Dynamische Systeme in der Kosmologie

Größe: px
Ab Seite anzeigen:

Download "Dynamische Systeme in der Kosmologie"

Transkript

1 4. Theoretiker-Workshop der jungen Deutschen Physikalischen Gesellschaft auf dem Dürerhof in Waldkappel-Gehau Vortrag am 05. Januar 2013

2 1. In der Kosmologie macht man als Ansatz für ein Universum, dass die Raumzeit (L, h, o) gegeben ist durch L = I M mit einem offenen Intervall I R und einer 3-Mannigfaltigkeit M. Weiter ist die Lorentz-Metrik h gegeben durch h = dt 2 + g(t), wobei t Koordinate für I ist und g : I Met(M) eine Kurve von Riemannschen Metriken auf M.

3 Genauer bedeutet das für TL (t,p) = TIt TM p = R TMp : für ξ, η TM p. h (t,p) ( t, t ) = 1, h (t,p)(, ξ) = 0, t h (t,p) (ξ, η) = g p (t)(ξ, η), Die Zeitorientierung wird durch X = t gegeben.

4 Soll das Kosmologiemodell homogen und isotrop sein (d.h. überall gleich aussehen und auch in jede Richtung gleich aussehen), so kommt man darauf, dass M = S 3, E 3 oder H 3 (Sphäre, euklidischer oder hyperbolischer Raum) ist. Ist g 0 die sphärische, euklidische bzw. hyperbolische Metrik (mit ihren Schnittkrümmungen +1, 0 bzw. 1 überall), so erhält man die so genannten Friedmann-Modelle durch h = dt 2 + f (t)g 0, wobei f : I R + nur noch eine positive Funktion ist. Die Einsteinsche Feldgleichung wird dann zu einer gewöhnlichen Differentialgleichung für f.

5 2. Definition. Eine Liegruppe G ist eine (glatte) Mannigfaltigkeit, auf der auch noch eine Gruppenstruktur : G G G gegeben ist, die glatt ist. Beispiele. (a) Die allgemeine lineare Gruppe GL n (R) (b) Abgeschlossene Untergruppen davon, z.b. O n (R), U n (C), SL n (R) Auf einer Liegruppe hat man die Linkstranslationen L g : G G, h g h (für jedes g G). Dies sind Diffeomorphismen, denn L g 1 ist Inverses.

6 Definition. (a) Ein Vektorfeld X X(G) heißt linksinvariant, wenn für alle g G gilt: (L g ) (X) = X, d.h. X Lg(h) = (DL g ) h (X g ), h G. (b) Eine Riemannsche Metrik γ auf G heißt linksinvariant, wenn für alle g G gilt: L g(γ) = γ, d.h. γ h (ξ, η) = γ Lg(h)((DL g ) h (ξ), (DL g ) h (η)), für alle h G und ξ, η TG h.

7 Kommentar. (a) Sei g := TG e der Tangentialraum an das neutrale Element e G. Dann ist ein linksinvariantes Vektorfeld X auf G eindeutig bestimmt durch seinen Wert in e G, denn für beliebiges g G ist ja X g = (DL g ) e (X e ). g erbt deshalb via g = {X X(G) : X ist linksinvariant} X(G) eine Liealgebrastruktur: g ist eine Liealgebra der Dimension n = dimg. (b) Ebenso ist eine linksinvariante Metrik γ durch ihren Wert in e eindeutig bestimmt, γ e : g g R. [Abb. 19]

8 3. Lässt man die Isotropiebedingung der Kosmologiemodelle fallen und behält nur noch die Homogenität, so stößt man auf den Ansatz L = I G, wo G eine 3-dimensionale Liegruppe ist. Weiter ist h = dt 2 + g(t), mit einer Kurve linksinvarianter Metriken g : I Met(G) auf G, also als Kurve in dem endlich-dimensionalen aufgefasst werden kann. Pos(g) = {s : g g : s ist Skalarprodukt}

9 Die Zeitorientierung ist wieder durch das Vektorfeld / t gegeben. Die Einsteinsche Feldgleichung wird deshalb als eine gewöhnliche DGL 2. Ordnung für g erwartet bzw. als DGL 1. Ordnung auf dem Phasenraum P := Pos(g) Sym(g) mit Sym(g) := {s : g g R : s ist bilinear und symmetrisch}. Sei deshalb nun (L, h, o) mit h = dt 2 + g(t) eine solche Bianchi-Raumzeit. Wir notieren dann zunächst mit Ric(t) die Ricci-Krümmung der Riemannschen 3-Mannigfaltigkeit (G, g(t)) sowie mit S(t) ihre Skalarkrümmung.

10 Sei weiter κ(t) die 2. FF der Hyperfläcche {t} G L, κ: I Sym(g), und κ (t) der zugehörige Weingarten-Operator. Mit κ 2 bezeichnen wir die symmetrische Bilinearform auf g, die durch κ 2 (ξ, η) = g(κ (ξ), κ (η)), ξ, η g gegeben ist. Schließlich sei H : I R die mittlere Krümmung von {t} G L. Satz. Dann erfüllt die Raumzeit (L, h, o) die Vakuumgleichung Ein(h) = 0 genau dann, wenn gilt: (a) 0 = S + H 2 κ 2 (b) 0 = div(κ) (c) ġ = 2κ (d) κ = Ric + Hκ 2κ 2

11 Kommentar. (i) Beachte, dass die rechten Seiten im Satz Funktionen nur von g und κ, also Funktionen auf dem Phasenraum P sind. (ii) (c) und (d) zusammen werden als ein System gewöhnlicher Dgl. n auf dem Phasenraum P aufgefasst. (iii) Die Bedingungen (a) und (b) werden als Zwangsbedingungen interpretiert. Sie sind unter dem Fluss von (c) und (d) (genannt der Einstein-Fluss) invariant. (iv) Zu jedem (g 0, κ 0 ) P (mit (a) und (b)) gibt es deshalb eine maximale Lösungskurve (g, κ): (t, t + ) P von (c) und (d) mit (g, κ)(0) = (g 0, κ 0 ). (v) Falls t [, 0) endlich ist, t >, so nennt man t die Anfangssingularität von (L, h, o) (und ähnlich t + die Endsingularität, falls t + (0, ] endlich ist).

12 4. Aus (d) ergibt sich durch Spurbildung die Evolutionsgleichung für die mittlere Krümmung H : (t, t + ) R zu und weil H = spur g (κ) ist, folgt: Ḣ = κ 2, κ H2. Sei nun H : ( 3 H 0, ) R die maximale Lösung von Ḣ = 1 3 H2 mit Anfang H(0) = H 0 := H(0) und es sei H 0 < 0. Dann ist H(t) = 3 t 3 H 0. [Abb. 1]

13 Wegen Ḣ 1 3 H2 folgt für H : (t, t + ) R: H(t) H(t), t (t, 0] ( 3 H 0, ), insbesondere muss t 3 H 0 sein. [Abb. 1] Satz. Ist (g 0, κ 0 ) eine Anfangsbedingung mit H 0 = spur g0 (κ 0 ) < 0, so existiert eine Anfangssingularität t < 0 und es gilt: t 3 H 0.

14 H 0 ist die so genannte Hubble-Konstante. Wegen der gegenwärtigen Expansion des Universums, gemessen durch die Rotverschiebung charakteristischer Spektra, ist H 0 < 0. Die genaue Messung von H 0 und der Satz liefern daher die Abschätzung für das Alter des Universums von t < Milliarden Jahre. Vorbereitung. (a) Für fast alle Bianchi-Gruppen G und linksinvarianten Metriken g auf G ist zudem die Skalarkrümmung S nicht-positiv, S 0. Aus (a) ergibt sich deshalb auch die Ungleichung Ḣ = κ 2 = H 2 + S H 2.

15 (b) Wie im Satz kann man daher den Vergleich mit der Lösung H von Ḣ = H 2 mit H(0) = H 0 antreten und erhält: H(t) H(t) = 1 t 1 H 0, für t < t 0. (c) Man kann schließlich auch zeigen (siehe [Rendall 94] oder [Konstantis 12]), dass die Lösung des Einstein-Flusses nicht stirbt, so lange die mittlere Krümmung H beschränkt bleibt, also: sup H(t) < t < t 0. t 0 <t 0 Es folgt:

16 Satz. Ist (g 0, κ 0 ) eine Anfangsbedingung mit H 0 < 0 und ist S(t) 0, für alle t < t < 0, so gilt für die Anfangssingularität t (, 0): t 1 H 0. [Abb. 2] Damit ist das Alter des Universums (auch bei fast allen Bianchi-Raumzeiten) in das Zeitintervall 1 [ H 0, 3 H 0 ] eingegrenzt (ca Milliarden Jahre).

17 Vorbereitung. (a) Ist g eine linksinvariante Metrik auf G, so sei (e 1, e 2, e 3 ) ON-Basis von g (bzgl. g) und (λ 1, λ 2, λ 3 ) die duale Basis von g. Es heißt dann die Volumenform von (G, g). ω := λ 1 λ 2 λ 3 Λ 3 g (b) Ist K G ein Kompaktum, so ist das Volumen vol g (K) gegeben durch vol g (K) = ω. K

18 (c) Die Evolutionsgleichung für die Volumenform auf G ist Es folgt, dass ω = Hω. t ω(t) = ω(t 0 )exp( H(s)ds) t 0 ist. (d) Sei nun o.e. nach einer Zeitverschiebung t = 0 sowie b(t 0 ) := 1 + t 0 H 0 für t 0 > 0. Es ist dann wegen Ḣ H 2 (bei S 0) auch für alle t t 0 :

19 1 H(t) t b(t 0 ). Für t 0 0 ergibt sich für alle t > 0: H(t) 1 t und deshalb t1 t H(s)ds ln(t 1 ) + ln(t) = ln( t t 1 ). Satz. Sei (L, h, o) eine Bianchi-Raumzeit mit Hubble-Konstante H 0 < 0 (zu irgendeinem Zeitpunkt) und Anfangssingularität t >. Es gebe ein t 1 > t, so dass S(t) 0 ist, für alle t < t t 1. Dann gilt für die Volumenform ω: ω(t) 0 für t t.

20 Beweis. Es ist t ω(t) = ω(t 1 )exp( H(s)ds) t 1 t1 = ω(t 1 )exp( H(s)ds) ω(t 1 ) t 0. t t 1 Literatur. (a) P. Konstantis: Three-Dimensional Homogeneous Spaces and their Application in General Relativity. Dissertation am Mathematischen Institut der Universität Tübingen, November 2012 (b) K. Radermacher: Singularities in cosmological Bianchi class A models. Diplomarbeit am Mathematischen Institut der Universität Tübingen, Mai 2012

LIE GRUPPEN EMANUEL SCHEIDEGGER

LIE GRUPPEN EMANUEL SCHEIDEGGER LIE GRUPPEN EMANUEL SCHEIDEGGER Zusammenfassung. Definition einer Lie-Gruppe, Beispiele, invariante Vektorfelder, Lie-Klammer, Lie-Algebra (einer Lie-Gruppe), 1. Definition und erste Beispiele Wir beginnen

Mehr

Grundlagen der Differentialgeometrie und Einführung in die Allgemeine Relativitätstheorie

Grundlagen der Differentialgeometrie und Einführung in die Allgemeine Relativitätstheorie Grundlagen der Differentialgeometrie und Einführung in die 4. Theoretiker-Workshop der jungen Deutschen Physikalischen Gesellschaft auf dem Dürerhof in Waldkappel-Gehau Vortrag am 05. Januar 2013 Definition

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

Symplektische Geometrie

Symplektische Geometrie 31. August 2005 Symplektische Vektorrume Wiederholung: Eine (schwach) symplektische Form auf einem Vektorraum V ist eine Bilinearform die schiefsymmetrisch ist, d.h. ω : V V R ω(w.v) = ω(v, w) für alle

Mehr

2. Mannigfaltigkeiten

2. Mannigfaltigkeiten 2. Mannigfaltigkeiten 2.1 Äquivalenzprinzip Newton: und Weak Equivalence Principle (WEP): andere Form des WEP: Beschleunigung = Gravitation Die Bewegung eines frei-fallenden Körpers sind identisch in einem

Mehr

Allgemeine Relativitätstheorie und Schwarze Löcher

Allgemeine Relativitätstheorie und Schwarze Löcher 1 Allgemeine Relativitätstheorie und Schwarze Löcher Christian Haderer 13.01.2010 2 KAPITEL 1 GRUNDLAGEN DER ALLGEMEINEN RELATIVITÄTSTHEORIE Die allgemeine Relativitätstheorie (kurz ART) ist immer noch

Mehr

Vortrag zum Thema "Robertson-Walker Raumzeiten"

Vortrag zum Thema Robertson-Walker Raumzeiten Vortrag zum Thema "Robertson-Walker Raumzeiten" Johannes Nielsen 3.5.16 1 Einleitung Robertson-Walker Raumzeiten (teils auch Friedmann-Robertson-Walker oder Lemaître- Friedmann-Robertson-Walker) sind kosmologische

Mehr

Die Einsteinsche Feldgleichung

Die Einsteinsche Feldgleichung Die Einsteinsche Feldgleichung Volker Perlick ZARM, Univ. Bremen, Germany Eisenbahnfriedhof Uyuni, Bolivien Heraeus-Seminar 100 Jahre Allgemeine Relativitätstheorie Potsdam, 11 März 2015 Newton Einstein

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Entfernungsbestimmung im Kosmos 10

Entfernungsbestimmung im Kosmos 10 Entfernungsbestimmung im Kosmos 10 10.1 Folgerungen aus dem Hubble-Gesetz 10.2 Allgemeine Relativitätstheorie 10.3 Robertson-Walker - Metrik 10.4 Entfernungsdefinitionen 10.5 Dynamik der Expansion 10.6

Mehr

1 Der Satz von Darboux

1 Der Satz von Darboux 1 Der Satz von Darboux Satz 1.1 (Darboux 1 ) Zu jedem Punkt x M einer symplektischen Mannigfaltigkeit gibt es lokale Koordinaten, so dass χ in diesen Koordinaten lokal konstant ist. Definition 1.2 Es sei

Mehr

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung Allgemeine Relativitätstheorie Schwarzschildlösung und Anwendung Previously, on... Letztes Mal: Einsteingleichung und die Geodätengleichung Wir werden die Schwarzschild-Lösung der Einsteingleichung im

Mehr

(Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik

(Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik (Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik Patrick Mangat Referat zur Vorlesung Kosmologie 16. November 2011 Idee und Eigenschaften der de Sitter Metrik Die Geburt der kosmologischen

Mehr

Flache homogene Räume in der pseudo-riemannschen Geometrie

Flache homogene Räume in der pseudo-riemannschen Geometrie Flache homogene Räume in der pseudo-riemannschen Geometrie Wolfgang Globke School of Mathematical Sciences Oberseminar Differentialgeometrie Christian-Albrechts-Universität zu Kiel 1 I Pseudo-Riemannsche

Mehr

5 Die Liealgebra einer Liegruppe

5 Die Liealgebra einer Liegruppe $Id: liealg.tex,v 1.5 2010/09/03 07:51:34 hk Exp hk $ 5 Die Liealgebra einer Liegruppe Wir sind noch immer mit der Konstruktion der Liealgebra zu einer Liegruppe G beschäftigt. In der letzten Sitzung hatten

Mehr

Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen

Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen Anna Engels Seminar Riemannsche Geometrie und Spektraltheorie SS 003 Zusammenfassung Ich will erklären, wie man

Mehr

Holonomiegruppen: Klassifikation, Konstruktion und Anwendungen

Holonomiegruppen: Klassifikation, Konstruktion und Anwendungen Holonomiegruppen: Klassifikation, Konstruktion und Anwendungen Thomas Leistner School of Mathematical Sciences The University of Adelaide 1/17 Holonomiegruppe = Gruppe der Parallelverschiebungen entlang

Mehr

Eine Einführung in die Differentialgeometrie

Eine Einführung in die Differentialgeometrie Eine Einführung in die Differentialgeometrie Nach einer Vorlesung von Prof. Helga Baum 1 Getippt haben Luise Fehlinger und Carsten Falk 4. Mai 2006 1 Der Inhalt dieses Skriptes beruht auf den Vorlesungen

Mehr

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform Vorlesung 2 Differentialgeometrie: Grundlagen 49 Wir werden jetzt κ(v) durch Untersuchung von d p N bestimmen. Dazu beobachten wir zunächst, das aus dn(v) N folgt, dass es zu jedem v T p U ein w T p U

Mehr

Vorlesung Mathematik 2 für Ingenieure (A)

Vorlesung Mathematik 2 für Ingenieure (A) 1 Vorlesung Mathematik 2 für Ingenieure (A) Sommersemester 2017 Kapitel 8: Gewöhnliche Differenzialgleichungen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

Die Einsteinschen Feldgleichung

Die Einsteinschen Feldgleichung Die Einsteinschen Feldgleichung Thomas Lottner 14. November 2013 1 Inhaltsverzeichnis 1 Mathematische Grundlagen 3 2 Die Feldgleichung 6 3 Die EG in der RW-Metrik 7 4 Exkurs: Gravitationsstrahlung 10 2

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Matthias Nagel Riemannsche Flächen Stets sei X eine 2-dimensionale Mannigfaltigkeit (Fläche). Definition. ) Eine komplexe Karte auf X ist

Mehr

Liesche Gruppen und homogene Räume

Liesche Gruppen und homogene Räume Liesche Gruppen und homogene Räume Einführung Liesche Gruppen 1 treten typischerweise als Symmetriegruppen auf, d.h. als Gruppen von Abbildungen, unter denen ein Objekt oder eine Eigenschaft erhalten bleibt.

Mehr

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

Ist das Universum ein 3-Torus?

Ist das Universum ein 3-Torus? 1 / 20 Ist das Universum ein 3-Torus? RHO-Sommercamp, Waren Martin Haufschild 19. August 2009 2 / 20 Krümmung Kosmologische Räume werden gewöhnlich nach ihrer (Gaußschen) Krümmung K unterschieden: positive

Mehr

Vorlesung 1. Allgemeine Theorie einer Gleichung erster Ordnung

Vorlesung 1. Allgemeine Theorie einer Gleichung erster Ordnung Vorlesung 1. Allgemeine Theorie einer Gleichung erster Ordnung ImUnterschiedzudengewöhnlichen Differentialgleichungen besitzen die partiellen Differentialgleichungen keine einheitliche Theorie. Einige

Mehr

Flüsse und Vektorfelder

Flüsse und Vektorfelder Flüsse und Vektorfelder Def. Ein Vektorfeld auf U R n ist eine glatte (vektorwertige) Abbildung V : U R n. Bemerkung. Wir werden später die Transformationsgesetze für den Koordinatenwechsel bei Vektorfeldern

Mehr

Metrik des homogenen und isotropen Raumes. 1 Gleichzeitigkeit. 2 Robertson-Walker Metrik. von Sebastian Waeber

Metrik des homogenen und isotropen Raumes. 1 Gleichzeitigkeit. 2 Robertson-Walker Metrik. von Sebastian Waeber Metrik des homogenen und isotropen Raumes von Sebastian Waeber 1 Gleichzeitigkeit Anders als in der nicht gekrümmten Geometrie, in welcher raumzeitliche Abstände durch die Minkowski-Metrik gegeben sind,

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 30. Januar 2008 (System von) Differenzialgleichung(en) Schwingungsgleichung Newtonsche Mechanik Populationsdynamik...DGLn höherer Ordnung auf

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Vladimir I. Arnold Gewöhnliche Differentialgleichungen Übersetzt aus dem Russischen von Tobias Damm Zweite Auflage Springer Inhaltsverzeichnis Kapitel 1. Grundbegriffe 9 1. Phasenräume 9 1. Beispiele für

Mehr

4. Geodätische Linien

4. Geodätische Linien Gegeben ist eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D. Das Ziel ist es, ein Analogon für Geraden zu finden. Mögliche Charakterisierung von Geraden in der Euklidischen Geometrie

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25 Inhaltsverzeichnis I. Das Weltbild der Gravitation vor Einstein 21 1. Die Keplerschen Gesetze 25 2. Fallgesetze 33 2.1. Bewegung in einer Dimension 33 2.1.1. Geschwindigkeit 34 2.1.2. Beschleunigung 42

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Standardmodell der Kosmologie

Standardmodell der Kosmologie ! "# $! "# # % & Standardmodell der Kosmologie Urknall und Entwicklung des Universums Inhalt Einleitung Experimentelle Hinweise auf einen Urknall Rotverschiebung der Galaxien kosmische Hintergrundstrahlung

Mehr

Das Boolesche Modell

Das Boolesche Modell mit konvexen Körnern 3.12.2009 mit konvexen Körnern Ziele des heutigen Seminars: ist sehr anwendungsbezogen. Daher ist unser Ziel, am Ende die folgenden statistischen Fragen zu beantworten: Wann ist das

Mehr

Ort: Raum in der Mittelspange. Zeit: Mo 15-17h Mi 15-17h. Beginn Mo d

Ort: Raum in der Mittelspange. Zeit: Mo 15-17h Mi 15-17h. Beginn Mo d Spezialvorlesung WS 11/12. Vorl.Verz. 52302 Wolfgang Gebhardt: Vom Urknall zu den Sternen. Eine Einführung in die Kosmologie mit Übungen Ort: Raum 5.1.01 in der Mittelspange Zeit: Mo 15-17h Mi 15-17h Beginn

Mehr

LAPLACE Transformation

LAPLACE Transformation LAPLACE Transformation Bei der LAPLACE-Transformation wird einer (geeigneten) Funktion f(t) eine Funktion F (s) zugeordnet. Diese Art von Transformation hat u.a. Anwendungen bei gewissen Fragestellungen

Mehr

Hamilton-Jacobi-Formalismus I

Hamilton-Jacobi-Formalismus I Hamilton-Jacobi-Formalismus I 1 Hamilton-Jacobi-Formalismus I Johannes Berger Leonard Stimpfle 05.06.2013 Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen scheint in der Einführung

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Blockseminar Ergodentheorie und Dynamische Systeme

Blockseminar Ergodentheorie und Dynamische Systeme Blockseminar Ergodentheorie und Dynamische Systeme Partielle Hyperbolizität und 8.09.-12.09.08 1 Partielle Hyperbolizität 2 von Anosov-Diffeomorphismen Klassifikation dynamischer Systeme Wie verhält sich

Mehr

Modelle des Universums. Max Camenzind Akademie HD Januar 2015

Modelle des Universums. Max Camenzind Akademie HD Januar 2015 Modelle des Universums Max Camenzind Akademie HD Januar 2015 Unsere Themen Weltmodelle: Einsteins statisches Universum von 1917. das desitter Modell die Friedmann Modelle 1922/1924. das Lemaître Universum

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt Kosmologisches Standardmodell Übersicht Einführung und kosmologisches Prinzip ART und Metriken Robertson-Walker-Metrik und

Mehr

Seminar Frühes Universum Wintersemester 2003/04. Markus Kromer

Seminar Frühes Universum Wintersemester 2003/04. Markus Kromer Seminar Frühes Universum Wintersemester 2003/04 Weltmodelle I: Friedmann-Modell des Universums Markus Kromer Friedmann-Modell des Universums - Einführung 2 Einführung Hubble-Gesetz Grundgedanken der ART

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Ausarbeitung zum Vortrag Weltmodelle II

Ausarbeitung zum Vortrag Weltmodelle II Kompaktseminar: Das frühe Universum Ausarbeitung zum Vortrag Weltmodelle II OLIVER BURGER Mathematisches Institut, Fakultät für Mathematik und Physik Eberhard-Karls-Universität Tübingen Wintersemester

Mehr

xj, ψ = ψk = ξ i ηj ψk x i ( xi(0) x j(0) p x i (0) x j ) = η x j x i(0) p +ξ i η j (0)ψ k (0) Γm jk x k +ξ i η j (0) 2 ψ k x i (0) )

xj, ψ = ψk = ξ i ηj ψk x i ( xi(0) x j(0) p x i (0) x j ) = η x j x i(0) p +ξ i η j (0)ψ k (0) Γm jk x k +ξ i η j (0) 2 ψ k x i (0) ) 14. KRÜMMUNG 67 14. Krümmung Definition 14.1 zweite kovariante Ableitung). Sei M, g) eine Riemannsche Mannigfaltigkeit, sei M. Seien ξ T M η,ψ VM). Dann ist η ψ VM) 2 ξ,η ψ := ξ η ψ ξ ηψ T M heißt zweite

Mehr

Lie-Gruppen und Lie-Algebren Eine Einführung

Lie-Gruppen und Lie-Algebren Eine Einführung Lie-Gruppen und Lie-Algebren Eine Einführung Sommersemester 2009 an der Humboldt Universität zu Berlin. Daniel Schliebner Herausgabe: 26. September 2009 Inhaltsverzeichnis 1. Einführung......................................

Mehr

4 Vektoranalysis. 4.1 Riemannsche Metriken

4 Vektoranalysis. 4.1 Riemannsche Metriken 4 Vektoranalysis 4.1 Riemannsche Metriken Zunächst etwas Lineare Algebra: Es seien r linear unabhängige Vektoren a 1,..., a r im R n gegeben, und V := R(a 1,..., a n sei der von ihnen aufgespannte Untervektorraum.

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Kosmologie für die Schule

Kosmologie für die Schule Kosmologie für die Schule Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik Kosmologie für die Schule p.1/0 Ein symmetrisches Universum Die moderne Kosmologie beruht auf Einsteins

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

6 Abgeschlossene Untergruppen

6 Abgeschlossene Untergruppen 6 Abgeschlossene Untergruppen In diesem Abschnitt sei G eine Liesche Gruppe und H eine abgeschlossene Untergruppe von G. Wir werden beweisen, dass H eine Untermannigfaltigkeit und somit eine Liesche Untergruppe

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 37 Wir haben schon im ersten Semester gewöhnliche Differentialgleichungen samt einiger Lösungsverfahren besprochen. Dort ging

Mehr

Kählermannigfaltigkeiten

Kählermannigfaltigkeiten Kählermannigfaltigkeiten Nataliya Bitman Seminar über Kählermannigfaltigkeiten WS 2007/08 Mathematik VII Differentialgeometrie Veranstalter: Prof L Schwachhöfer 1 Inhaltsverzeichnis 1 Kählermannigfaltigkeiten

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Hauptseminar: Kosmologie

Hauptseminar: Kosmologie Hauptseminar: Kosmologie Metrik des homogenen und isotropen Raumes Steffen Keßler Universität Stuttgart Hauptseminar: Kosmologie p. 1/41 Das kosmologische Prinzip Kosmologisches Prinzip: Hauptseminar:

Mehr

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor 1.6 Tensoren Tensor vom Typ (k,l) = multilineare Abb. nach R x bedeutet kartesisches Produkt (geordnetes Paar) Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor Skalar: Type (0,0) Vektor:

Mehr

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x).

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x). 1 Kapitel 1 Clifford-Algebren 1 Innere Produkte Sei k {R, C}, V stets ein endlich-dimensionaler k-vektorraum. Fehlende Beweise finden sich in der Literatur ([Art1], [Bou1], [Brie], [Cohn]). Definition.

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Analysis 3, Woche 11. Mannigfaltigkeiten II Immersionen

Analysis 3, Woche 11. Mannigfaltigkeiten II Immersionen Analysis 3, Woche Mannigfaltigkeiten II. Immersionen Definition. Sei m n N und X R m offen. Eine Abbildung f C X; R n heißt Immersion, wenn für jedes x X die Matrix fx injektiv ist. Bemerkung.. Man hat

Mehr

EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME

EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME HOCHSCHULBÜCHER FÜR MATHEMATIK HERAUSGEGEBEN VON H. GRELL, K. MARUHN UND W. RINOW BAND 60 EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME VON H.BOSECK MIT 14 ABBILDUNGEN Zweite^ berichtigte Auflage

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik. Kosmologie für die Schule p.1/30

Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik. Kosmologie für die Schule p.1/30 Kosmologie für die Schule Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik Kosmologie für die Schule p.1/30 Ein symmetrisches Universum Die moderne Kosmologie beruht auf Einsteins

Mehr

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der

Mehr

2 Die Lie-Algebra einer Lieschen Gruppe

2 Die Lie-Algebra einer Lieschen Gruppe 2 Die Lie-Algebra einer Lieschen Gruppe Definition 2.1 Eine Lie-Algebra ist ein K-Vektorraum a versehen mit einer Abbildung welche die folgenden Eigenschaften hat. (i) Für alle v 1,v 2 a ist [v 1,v 2 ]

Mehr

2. Elementare Lösungsmethoden

2. Elementare Lösungsmethoden H.J. Oberle Differentialgleichungen I WiSe 2012/13 2. Elementare Lösungsmethoden A. Separierbare Differentialgleichungen. Eine DGL der Form y (t) = f(t) g(y(t)) (2.1) mit stetigen Funktionen f : R D f

Mehr

Die Robertson- Walker Metrik. Marcus Tassler

Die Robertson- Walker Metrik. Marcus Tassler Die Robertson- Walker Metrik Marcus Tassler 0. Juli 005 1 Raum und Zeit in der allgemeinen Relativitätstheorie 1.1 Äquivalenzprinzip Über die heute mit einer Genauigkeit von 10 13 bestätigte Gleichheit

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag Krümmung in der Mathematik und Physik Relativitätstheorie im Alltag Justus-Liebig-Universität Giessen Dr. Frank Morherr Was ist Krümmung? Gerade soll Krümmung Null haben. Prototyp Kreis - großer Radius,

Mehr

1.2 Gitter: Grundlegende Konzepte

1.2 Gitter: Grundlegende Konzepte Gitter und Codes c Rudolf Scharlau 16. April 2009 5 1.2 Gitter: Grundlegende Konzepte Es sei V ein n-dimensionaler R-Vektorraum. Auf V sei ein Skalarprodukt gegeben, dessen Werte mit x, y R, dabei x, y

Mehr

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016 Kausalität Seminar zur Lorentz Geometrie Jonas Haferkamp 9. Juni 2016 1 Einleitung Kausalität ist das Prinzip von Ursache und Wirkung. Um dieses Konzept zu formalisieren, ist offenbar ein sinnvoller Zeitbegriff

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Übungen zu M1 WS 2007/2008

Übungen zu M1 WS 2007/2008 Übungen zu M1 WS 2007/2008 1. Welche der folgenden Mengen sind Vektorräume über R und in welchem Sinn? a {f : R n R f stetig} b {x R n n i=1 (x i 2 = 1} = S n 1 c {f : R R f (streng monoton steigend} 2.

Mehr

1. Aufgabe Es sei A ein Atlas auf dem Hausdorffraum M. Dann gibt es genau einen maximalen Atlas A max mit A A max.

1. Aufgabe Es sei A ein Atlas auf dem Hausdorffraum M. Dann gibt es genau einen maximalen Atlas A max mit A A max. Keine Abgabe und Bewertung. Das Übungsblatt wird in der Übung am 10.4. besprochen. Präsenzübungen 1. Aufgabe Es sei A ein Atlas auf dem Hausdorffraum M. Dann gibt es genau einen maximalen Atlas A max mit

Mehr

Das Universum als RaumZeit

Das Universum als RaumZeit Das Universum als RaumZeit Max Camenzind Würzburg - 2017 Das ist eine der ältesten Aufnahmen von Andromeda "nebula, photographiert am Yerkes Observatorium um 1900. Für unsere modernen Augen ist dies wirklich

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

Universität Wien. Elementare Differentialgeometrie. Lehrveranstaltungsleiter Roland Steinbauer. Verfasser: Vortrag:

Universität Wien. Elementare Differentialgeometrie. Lehrveranstaltungsleiter Roland Steinbauer. Verfasser: Vortrag: Universität Wien Elementare Differentialgeometrie Lehrveranstaltungsleiter Roland Steinbauer Verfasser: Peter Egger Julian Wiederin a885415 a1046139 Vortrag: 4.11.015 Zuletzt geprüfte Version: 17.1.015

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 6 5. Juni 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 6 5. Juni 2013 1 / 23 8. Fundamentalsatz der lokalen Kurventheorie (Fortsetzung)

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Gruppe II Lineare Algebra

Gruppe II Lineare Algebra Pflichtbereichs Klausur in der Lehrerweiterbildung am 7.Juni 22 Bearbeiten Sie 3 der folgenden 6 Aufgaben, dabei aus jeder der beiden Gruppen (Lineare Algebra und Analysis) mindestens eine Aufgabe! Zur

Mehr

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt Kurze Zusammenfassung der Vorlesung 6 Am Anfang werden wir einbisschen mehr den Potenzreihenansatz besprechen. Abgewandelter Potenzreihenansatz In Verallgemeinerung der Eulerschen Differentialgleichung

Mehr