Lineare Algebra I Abschlussklausur

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra I Abschlussklausur"

Transkript

1 Dr. Peter Philip Wintersemester 2018/2019 Kilian Rückschloß, Pascal Stucky 7. Februar 2019 Lineare Algebra I Abschlussklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor Master Version der Prüfungsordnung (Jahreszahl): Diplom Anderes: Hauptfach: Mathematik Wirtschaftsm. Inf. Phys. Stat. Nebenfach: Mathematik Wirtschaftsm. Inf. Phys. Stat. Anrechnung der Credit Points für das Hauptfach Nebenfach (Bachelor / Master) Bitte schalten Sie Ihr Mobiltelefon aus und legen es nicht auf den Tisch; legen Sie bitte Ihren Personalausweis oder Reisepass sichtbar auf den Tisch. Bitte überprüfen Sie, ob Sie 5 Aufgaben erhalten haben. Schreiben Sie bitte nicht in den Farben rot oder grün. Schreiben Sie auf jedes Blatt Ihren Nachnamen und Vornamen. Lösen Sie bitte jede Aufgabe auf dem dafür vorgesehenen Blatt. Falls der Platz nicht ausreicht, verwenden Sie bitte die leeren Seiten am Ende und vermerken dies auf dem Angabenblatt der entsprechenden Aufgabe. Bitte achten Sie darauf, dass Sie zu jeder Aufgabe nur eine Lösung abgeben; streichen Sie deutlich durch, was nicht gewertet werden soll. Sie haben 90 Minuten Zeit, um die Klausur zu bearbeiten. Erlaubte Hilfsmittel: Schreibstifte und Radierer, sonst keine. Lösungen: Rechnungen und Beweise sollten mit allen Zwischenschritten klar aufgeschrieben werden. Resultate ohne hinreichende, folgerichtige Begründungen werden nicht akzeptiert (wenn in der Aufgabenstellung nicht anders angegeben). Falls sich Ergebnisse in Form von Brüchen, Wurzeln oder Ähnlichem ergeben, so lassen Sie sie in dieser Form, und versuchen Sie nicht, sie als gerundete Dezimalzahlen zu schreiben. Viel Erfolg! Aufgabe A1 A2 A3 A4 A5 Σ max. Punkte

2 Aufgabe A 1. [15 Punkte] Zeigen Sie mit einem Induktionsbeweis, dass für alle n N mit n 3 gilt, dass 2n+1 < n 2. Lösung: Induktionsverankerung (n = 3): Für n = 3 ergibt sich die Aussage = 7 < 3 2 = 9, welche wahr ist. Für den Induktionsschritt sei n N, n 3. Unter Annahme der Induktionsvoraussetzung 2n+1 < n 2, erhält man 2(n+1)+1 = 2n+2+1 Ind. vor. < n 2 +2 < n 2 +2n+1 = (n+1) 2, was zeigt, dass die Aussage auch für n+1 gilt und somit den Induktionsbeweis abschließt.

3 Aufgabe A 2. [25 Punkte] Sei K ein Körper und V ein K-Vektorraum. Sei U V. (a) (5 Punkte) Geben Sie die Definition davon an, dass U ein Untervektorraum von V ist. (b) (5 Punkte) Geben Sie einen Satz aus der Vorlesung an, der eine hinreichende und notwendige Bedingung dafür liefert, dass U ein Untervektorraum von V ist (es genügt, eine der beiden Äquivalenzen des Satzes anzugeben). (c) (5 Punkte) Es sei K := R, V := R 4 und U := {(x 1,x 2,x 3,x 4 ) V : x 1 x 2 = x 3 x 4 }. Zeigen Sie, dass U ein Untervektorraum von V ist. (d) (10 Punkte) Finden Sie in der Situation von (c) eine Basis von U, die (1,0,1,0) enthält und zeigen Sie, dass die von Ihnen gefundene Menge wirklich eine Basis von U ist. Zu (a): U ist nach Definition genau dann ein Untervektorraum von V, wenn (U,+, ) ein K- Vektorraum ist, wobei + und die Einschränkungen der jeweiligen Verknüpfung auf V V bzw. auf K V auf U U bzw. auf K U bedeuten. Zu (b): Nach dem Satz ist U genau dann ein Untervektorraum von V, wenn U und u,v U λ,µ K λu+µv U. Zu (c): Wegen (0,0,0,0) U ist U. Sei u = (u 1,...,u 4 ),v = (v 1,...,v 4 ) U sowie λ,µ R. Dann ist u 1 u 2 = u 3 u 4 und v 1 v 2 = v 3 v 4, also λu 1 +µv 1 (λu 2 +µv 2 ) = λ(u 1 u 2 )+µ(v 1 v 2 ) = λ(u 3 u 4 )+µ(v 3 v 4 ) = λu 3 +µv 3 (λu 4 +µv 4 ), also λu+µv U, so dass U nach (b) ein Untervektorraum von V ist. Zu (d): Es ist u := (1,0,1,0) U. Sei a := (1,1,0,0), b := (0,0,1,1). Dann ist B := {a,b,u} linear unabhängig: Ist αa+βb+γu = 0 mit α,β,γ R, so folgt α+0+γ = 0, α+0+0 = 0, 0+β +γ = 0, 0+β +0 = 0 Aus der zweiten und vierten Gleichung folgt α = β = 0 und dann folgt aus der ersten Gleichung auch γ = 0. Wegen (0,1,1,0) / U ist U V. Also ist, da U nach (c) Untervektorraum von V, dimu 3. Da B U linear unabhängig ist, folgt dimu = 3 und B ist eine Basis von U.

4 Aufgabe A 3. [25 Punkte] (a) (9 Punkte) Eine Relation R auf der Menge A heißt Äquivalenzrelation genau dann, wenn sie reflexiv, symmetrisch und transitiv ist. Geben Sie die Definition von reflexiv (3 Punkte), symmetrisch (3 Punkte) und transitiv (3 Punkte) an. (b) (16 Punkte) Sei A := {1,2,3,4,5}. Finden Sie die kleinste Menge R A A so, dass R eine Äquivalenzrelation ist und (1, 2) R und (2, 3) R (begründen Sie kurz die Korrektheit der von Ihnen gefundenen Menge) (8 Punkte). Geben Sie explizit alle Elemente der Quotientenmenge A/R an (4 Punkte) sowie f(1) und f(5), wenn f die zugehörige Quotientenabbildung bezeichnet (4 Punkte). Zu (a): Eine Relation R A A heißt nach Definition reflexiv genau dann, wenn a A (a,a) R; R heißt nach Definition symmetrisch genau dann, wenn a,b A ( ) (a,b) R (b,a) R (es ist auch okay, wenn man statt schreibt); R heißt nach Definition transitiv genau dann, wenn ( ) (a,b) R (b,c) R (a,c) R. a,b,c A Zu (b): Die gesuchte Menge ist R = { (1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1) } : Keine echte Teilmenge von R erfüllt die Bedingung: Wegen reflexiv sind alle (i,i) R (i = 1,...,5), wegen transitiv ist (1,3) R, wegen symmetrisch sind dann auch (2,1),(3,2),(3,1) R. R ist Äquivalenzrelation: reflexiv ist klar; symmetrisch gilt, da {(1,2),(2,1)} R, {(2,3),(3,2)} R, {(1,3),(3,1)} R. Ist (a,b) R und (b,c) R, so ist a,b,c {1,2,3} oder a = b = c. In jedem Fall ist (a,c) R, also R transitiv. Es ist { } A/R = {4},{5},{1,2,3}, sowie f(1) = {1,2,3}, f(5) = {5}.

5 Aufgabe A 4. [20 Punkte] (a) (13 Punkte) Geben Sie die Definitionen der Begriffe Ring, Ring mit Eins und Körper an, wobei Sie die Begriffe Gruppe und Kommutativität voraussetzen dürfen. (b) (7 Punkte) Zeigen Sie, dass die Menge der reellen Zahlen, wenn man die Rollen der normalen Addition und Multiplikation vertauscht, kein Ring ist. Zu (a): Eine Ring ist nach Definition eine nichtleere Menge R mit zwei Verknüpfungen + und, also Abbildungen +, : R R G so, dass (R,+) eine kommutative Gruppe ist, (R, ) assoziativ ist, und so, dass Distributivität gilt, also a,b,c R ( ) (a+b)c = ac+bc a(b+c) = ab+ac. Ein Ring heißt Ring mit Eins genau dann, wenn R ein neutrales Element bezüglich enthält. Ein Ring heißt Körper genau dann, wenn (R\{0}, ) eine kommutative Gruppe ist. Zu (b): (R,,+) ist kein Ring, da zum Beispiel keine Distributivität gilt: 7 = 1+(2 3) (1+2) (1+3) = 12. Alternativ kann man bemerken, dass (R, ) gar keine Gruppe ist, da 0 bezüglich kein inverses Element hat.

6 Aufgabe A 5. [15 Punkte] Sei V ein R-Vektorraum. Wir nennen eine Menge C V konvex genau dann, wenn a,b C λ [0,1] λa+(1 λ)b C. Beweisen oder widerlegen Sie die folgenden Aussagen: (a) (10 Punkte) Für jede Familie (C i ) i I konvexer Teilmengen von V ist C := i I C i wieder konvex. (b) (5 Punkte) Für jede Familie (C i ) i I konvexer Teilmengen von V ist C := i I C i wieder konvex. Lösung: (a) Sei I eine beliebige Indexmenge, und für jedes i I sei C i eine konvexe Teilmenge von V. Wir zeigen, dass dann auch C := i IC i eine konvexe Menge ist: Seien a,b C und λ [0,1]. Dann gilt i I a,b C i. Da alle C i konvex sind, folgt i I λa+(1 λ)b C i. Also ist λa+(1 λ)b C, was zeigt, dass C konvex ist. (b) Die Mengen{0} und{1} sind konvexe Teilmengen vonv := R, aber A := {0} {1} = {0,1} ist nicht konvex, da = 1 / A. 2 Somit sind Vereinigungen konvexer Mengen i.a. nicht konvex.

Lineare Algebra I Abschlussklausur

Lineare Algebra I Abschlussklausur Dr. Peter Philip Wintersemester 2018/2019 Kilian Rückschloß, Pascal Stucky 7. Februar 2019 Lineare Algebra I Abschlussklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor Master Version

Mehr

Lineare Algebra I Abschlussklausur

Lineare Algebra I Abschlussklausur Dr. Peter Philip Wintersemester 2018/2019 Kilian Rückschloß, Pascal Stucky 7. Februar 2019 Lineare Algebra I Abschlussklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor Master Version

Mehr

Analysis für Informatiker und Statistiker Abschlussklausur

Analysis für Informatiker und Statistiker Abschlussklausur Dr. Peter Philip Wintersemester 2018/2019 Lukas Emmert, Tobias König 4. Februar 2019 Analysis für Informatiker und Statistiker Abschlussklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss:

Mehr

Analysis für Informatiker und Statistiker Abschlussklausur

Analysis für Informatiker und Statistiker Abschlussklausur Dr. Peter Philip Wintersemester 2018/2019 Lukas Emmert, Tobias König 4. Februar 2019 Analysis für Informatiker und Statistiker Abschlussklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss:

Mehr

Lineare Algebra II Klausur

Lineare Algebra II Klausur Prof. Dr. W. Bley Wintersemester 2011/12 Dr. D. Macias Castillo 21. April 2012 Lineare Algebra II Klausur Nachname: Vorname: Matrikelnr.: Fachsemester: Abschluss: Bachelor PO 2007 PO 2010 Lehramt Gymnasium

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007 KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Maß- und Integrationstheorie mehrerer Variablen Nachklausur

Maß- und Integrationstheorie mehrerer Variablen Nachklausur Prof. Dr. Lars Diening Wintersemester 24/5 Roland Tomasi 8.3.25 Maß- und Integrationstheorie mehrerer Variablen Nachklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor, PO 27 2 2

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

Übungsklausur zur Linearen Algebra I

Übungsklausur zur Linearen Algebra I Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik 14.12.2009 Übungsklausur zur Linearen Algebra I Name: Prüfen Sie sofort, ob Sie alle 8 Aufgaben erhalten haben. Entfernen

Mehr

Übungen zu Geometrie und Lineare Algebra für das Lehramt

Übungen zu Geometrie und Lineare Algebra für das Lehramt Übungen zu Geometrie und Lineare Algebra für das Lehramt zusammengestellt von Stefan Haller Sommersemester 2019 (UE250163) 2. Übungsblatt für die Woche vom 11. bis 15. März 2019 Aufgabe 2.1. Wiederhole

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 3/4) Aufgabenblatt (9. Januar

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

Formelsammlung: Mathematik für Informatiker I

Formelsammlung: Mathematik für Informatiker I 25. März 2008 Inhaltsverzeichnis 1 Komplexe Zahlen 2 1.1 Allgemeines................................................ 2 1.2 Rechenregeln............................................... 2 1.3 Potenzen.................................................

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Prof. Dr. Peter Becker Fachbereich Informatik Mathematische Grundlagen Klausur Wintersemester 2015/16 16. März 2015 Name: Vorname: Matrikelnr.: Aufgabe 1 2 4 5 6 Summe Punkte 10 10 10 10 10 10 60 erreicht

Mehr

Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b.

Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b. Buchempfelungen Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b. Serge Lang, Lineare Algebra Lineare Abbildungen z.b. Kowalsky

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Lineare Algebra Probeklausur (WS 2014/15)

Lineare Algebra Probeklausur (WS 2014/15) Lineare Algebra Probeklausur (WS 2014/15) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift (Kugelschreiber

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Die Studenten, die sich in Friedolin EINGETRAGEN haben und von Friedolin wissen in welcher UG sie sind,

Die Studenten, die sich in Friedolin EINGETRAGEN haben und von Friedolin wissen in welcher UG sie sind, Die Studenten, die sich in Friedolin EINGETRAGEN haben und von Friedolin wissen in welcher UG sie sind, schreiben Sie sich bitte in IHRE CAJ-Gruppe ein (möglisch schnell damit die Übungsleiter die Punkte

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006 Technische Universität Berlin Fakultät II Institut für Mathematik WS 5/6 Prof. Dr. Michael Scheutzow 2. Februar 26 Februar Klausur Lineare Algebra I Name:.............................. Vorname:..............................

Mehr

Lineare Algebra Klausur 2

Lineare Algebra Klausur 2 Lineare Algebra Klausur 2 (24.9.2015 Dozent: Ingo Runkel) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Musterlösung zu Blatt 6, Aufgabe 2

Musterlösung zu Blatt 6, Aufgabe 2 Musterlösung zu Blatt 6, Aufgabe 2 I Aufgabenstellung Es sei F = R N der Raum aller reellen, mit N induzierten Folgen. Weiter bezeichne N alle Nullfolgen, K alle konvergenten Folgen und B alle beschränkten

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Wiederholungsklausur zur Linearen Algebra I

Wiederholungsklausur zur Linearen Algebra I Wiederholungsklausur zur Linearen Algebra I Prof. Dr. C. Löh/D. Fauser/J. Witzig 20. April 2017 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

02. Vektorräume und Untervektorräume

02. Vektorräume und Untervektorräume 02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 6

Mehr

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Für die Abgabe der Bearbeitungen

Mehr

3. Abgabeblatt - Lösungen. Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: a b := a + b 1, a b := a + b a b.

3. Abgabeblatt - Lösungen. Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: a b := a + b 1, a b := a + b a b. Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/2019 3. Abgabeblatt - Lösungen Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: Übungsgruppe: Namen: Tutor(in):

Mehr

Übungen zu Lineare Algebra 1, NAWI Graz, WS 2018/19 Blatt 1 (3.10.)

Übungen zu Lineare Algebra 1, NAWI Graz, WS 2018/19 Blatt 1 (3.10.) Blatt 1 (3.10.) 1. Von einem Parallelogramm ABCD sind die Punkte A = (2, 1), B = (6, 2) und D = (3, 5) gegeben. Berechnen Sie C. 2. Stellen Sie rechnerisch fest, ob das Viereck ABCD mit A = (2, 3), B =

Mehr

Funktionentheorie Nachholklausur

Funktionentheorie Nachholklausur Prof. Dr. Thomas Vogel Sommersemester 2014 Robert Schmidt 6.10.2014 Funktionentheorie Nachholklausur Nachname: Matrikelnr.: Vorname: Fachsemester: Abschluss: Bachelor, PO 2007 2010 2011 Master, PO 2010

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Probeklausur Lineare Algebra I

Probeklausur Lineare Algebra I Probeklausur Lineare Algebra I Wintersemester 2016/2017 Dr. Vogel, Universität Heidelberg Name: Matrikelnummer: Tragen Sie vor Beginn der Klausur Ihren Namen und Ihre Matrikelnummer auf dem Deckblatt ein.

Mehr

Vektorräume. Lineare Algebra I. Kapitel Juni 2012

Vektorräume. Lineare Algebra I. Kapitel Juni 2012 Vektorräume Lineare Algebra I Kapitel 9 12. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

Lineare Algebra Klausur 1

Lineare Algebra Klausur 1 Lineare Algebra Klausur 1 (29.7.2015 Dozent: Ingo Runkel) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Scheinklausur zur Linearen Algebra I, WS 05/06, 1. Teil

Scheinklausur zur Linearen Algebra I, WS 05/06, 1. Teil 6.2.2005 Scheinklausur zur Linearen Algebra I, WS 05/06,. Teil Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

Lineare Algebra I, Musterlösung zu Blatt 9

Lineare Algebra I, Musterlösung zu Blatt 9 Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 206/207 20.03.207 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik

Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik Prof. Dr. R. Tumulka, Dr. S. Eichmann Mathematisches Institut, Universität Tübingen Sommersemester 2017 2.6.2017 Lineare Algebra 1 Vorbereitungsaufgaben zur Ersten Teilklausur Studiengang: B.Sc. Mathematik,

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/201 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.201, 11 Uhr Lösungen der

Mehr

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Mathematik für Informatiker 1 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion ω : A n A eine n-äre algebraische Operation. Bemerkung zum Fall n

Mehr

Lineare Algebra I. Voraussetzung: Sei A ein kommutativer Ring und eine Kongruenzrelation auf A. a b a n b n.

Lineare Algebra I. Voraussetzung: Sei A ein kommutativer Ring und eine Kongruenzrelation auf A. a b a n b n. Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 5 Prof Dr Markus Schweighofer 02122009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 51: Voraussetzung:

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Klausur Lineare Algebra I

Klausur Lineare Algebra I Klausur Lineare Algebra I Fachbereich Mathematik WS / Prof. Dr. Kollross 9. März Name:.................................................. Vorname:............................................... Studiengang:...........................................

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN WS 2/2 Fachbereich 3 - Mathematik Seiler / Rambau Prüfungs-/Übungsschein-Klausur (Rechenteil Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Humboldt-Universität zu Berlin.0.08. Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik A. Filler Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Bitte lösen

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Allgemeine Algebren Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Operationen Eine Operation auf einer Menge A ist eine Abbildung f : A n A. A n ist dabei

Mehr

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Relationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Lineare Algebra I (NAWI) WS2015/2016 Übungsblatt

Lineare Algebra I (NAWI) WS2015/2016 Übungsblatt Lineare Algebra I (NAWI) WS205/206 Übungsblatt 0 07.0.205 Aufgabe. Von einem Parallelogramm seien die Punkte A = (5, 2), B = (4, ), C = (, ) gegeben. Bestimme die Koordinaten des vierten Punkts. Aufgabe

Mehr

15. Gruppen, Ringe und Körper

15. Gruppen, Ringe und Körper Chr.Nelius: Lineare Algebra II (SS2005) 1 15. Gruppen, Ringe und Körper A) Mengen mit Verknüpfungen (15.1) DEF: Eine Verknüpfung (oder Rechenoperation) auf einer nichtleeren Menge M ordnet je zwei Elementen

Mehr

Lineare Algebra und Analytische Geometrie I Winter 2015/16 Erste Klausur

Lineare Algebra und Analytische Geometrie I Winter 2015/16 Erste Klausur Lineare Algebra und Analytische Geometrie I Winter 25/6 Erste Klausur 9.2.26 Name (deutlich lesbar!):....................................................................... Matrikelnummer (deutlich lesbar!):

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) Blatt 7 SoSe 2011 - C. Curilla/ B. Janssens Präsenzaufgaben (P13)

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Algebra für Informatiker, SS 10 Vorlesungsklausur, , 12:00-13:30

Algebra für Informatiker, SS 10 Vorlesungsklausur, , 12:00-13:30 Algebra für Informatiker, SS 10 Vorlesungsklausur, 2.7.2010, 12:00-13:30 Name: Matrikelnr.:. (1) Es sind keine Unterlagen und keine elektronischen Hilfsmittel (Taschenrechner, Notebook, u.ä. ) erlaubt!

Mehr

Lösungen zur Mathematik für Informatiker I

Lösungen zur Mathematik für Informatiker I Lösungen zur Mathematik für Informatiker I Wintersemester 00/03 Prof Dr H Lenzing Blatt 7 Sei M Ihre Matrikelnummer mit den Ziffern m, m, m 3, m 4, m 5, m 6, m 7 Aufgabe 6 ( Bonuspunkt): Wir betrachten

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine nichtleere Teilmenge

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

Musterlösungen zur Linearen Algebra II Blatt 2

Musterlösungen zur Linearen Algebra II Blatt 2 Musterlösungen zur Linearen Algebra II Blatt 2 Aufgabe. Sei R ein nullteilerfreier kommutativer Ring mit. Setze K := R R\{0}/ mit der Äquivalenzrelation definiert durch (a, b) (a, b ) genau dann, wenn

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Aufgaben zu Kapitel 15

Aufgaben zu Kapitel 15 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation

Mehr

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014 Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Kapitel 15. Aufgaben. Verständnisfragen

Kapitel 15. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation einen K-Vektorraum bildet

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

Klausur Lineare Algebra 1 für das berufliche Lehramt (WS 2016/17)

Klausur Lineare Algebra 1 für das berufliche Lehramt (WS 2016/17) Klausur Lineare Algebra für das berufliche Lehramt (WS 06/7) am 0.0.07 von 3:30 - :00 Uhr Dr. Vanessa Krummeck Aufgabe. (Punkte: 3 + 3 + 3 + 3 = ) Themen-Mix. Welche der folgenden Aussagen sind wahr und

Mehr

1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018

1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018 1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018 1. Gegeben seien die nichtleeren Mengen X und Y, nichtleere Teilmengen A 1,A 2 von X, nichtleere Teilmengen B 1,B 2 von Y, und eine Funktion f : X

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundlagen der Mathematik (LPSI/LS-M1) Lösungen Blatt 10 WiSe 010/11 - Curilla/Koch/Ziegenhagen Präsenzaufgaben (P3) Wir wollen die Ungleichung

Mehr

Übungen zur Diskreten Mathematik I Blatt 1

Übungen zur Diskreten Mathematik I Blatt 1 1 Blatt 1 Aufgabe 1 Überprüfen Sie, ob die folgenden Aussagen Tautologien sind (i) (A B) (( A) ( B)), (ii) (A B) (( A) ( B)), (iii) ((A B) C) ((A C) (B C)), (iv) ((A B) C) ((A C) (B C)), (v) (A = B) ((

Mehr

Lineare Algebra I (NAWI) WS2017/2018 Übungsblatt

Lineare Algebra I (NAWI) WS2017/2018 Übungsblatt Lineare Algebra I (NAWI) WS2017/2018 Übungsblatt 01 04.10.2017 Aufgabe 1. Von einem Parallelogramm seien die Punkte A = (5, 2), B = (3, 1), C = (1, 2) gegeben. Bestimme die Koordinaten des vierten Punkts.

Mehr

Probeklausur zur Linearen Algebra II

Probeklausur zur Linearen Algebra II Probeklausur zur Linearen Algebra II Prof. Dr. C. Löh/D. Fauser/J. Witzig 24. Juli 207 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle

Mehr

Klausur zur Topologie

Klausur zur Topologie Klausur zur Topologie Aufgabe. Bitte füllen Sie folgendes aus! ( Punkt) Name: Matrikelnummer: Vorname: Fachrichtung: Es gelten die üblichen Klausurbedingungen. Bitte beachten Sie folgende Hinweise: Bearbeitungszeit:

Mehr

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 2013/14 24.10.2013 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Mehr