x(ξ,η),t(ξ,η),z(ξ,η)) mit ξ z = 0 in den Niveaus einer Lösung u Also u(x(ξ,η),t(ξ,η)) = z(ξ,η) 0 = ξ z(ξ,η) = ξ u(x(ξ,η),t(ξ,η)) und mit der Kettenregel und der DGL für u bekommt man (oft) einfache DGLs für die Kurven J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

13 Anwendung auf Burgers Gleichung... DGL für x,t: 0 = ξ u(x(ξ,η),t(ξ,η)) = u x (x,t) ξ x(ξ,η) + u t (x,t) ξ t(ξ,η) = u x ξ x + u t }{{} u x u ξ t = u x ( ξ x u }{{} z ξ t ξ x = z ξ t = x = z t + α(η) Wähle t = ξ und α(η) = η, also x = z ξ + η durch Anfangsdaten bestimmt. z(ξ,η) = z(0,η) = u(η,0) = u 0 (η) J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25 )

14 Bild 3.0 Charakteristiken t x J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

15 0.5 Bild 0.5 u t x J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

16 Stoß/Schock Lineare Gleichung: Parallele Charakteristiken Nichtlineare Gleichung: Charakteristiken können sich schneiden Bei unserem Beispiel war die Steigung = Funktionswert Wenn sich zwei Charakteristiken schneiden, so hat man eine Unstetigkeit Diese nennt man Schock oder Stoß Der Schock tritt auch bei glatten Anfangswerten auf!! keine klassischen (glatten) Lösungen mehr!! Massenkarambolage J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

17 Gliederung 1 Geschichte 2 Herleitung 3 Charakteristiken 4 Numerische Lösung J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

18 Approximationen Seien u n i die Mittelwerte zur Zeit t n über das Kontrollvolumen K i. Man verwendet ein explizites Euler-Verfahren in der Zeit: 1 K i K i u t dx u n+1 i u n i t Man approximiert den Fluss an den Rändern der Elemente: 1 x f (u)dx 1 ( ) Fi+1/2 F K i K i K i i 1/2 wobei f (u(x i+1/2,t)) F i+1/2 J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

19 Upwind-Verfahren Berücksichtige Richtung des Informationsflusses Mittelwert u n i Mittelwert u n i+1 x i 1/2 K i x i+1/2 K i+1 x i+3/2 Entscheide Richtung mit a i+1/2 = 1 2 (u i+1 + u i ): Falls ai+1/2 > 0, so läuft die Information nach rechts: Setze F i+1/2 = f (u n i ) Falls ai+1/2 0, läuft die Information nach links: Setze F i+1/2 = f (u n i+1 ) Das Verfahren lautet dann mit K i = x: u n+1 i = ui n t ( ) Fi+1/2 F x i 1/2 J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

20 Beispiel Sinus t =0.00 t =0.70 t =1.40 t =2.10 t =2.80 t =3.50 t =4.20 t = u x J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

21 Beispiel 1 J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

22 Beispiel t =0.00 t =0.70 t =1.40 t =2.10 t =2.80 t =3.50 t =4.20 t =4.90 Minus Sinus 0.5 u x J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

23 Beispiel 3 Saegezahn 1.0 t =0.00 t =0.14 t =0.28 t =0.42 t =0.56 t =0.70 t =0.84 t = u x J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

24 Zusammenfassung Burgers Gleichung Beispiel einer nichtlinearen Gleichung Charakteristiken keine klassischen Lösungen Stabile Berechnung mit Upwind-Schema J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

25 Danke für eure Aufmerksamkeit! Noch Fragen? J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

2. Quasilineare PDG erster Ordnung

2. Quasilineare PDG erster Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 2. Quasilineare PDG erster Ordnung Eine skalare PDG erster Ordnung hat die allgemeine Form F (x, u(x), u x (x)) = 0. (2.1) Dabei ist u : R n G R die gesuchte

Mehr

Übungsblatt 6 Musterlösung

Übungsblatt 6 Musterlösung MSE SS7 Übungsblatt 6 Musterlösung Lösung Methode der Charakteristiken) a) Hier ist c = x, d =. Also sind die Gleichungen für die Charakteristiken durch ẋt) = xt), żt) =, mit Anfangsbedingungen x) = x,

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Differentialgleichungen II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 2006 Prof. Dr. R. Lauterbach Dr. K. Rothe Differentialgleichungen II für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 4 Aufgabe 13: Gegeben

Mehr

Die Forderungen 1) und 2) sind sowohl mathematisch als auch physikalisch vernünftig und einleuchtend. 3) ist eine Forderung über die

Die Forderungen 1) und 2) sind sowohl mathematisch als auch physikalisch vernünftig und einleuchtend. 3) ist eine Forderung über die Kapitel II Elementares zu den Partiellen Differentialgleichungen 4 Sachgemäßheit und Superposition Definition 4.1 Sachgemäßheit Eine ARWA, AWA oder RWA heißt sachgemäß, falls 1) die Aufgabe eine Lösung

Mehr

Wir betrachten das Anfangsrandwertproblem auf dem Halbraum R + :

Wir betrachten das Anfangsrandwertproblem auf dem Halbraum R + : Die Reflektionsmethode für den Halbraum R + = x > 0}: Wir betrachten das Anfangsrandwertproblem auf dem Halbraum R + : u tt u xx = 0 in R + (0, ) u = g, u t = h auf R + t = 0} u = 0 auf x = 0} (0, ) mit

Mehr

t + f(u) x = 0 (5.1) 2 f

t + f(u) x = 0 (5.1) 2 f Kapitel 5 Nicht-lineare Gleichungen 5.1 Erhaltungsform Betrachte Gleichung wobei f(u hier eine nichtlineare Funktion (Fluss von u mit t + f(u x = 0 (5.1 2 f 2 0 ist, d.h. f(u ist konvex. Bisher (vgl. Gl.

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Kapitel L. Gewöhnliche Differentialgleichungen

Kapitel L. Gewöhnliche Differentialgleichungen Kapitel L Gewöhnliche Differentialgleichungen Inhalt dieses Kapitels L000 1 Erste Beispiele von Differentialgleichungen 2 Exakte Differentialgleichungen 3 Fazit: Existenz, Eindeutigkeit, Lösungsmethoden

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Einige grundlegende partielle Differentialgleichungen

Einige grundlegende partielle Differentialgleichungen Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober 2010 1 / 14 Transportgleichung Eine der einfachsten Differentialgleichungen

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

Ampelregelung im Straÿenverkehr Mathematische Modellierung I

Ampelregelung im Straÿenverkehr Mathematische Modellierung I Ampelregelung im Straÿenverkehr Mathematische Modellierung I Ragger Lena und Kotzent Martina 30. Juni 013 Inhaltsverzeichnis 1 Einleitung 1.1 Fragestellung........................... Symbolische Beschreibung

Mehr

Ein Blick über den Tellerrand... mit FreeFem++

Ein Blick über den Tellerrand... mit FreeFem++ Ein Blick über den Tellerrand... mit FreeFem++ Eine Einführung und etwas Theorie Steffen Weißer Universität des Saarlandes 30. Oktober 2015 Gliederung 1 Zum Seminar 2 Was ist eine PDE? 3 Etwas Funktionalanalysis

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-regensburg.de/mathematik/mathematik-abels/aktuelles/index.html Schnupperstudium

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

Iterative Algorithmen für die FSI Probleme II

Iterative Algorithmen für die FSI Probleme II Iterative Algorithmen für die FSI Probleme II Rebecca Hammel 12. Juli 2011 1 / 22 Inhaltsverzeichnis 1 2 3 2 / 22 Zur Wiederholung: Wir definieren unser Fluid-Gebiet Ω(t) durch Ω(t) = {(x 1, x 2 ) R 2

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens 9.11.2010 Contents 1 Allgemein 2 1.1 Definition................................................. 2 1.2 Klassifikation............................................... 2 1.3 Lösbarkeit.................................................

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

Hyperbolische Erhaltungsgleichungen und die Wellengleichung

Hyperbolische Erhaltungsgleichungen und die Wellengleichung Hyperbolische Erhaltungsgleichungen und die Wellengleichung Stefanie Günther Universität Trier 11.November 2010 Stefanie Günther (Universität Trier) Seminar Numerik 1/29 11.November 2010 1 / 29 Inhaltsverzeichnis

Mehr

3. Normalform linearer PDG zweiter Ordnung

3. Normalform linearer PDG zweiter Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 3. Normalform linearer PDG zweiter Ordnung Wir beschreiben in diesem Abschnitt Verfahren zur Transformation linearer oder auch halblinearer PDG zweiter

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt Kurze Zusammenfassung der Vorlesung 6 Am Anfang werden wir einbisschen mehr den Potenzreihenansatz besprechen. Abgewandelter Potenzreihenansatz In Verallgemeinerung der Eulerschen Differentialgleichung

Mehr

3. Ebene Systeme und DGL zweiter Ordnung

3. Ebene Systeme und DGL zweiter Ordnung H.J. Oberle Differentialgleichungen I WiSe 2012/13 3. Ebene Systeme und DGL zweiter Ordnung A. Ebene autonome DGL-Systeme. Ein explizites DGL-System erster Ordung, y (t) = f(t, y(t)), heißt bekanntlich

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Die Burgers Gleichung

Die Burgers Gleichung Die Burgers Gleichung Vortrag im Rahmen der Vorlesung Spektralmethoden Elena Frenkel Samuel Voit Balthasar Meyer 29. Mai 2008 1 Einfürung Ein kurzer Überblick Physikalische Motivation 2 Cole-Hopf Transformation

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 13.,15. und 29. Mai 2009 Transversalschwingungen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen Martin Reinhardt angewandte Mathematik 8. Semester Matrikel: 50108 ODE-Solver 11. Mai 2011 Inhalt Einleitung grundlegende Algorithmen weiterführende Algorithmen Martin Reinhardt (TUBAF) 1 Orientierung

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

10 Der Integralsatz von Gauß

10 Der Integralsatz von Gauß 10 Der Integralsatz von Gauß In diesem Abschnitt beweisen wir den Integralsatz von Gauß, die mehrdimensionale Verallgemeinerung des Hauptsatzes der Differential- und Integralrechnung. Aussage des Satzes

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1 Blatt 1 03042006 H-Ch Grunau Aufgabe 1 Betrachten Sie die Differentialgleichung x= f(x) mit f = U und U C 2 ((α, β), R) und schreiben Sie diese in der Form x= p, p= U (x) (a) Skizzieren Sie die Phasenportraits

Mehr

Partielle Differentialgleichungen Kapitel 4

Partielle Differentialgleichungen Kapitel 4 Partielle Differentialgleichungen Kapitel 4 Erster Ordnung: Transportgleichungen 4. Lineare und semilineare Transportgleichungen 4.. Mit konstanten Koeffizienten Eine sehr einfache Differentialgleichung

Mehr

14 Numerik hyperbolischer Differentialgleichungen

14 Numerik hyperbolischer Differentialgleichungen Numerik II 256 14 Numerik hyperbolischer Differentialgleichungen Während parabolische PDG Diffusionsvorgänge modellieren stellen hyperbolische PDG Modelle für Wellenphänomene dar. Wichtigste Anwendungsgebiete

Mehr

2.8 Kurvenscharen, Orthogonaltrajektorien und Einhüllende. Bei den trennbaren Dgln fanden wir die Lösung in impliziter Gestalt:

2.8 Kurvenscharen, Orthogonaltrajektorien und Einhüllende. Bei den trennbaren Dgln fanden wir die Lösung in impliziter Gestalt: 2.8 Kurvenscharen, Orthogonaltrajektorien und Einhüllende Erinnerung: Bei den trennbaren Dgln fanden wir die Lösung in impliziter Gestalt: h(x, y, c) = 0. Für jedes feste c R war das die Gleichung einer

Mehr

Parareal. Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen. Johannes Reinhardt. Parareal 1 Johannes Reinhardt

Parareal. Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen. Johannes Reinhardt. Parareal 1 Johannes Reinhardt Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen Johannes Reinhardt 1 Johannes Reinhardt Übersicht Grundlagen Gewöhnliche Differentialgleichungen Numerische Methoden Der Algorithmus

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Dominik Desmaretz Universität Trier

Dominik Desmaretz Universität Trier Dominik Desmaretz Universität Trier 25.11.2010 Inhaltsverzeichnis 1. Kurze Wiederholung/Einleitung 2. Die Lax-Friedrichs Methode 3. Die Richtmyer Zwei-Schritt Lax-Wendroff Methode 4. Upwind Methoden 5.

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 8. April 2009 Beachtenswertes Die Veranstaltung

Mehr

Musterlösung Serie 6

Musterlösung Serie 6 D-ITET Analysis III WS 3/4 Prof. Dr. H. Knörrer Musterlösung Serie 6. a) Mithilfe er Kettenregel berechnen wir u x = w ξ ξ x + w η η x u y = w ξ ξ y + w η η y u xx = w ξξ ξx 2 + 2w ξη ξ x η x + w ηη ηx

Mehr

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund Einführung in die Boltzmann-Gleichung Flavius Guiaş Universität Dortmund Antrittsvorlesung, 19.04.2007 INHALT 1 Herleitung der Boltzmann-Gleichung 2 Boltzmann-Ungleichung und Maxwell-Verteilung 3 H-Theorem

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

14 Ljapunov-Funktionen

14 Ljapunov-Funktionen 14 Ljapunov-Funktionen 67 14 Ljapunov-Funktionen 14.1 Gradientenfelder. a Ein Vektorfeld v C 1 D, R n besitze ein Potential U C 2 D, R, d.h. es sei v = gradu. Dann ist Dvx = HUx symmetrisch, und man hat

Mehr

3 Abbildungen. 14 I. Zahlen, Konvergenz und Stetigkeit

3 Abbildungen. 14 I. Zahlen, Konvergenz und Stetigkeit 14 I. Zahlen, Konvergenz und Stetigkeit 3 Abbildungen 3.1 Definition. Es seien zwei Mengen M, N gegeben. Unter einer Abbildung f : M N von M nach N versteht man eine Vorschrift, die jedem Element M genau

Mehr

Partielle Differentialgleichungen in der Bildverarbeitung. oder

Partielle Differentialgleichungen in der Bildverarbeitung. oder Partielle Differentialgleichungen in der Bildverarbeitung Februar 2003 Dirk Lorenz oder PDEs in der Bildverarbeitung 1 Partielle Differentialgleichungen zum Anfassen und Streicheln PDEs in der Bildverarbeitung

Mehr

2.10 Lokale Funktionsanalyse

2.10 Lokale Funktionsanalyse 2.1 Lokale Funktionsanalyse Aufgabe Gegeben sei die Abbildung g : R 2 R 2 mit g(x, y) : (x 3 yx, y). Man bestimme alle Mengen M k : {(ξ, η) R 2 g 1 (ξ, η) hat genau k Elemente}. Wie verhält g sich in der

Mehr

Stabilisierung linearer Systeme mit Ausgangsrückführung via Euler-Methode

Stabilisierung linearer Systeme mit Ausgangsrückführung via Euler-Methode Stabilisierung linearer Systeme mit Ausgangsrückführung via Euler-Methode Markus Müller gemeinsame Arbeit mit M. French (Southampton) und A. Ilchmann (Ilmenau) Elgersburg-Workshop 2007 Elgersburg, 21.

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

Inhaltsverzeichnis. 2 Numerische Methoden Dirichlet Problem der Poisson Gleichung RAWP der Wärmeleitungsgleichung...

Inhaltsverzeichnis. 2 Numerische Methoden Dirichlet Problem der Poisson Gleichung RAWP der Wärmeleitungsgleichung... Inhaltsverzeichnis 1 Partielle Differentialgleichungen 1 1.1 Allgemeines und Klassifikation............................. 1 1.1.1 Grundbegriffe.................................. 1 1.1.2 Klassifikation der

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 partielle Differentialgleichungen (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3

Mehr

Differentiation und Taylorentwicklung. Thomas Fehm

Differentiation und Taylorentwicklung. Thomas Fehm Differentiation und Taylorentwicklung Thomas Fehm 4. März 2009 1 Differentiation in R 1.1 Grundlagen Definition 1 (Ableitung einer Funktion) Es sei f eine Funktion die auf dem Intervall I R definiert ist.

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 4 Blatt 5.6.4 Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag 37. Wir bestimmen zunächst die Schnittpunkte

Mehr

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l.

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l. Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Numerische Mathematik II Wintersemester 2009 Priv. Doz. Dr. Helmuth Jarausch Dr. KarlHeinz Brakhage Übung :

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1/3 Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am 06. 10. 2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer:

Mehr

4. Weitere Ableitungregeln ================================================================= 4.1 Die Ableitung der Sinus-und Kosinusfunktion

4. Weitere Ableitungregeln ================================================================= 4.1 Die Ableitung der Sinus-und Kosinusfunktion 4. Weitere Ableitungregeln ================================================================= 4.1 Die Ableitung der Sinus-und Kosinusfunktion ----------------------------------------------------------------------------------------------------------------

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

Übungen für Partielle Differentialgleichungen Wintersemester 2007/08

Übungen für Partielle Differentialgleichungen Wintersemester 2007/08 Übungen für Partielle Differentialgleichungen Wintersemester 27/8 1. Leite eine bekannte partielle Differentialgleichung von physikalischen Prinzipien her. 2. Berechne die variationelle Ableitung des folgenden

Mehr

3.3 Eindimensionale Wellengleichung

3.3 Eindimensionale Wellengleichung 3.3. Eindimensionale Wellengleichung 77 3.3 Eindimensionale Wellengleichung Die Wellengleichung lautet c 2 u(x,t) = 2 u t 2(x,t) für alle x Ω Rn, t R, wobei c > 0 eine Konstante ist. Schauen wir uns diese

Mehr

TU-Berlin. An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel

TU-Berlin. An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel Winterrätsel aus Übungsheft Gewöhnliche Differentialgleichungen Teil II TU-Berlin An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel gleichmäßig den ganzen, weiteren Tag über. Um Uhr

Mehr

2. Elementare Lösungsmethoden

2. Elementare Lösungsmethoden H.J. Oberle Differentialgleichungen I WiSe 2012/13 2. Elementare Lösungsmethoden A. Separierbare Differentialgleichungen. Eine DGL der Form y (t) = f(t) g(y(t)) (2.1) mit stetigen Funktionen f : R D f

Mehr

Linearisierung einer Funktion Tangente, Normale

Linearisierung einer Funktion Tangente, Normale Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion

Mehr

ct) für beliebiges f 2C 1 ;folglichist

ct) für beliebiges f 2C 1 ;folglichist 5 2. Quasilineare Differentialgleichungen erster Ordnung Motivation: Transportgleichung und Wellengleichung. 2.. Transportgleichung. @ t u + c@ x u =0mit t, x 2 R, 0 6= c 2 R. Wegen @ v u = hru, vi besagt

Mehr

Theoretische Grundlagen zur Astrophysik I +II

Theoretische Grundlagen zur Astrophysik I +II Theoretische Grundlagen zur Astrophysik I +II 1.Grundgleichungen der Hydrodynamik 2.Stoßwellen (Schocks) 3.Grundlagen Thermodynamik 4.Schwarzkörper-Strahlung 5. Turbulenz 1. Grundgleichungen der Hydrodynamik

Mehr

Flüsse und Vektorfelder

Flüsse und Vektorfelder Flüsse und Vektorfelder Def. Ein Vektorfeld auf U R n ist eine glatte (vektorwertige) Abbildung V : U R n. Bemerkung. Wir werden später die Transformationsgesetze für den Koordinatenwechsel bei Vektorfeldern

Mehr

Wärmeleitungsgleichung,

Wärmeleitungsgleichung, Fachbereich Mathematik der Universität Hamburg SoSe 2015 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung, 05.06.2015 Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x): Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden

Mehr

Integralrechnung. integral12.pdf, Seite 1

Integralrechnung. integral12.pdf, Seite 1 Integralrechnung Beispiel Zusammenhang WegGeschwindigkeit: Ist F (t) der zur Zeit t zurückgelegte Weg und v(t) die Geschwindigkeit, so ist v(t) = F (t) Geometrisch: Steigung der Tangente an der Kurve y

Mehr

1. Aufgabe 11 Punkte. Musterlösung DGL f. Ing., 10. April Aus

1. Aufgabe 11 Punkte. Musterlösung DGL f. Ing., 10. April Aus Musterlösung DGL f. Ing., 0. April 204. Aufgabe Punkte Aus 2 λ 0 λ 0 = 0 2 λ = 0 = (2 λ)( λ) 2 ( λ)( ) = (2 λ)λ 2 λ = λ((2 λ)λ ) = λ(2λ λ 2 ) = λ( 2λ+λ 2 +) = λ(λ ) 2 ergeben sich der der einfache Eigenwert

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 6. Übungsblatt Aufgabe 2

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

7. Die eindimensionale Wärmeleitungsgleichung

7. Die eindimensionale Wärmeleitungsgleichung H.J. Oberle Differentialgleichungen II SoSe 2013 7. Die eindimensionale Wärmeleitungsgleichung Als Beispiel für eine parabolische PDG betrachten wir die eindimensionale Wärmeleitungsgleichung u t (x, t)

Mehr