11. Übung zur Vorlesung Zahlentheorie. im Wintersemester 2016/17. Untersuche mit dem Lucas-Lehmer-Test, ob die Zahl n = prim ist.

Größe: px
Ab Seite anzeigen:

Download "11. Übung zur Vorlesung Zahlentheorie. im Wintersemester 2016/17. Untersuche mit dem Lucas-Lehmer-Test, ob die Zahl n = prim ist."

Transkript

1 11. Übung zur Vorlesung Aufgabe 41. Untersuche mit dem Lucas-Lehmer-Test, ob die Zahl n = prim ist. Aufgabe 42. Beweise das folgende Kriterium von Proth mit dem Pocklington-Test: Sei n > 1 gegeben. Wenn natürliche Zahlen a und k mit den Eigenschaften F = 2 k teilt n 1 2 k > n a (n 1)/2 1 mod n existieren, dann ist n prim. Aufgabe 43. Faktorisiere mit dem Fermat-Algorithmus die Zahl Aufgabe 44. Faktorisiere die Zahl 7429 mit dem quadratischen Sieb zur Faktorbasis b = ( 1, 2, 3, 5, 7). Abgabe am Freitag, den , um 13 Uhr.

2 10. Übung zur Vorlesung Aufgabe 37. Entscheide, ob die folgenden Gleichungen eine Lösung besitzen und berechne gegebenenfalls die ersten drei Stellen einer Lösung. X 2 = 7 in Z 3, X 2 = 17 in Z 5003, X 2 = 1 in Z 2 Aufgabe 38. Zeige für jede Primzahl p: (a) Z p ist kompakt (b) Q p ist lokalkompakt Aufgabe 39. Zeige, dass das Polynom (X 2 13)(X 2 17)(X ) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 40. Sei p eine Primzahl. Zeige, dass die diophantische Gleichung x 3 = y 4 +p keine Lösung x, y Z p besitzt mit x y 0 mod p. Die online-plattform für Ihre HiWi-Bewerbung zum Sommersemester 2017 ist ab sofort geönet. Alle qualizierten InteressentInnen werden um ihre Bewerbung gebeten. Abgabe am Freitag, den , um 13 Uhr.

3 9. Übung zur Vorlesung Aufgabe 33. Sei K = Q( d) ein quadratischer Zahlkörper. Zerlege die Hauptideale (p), p P in O K in Primideale. Aufgabe 34. Bestimme die Fundamentaleinheit des Ringes ganzer Zahlen des Zahlkörpers Q( 47). Aufgabe 35. Zeige, dass x = 3 5 und y = 2 3 Elemente in Z 7 sind und berechne die ersten vier Stellen der Potenzreihenentwicklung. Aufgabe 36. Berechne eine Lösung der Gleichung 7X 2 2 mod Abgabe am Freitag, den , um 13 Uhr.

4 8. Übung zur Vorlesung Aufgabe 29. Es seien m, n Z zwei quadratfreie, teilerfremde ganze Zahlen von denen mindestens eine 1 mod 4 ist. Betrachte K := Q( m, n). Zeige: i) Ist 1, ω bzw. 1, ω eine Ganzheitsbasis von O Q( m) bzw. O Q( n), so ist 1, ω, ω, ωω eine Ganzheitsbasis von O K ii) Berechne den Ring der ganzen Zahlen für (m, n) = (3, 5) und (m, n) = (5, 13). iii) Was ist jeweils die Diskriminante der obigen Zahlkörper? Hinweise: Schreibe ein α O K als α = β 0 + β 1 ω mit β i Q[ω]. Bezeichne mit d bzw. d die Diskriminanten von O Q( m) bzw. O Q( n). Zeige: d,d sind teilerfremd. Zeige nun β i d O Q( m) und folgere, dass d α Koezienten in Z besitzt. Vertausche nun die Rollen von d und d, um i) zu zeigen. Aufgabe 30. Betrachte den Zahlkörper K = Q(α), wobei α das Minimalpolynom f(t ) = T 3 T 4 besitzt. i) Berechne die Diskriminante der Q-Basis 1, α, α 2. Hinweis dazu: Ist T 3 + pt + q = (T α 1 )(T α 2 )(T α 3 ), so gilt i<j (α i α j ) 2 = 4p 3 27q 2. ii) Berechne eine Ganzheitsbasis von O K. iii) Berechne K. Aufgabe 31. Berechne im Ring der ganzen Zahlen des Zahlkörpers K = Q( 2) die Inversen der Ideale I = (3, ) und J = (7, ) Aufgabe 32. Berechne die Klassenzahl von Q( 7). Abgabe am Freitag, den , um 13 Uhr.

5 7. Übung zur Vorlesung Aufgabe 25. (a) Sei α eine Nullstelle des Polynoms X 3 X 4 Z[X]. Zeige, dass 1 2 (α + α2 ) eine ganze algebraische Zahl ist, 1 2 (1 + α) aber nicht. (b) Sei β eine Nullstelle des Polynoms X 3 2X 2 + 6X + 40 Z[X]. Zeige, dass 1 2 β nicht ganz über Z ist, obwohl Norm und Spur ganze Zahlen sind. Aufgabe 26. Bestimme den Ring der ganzen Zahlen des Zahlkörpers Q( 3 5). Aufgabe 27. Sei ζ eine primitive p-te Einheitswurzel für p > 2 prim. In zwei Teilen sollen der Ganzheitsring O Q(ζ) und die Diskriminante des Kreisteilungskörpers Q(ζ) berechnet werden. Zeige zuerst O Q(ζ) = Z[ζ] wie folgt. (a) Zeige, dass Φ p (x) := X p 1 + X p X + 1 = Xp 1 X 1 das Minimalpolynom von ζ ist. Wende dazu das Eisenstein-Kriterium auf Φ p (X + 1) an. Insbesondere hat die Körpererweiterung Q(ζ)/Q also den Grad p 1. (b) Zeige nun, dass das durch p gegebene Ideal po Q(ζ) eine Potenz des von λ := 1 ζ erzeugten Hauptideals ist, genauer, po Q(ζ) = (λ) p 1. Betrachte dazu Φ p (X) = p 1 i=1 (X ζi ) für X = 1 und 1 ζ i = (1 ζ)(1+ζ +...+ζ i 1 ) um p = λ p 1 ɛ zu folgern. Zeige: ɛ ist eine Einheit in O Q(ζ). (c) Berechne für ein ganzes Element α = a 0 + a 1 ζ a p 2 ζ p 2 Q[ζ] die Spuren der Elemente αζ k αζ, k = 0,..., p 2 um pα Z[ζ] zu zeigen. (d) Schreibe pα = p 2 i=0 c iλ i und zeige mittels Induktion, dass c i 0 mod p. Benutze die Norm, um daraus p c i für alle i zu folgern. Schlieÿe, dass bereits die pa i durch p teilbar waren und somit α Z[ζ] ist, wenn α ganz ist. Nach dem Obigen ist 1, ζ,..., ζ p 2 eine Ganzheitsbasis. Um nun deren Diskriminante zu bestimmen, gehe wie folgt vor.

6 (e) Zeige, dass (1, ζ,..., ζ p 2 ) = ± p 1 i j(ζ i ζ j ) = ± Φ p(ζ i ). i=1 (f) Zeige durch Ableiten von (X 1)Φ p (X) = X p 1 und einsetzen, dass Φ p(ζ i ) = Bestimme damit die Diskriminante (bis auf Vorzeichen). p ζ i 1 ζ i. Aufgabe 28. Löse die Weihnachtsbaumaufgabe. Abgabe am Freitag, den , um 13 Uhr.

7 6. Übung zur Vorlesung Aufgabe 21. Man kann die Pellsche Gleichung x 2 dy 2 = 1 für d Z auch schreiben als ( ) x dy det = 1. y x Zeige, dass damit die ganzzahligen Lösungen der Pellschen Gleichung zu einer Untergruppe der Gruppe Gl(2, Q) werden. Aufgabe 22. Berechne jeweils 3 Lösungen der Pellschen Gleichungen x 2 13y 2 = 1 und x 2 13y 2 = 4, die sich nicht nur um ein Vorzeichen unterscheiden. Aufgabe 23. Untersuche die folgenden komplexen Zahlen darauf, ob sie ganz über Z oder zumindest algebraisch über Q sind: 4 25, 1 + 5, exp(2πi/17). 7 Aufgabe 24. Zeige, dass die beiden folgenden Aussagen äquivalent sind: (a) Für α C existiert ein Zahlkörper K, so dass α K. (b) Es existiert ein Polynom 0 f(x) Z[x], so dass f(α) = 0. Abgabe am Freitag, den , um 13 Uhr.

8 5. Übung zur Vorlesung Aufgabe 17. Berechne die Kettenbruchentwicklung von 49 13, und Aufgabe 18. Berechne den Wert der Kettenbrüche [2, 3], [1, 2, 3], [3, 2, 1] und [0, 2, 4, 2, 1, 3, 2]. Aufgabe 19. Entwickle m 2 1 und m für m N in einen Kettenbruch. Aufgabe 20. Berechne die Kettenbruchentwicklung der Zahl x > n, die x 2 = nx + 1 für N N erfüllt. Abgabe am Freitag, den , um 13 Uhr.

9 4. Übung zur Vorlesung Die Online-Tests werden am Montag, den , um 14 Uhr auf Ilias veröentlicht. (Dazu auf nach WS16/17 suchen.) Für die Zulassung zur Klausur der müssen in allen Online-Tests alle Fragen richtig beantwortet werden. Die Tests dürfen bis zum beliebig oft durchgeführt werden. Aufgabe 13. Berechne die Jacobi-Symbole ( ) ( und ). Aufgabe 14. Sei p 3 prim. Zeige: ) (a) = 1 genau dann, wenn p 1 mod 6. (b) (c) ( 3 p ( 3 p) = 1 genau dann, wenn p 1 mod 12 oder p 11 mod 12. ( ) 2 p = 1 genau dann, wenn p 1 mod 8 oder p 3 mod 8. Aufgabe 15. Stelle die Zahlen 178, 373 und 5525 als Summe zweier Quadrate dar. Aufgabe 16. Finde die kleinsten Zahlen n N, die sich auf zwei bzw. drei wesentlich verschiedene Weisen als Summe zweier Quadrate darstellen lassen. Warum ist die Quadratsummendarstellung bei zusammengesetzten Zahlen im Allgemeinen nicht eindeutig? Abgabe am Freitag, den , um 13 Uhr.

10 3. Übung zur Vorlesung Aufgabe 9. (a) Berechne U n als abelsche Gruppe der Form i Z/pm i i Z für alle 9 n 16 mit nicht notwendigerweise verschiedenen Primzahlen p P. Gebe für jeden Faktor auch einen Erzeuger der zyklischen Gruppe an. (b) Zeige, dass die Einheitengruppe U n genau dann zyklisch ist, wenn entweder n = 4, n = p r+1 oder n = 2p r (für r N 0 und p P \ {2}). Aufgabe 10. Finde alle Primitivwurzeln zu p = 19 und p = 41. Drücke jeweils alle Primitivwurzeln zu p = 19 durch Potenzen einer gefundenen aus. Aufgabe 11. (a) Sei U n eine zyklische Gruppe und ζ ein Erzeuger. Zeige, dass { ζ i i Z, ggt(i, ϕ(n)) = 1} die Menge aller Erzeuger von U n ist, insbesondere hat U n also ϕ(ϕ(n)) Erzeuger. (b) Für welche a U 128 hat die Gleichung x 2 = a vier verschiedene Lösungen in U 128? Aufgabe 12. Berechne log 2 18 in F 37 und log 5 22 in F 547 mit dem baby steps - giant steps Algorithmus. Abgabe am Freitag, den , um 13 Uhr.

11 2. Übung zur Vorlesung Aufgabe 5. Löse die folgende simultane Kongruenz: 3x 1 mod 4, 3x 4 mod 5 und x 1 mod 6. Aufgabe 6. (a) Bestimme die letzten zwei Ziern von und (b) Berechne mod 19. Aufgabe 7. Es bezeichne ϕ(n) die Eulersche ϕ-funktion, d.h. die Mächtigkeit der Einheitengruppe U n. Zeige: (a) ϕ(n) ist gerade für n 3. (b) ϕ(n) ist eine Zweierpotenz genau dann, wenn n das Produkt einer Zweierpotenz mit paarweise verschiedenen Fermatschen Primzahlen ist. (c) n ist prim genau dann, wenn ϕ(n) = n 1. (d) n = d n ϕ(d). Aufgabe 8. Es seien p = 241, q = 251 und n = pq deren Produkt. Bestimme ϕ(n) und nde ein e > 1 mit ggt(e, ϕ(n)) = 1. Dann bestimme ein d mit ed 1 mod ϕ(n). Kodiere daraufhin x = 24 unter der Einwegfunktion E(x) = x e. Überprüfe das Ergebnis durch Dekodieren. Abgabe am Freitag, den , um 13 Uhr.

12 1. Übung zur Vorlesung Wichtige Informationen: Aktuelle Informationen zur Vorlesung/Übung und Übungsblätter gibt es im Netz auf der Seite Die Übungen dürfen in Zweiergruppen abgegeben werden. Aufgabe 1. Zeige, dass Z[ 3] euklidisch ist. Aufgabe 2. Zeige: Z[ 13] und 2 Z[ 13] sind irreduzibel, aber nicht prim. Hinweis: Betrachte (1 + 13)(1 13) = 2 7. Aufgabe 3. Sei p k die k.-te Primzahl. Zeige (a) p k+1 p 1 p 2 p k + 1, (b) p k 2 2k 1, (c) π(x) = #{p N p x, p prim } log log x. Aufgabe 4. Zerlege die Zahl 2310 Z in Primelemente innerhalb Z[i]. Abgabe am Freitag, den , um 13 Uhr.

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

Übungsaufgaben zur Zahlentheorie (Holtkamp)

Übungsaufgaben zur Zahlentheorie (Holtkamp) Ruhr-Universität Bochum Fakultät für Mathematik Sommersemester 2005 Übungsaufgaben zur Zahlentheorie (Holtkamp) Sonderregelung: Zur vollständigen Lösung jeder Aufgabe gehört die Kennzeichnung der (maximal

Mehr

14 Kreisteilungskörper

14 Kreisteilungskörper 14 Kreisteilungskörper Wir wenden unsere Ergebnisse auf einen Fall an, mit dem die Algebraische Zahlentheorie begann und der bis heute im Zentrum der Forschung steht. 14.1 Erweiterungen mit Einheitswurzeln

Mehr

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Übungsblatt 11. Hausübungen

Übungsblatt 11. Hausübungen Übungsblatt 11 Hausübungen Die Hausübungen müssen bis Mittwoch, den 09.01.19, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar

Mehr

Algebra I. Gal(K/Q), Gal(K/Q), a σa.

Algebra I. Gal(K/Q), Gal(K/Q), a σa. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 12. Übungsblatt Aufgabe 1: (6 1 P) Sei ζ = ζ 7 = exp(2πi/7) und K := Q[ζ]. Wir nehmen an, dass K/Q eine Galois-Erweiterung ist und dass es einen

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Lösungen - Serie 4 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 4 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie 4 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe 1: Betrachten Sie Zahlkörper. a) Untersuchen Sie, wie viele ganze Ideale a mit festgelegter Norm N(a) = a es in

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

Algebra WS 2008/ Übungsblatt

Algebra WS 2008/ Übungsblatt Algebra WS 2008/2009 1. Übungsblatt Konvention. In Aufgabenstellungen getätigte Aussagen sind jeweils zu beweisen, auch wenn kein explizites Zeigen Sie, dass... dabeisteht. 1. Sei (R, +, ) ein Ring, a

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 26 Einheitswurzeln Definition 26.1. Es sei K ein Körper und n N +. Dann heißen die Nullstellen des Polynoms X n 1 in K die n-ten

Mehr

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z )

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) Aufgabe 57 a) Seien p Primzahl, p 2, k N und [a] p k ( Z/p k Z ). Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) genau zwei oder gar keine Lösung. Beweis: Sei [x] p k ( Z/p k Z ) eine Lösung

Mehr

c) In wieviele Primfaktoren zerfällt das Ideal (5) darin? Geben Sie die zugehörigen Verzweigungsindizes

c) In wieviele Primfaktoren zerfällt das Ideal (5) darin? Geben Sie die zugehörigen Verzweigungsindizes 1. Aufgabe (6 Punkte): Es sei das Polynom f(x) := X 3 + 2X 2 Q[X] und eine Nullstelle α davon gegeben. a) Zeigen Sie, daÿ f irreduzibel ist und berechnen Sie dessen Diskriminante. b) Folgern Sie, daÿ Z[α]

Mehr

Musterlösung 14. = 1+ζ 5 +ζ 5 +ζ 2 5 +ζ 2 5. = 1+2Re(ζ 5 )+2Re(ζ 2 5) = 1+2cos72 +2cos144 = 1+2cos72 +2(2cos ).

Musterlösung 14. = 1+ζ 5 +ζ 5 +ζ 2 5 +ζ 2 5. = 1+2Re(ζ 5 )+2Re(ζ 2 5) = 1+2cos72 +2cos144 = 1+2cos72 +2(2cos ). D-MATH Algebra II FS 013 Prof. Richard Pink Musterlösung 14 1. (a) Das Polynom X 5 1 hat die Nullstellen 1,ζ 5,ζ 5,ζ 3 5,ζ 4 5, wobei ζ 5 die primitive fünfte Einheitswurzel cos7 +isin7 bezeichnet. Da

Mehr

Übungen zu Zahlentheorie, SS 2008

Übungen zu Zahlentheorie, SS 2008 Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )

Mehr

Serie 29. (Zusatzaufgaben ohne Musterlösung) Repetition 2. Semester

Serie 29. (Zusatzaufgaben ohne Musterlösung) Repetition 2. Semester D-MATH Algebra II FS 013 Prof. Richard Pink Serie 9 (Zusatzaufgaben ohne Musterlösung) Repetition. Semester 1. Sei R ein Hauptidealring und sei a R ein Ideal. Zeige, dass jedes Ideal in R/a ein Hauptideal

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

384 = = = =

384 = = = = Aufgabe 1 (a) Sei n N. Charakterisieren Sie die Einheiten im Ring Z/nZ auf zwei verschiedene Arten. (b) Bestimmen Sie das inverse Element zur Restklasse von 119 in der Einheitengruppe von Z/384Z. (a) Die

Mehr

Einführung in die algebraische Zahlentheorie

Einführung in die algebraische Zahlentheorie Alexander Schmidt Einführung in die algebraische Zahlentheorie Springer-Lehrbuch Springer Berlin Heidelberg New York ISBN 978-3-540-45973-6 Kapitel 7 Der Große Fermatsche Satz Die folgende Behauptung wurde

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe)

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) TU Kaiserslautern Fachbereich Mathematik Prof. Dr. Andreas Gathmann Inga Schwabrow Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) Aufgabe 1. Wintersemester 2016/17 (1 + i) (1 i) 3 (2 +

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

Klausur zur Algebra. Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018

Klausur zur Algebra. Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018 Klausur zur Algebra Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Algebra. 1 = a u + b,

Algebra. 1 = a u + b, Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 11. November 2008 Algebra 5. Übung mit Lösungshinweisen Aufgabe 23 Es sei R ein euklidischer Integritätsbereich.

Mehr

Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe 1: Zeigen Sie die folgenden Identitäten zu Idealen: In Z[ 5] gilt () = (, 1 + 5) (, 1 5) und (1 + 5) = (, 1 + 5)

Mehr

Algebraische Zahlentheorie

Algebraische Zahlentheorie III-11 9. Der Satz von Kronecker-Weber. Ein Zahlkörper K heißt abelsch, wenn K : Q eine galois sche Körpererweiterung ist und die Galois-Gruppe Gal(K : Q) abelsch ist. Ist die Galois-Gruppe sogar zyklisch,

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 9 Aufgabe 1 (4 Punkte +) Sei

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 10 Endliche Untergruppen der Einheitengruppe eines Körpers Wir wollen zeigen, dass die Einheitengruppe Z/(p), p Primzahl, zyklisch

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

Inhaltsverzeichnis Vorlesung Zahlentheorie

Inhaltsverzeichnis Vorlesung Zahlentheorie J. Wolfart SoSe 2007 Inhaltsverzeichnis Vorlesung Zahlentheorie 1. Elementare Zahlentheorie, sehr summarisch Teilbarkeit, euklidischer Algorithmus, eindeutige Primfaktorzerlegung, einige einfache Konsequenzen:

Mehr

Algebra. Daniel Scholz im Winter 2004/2005. Überarbeitete Version vom 18. September 2005.

Algebra. Daniel Scholz im Winter 2004/2005. Überarbeitete Version vom 18. September 2005. Algebra Daniel Scholz im Winter 2004/2005 Überarbeitete Version vom 18. September 2005. Inhaltsverzeichnis 1 Ringe und Ideale 4 1.1 Ringe und Ideale......................... 4 1.2 Quotientenkörper.........................

Mehr

Klausur. Algebra SS Bearbeitungszeit: 120 Minuten

Klausur. Algebra SS Bearbeitungszeit: 120 Minuten Prof. Dr. Bernd Siebert Klausur Algebra SS 2014 Bearbeitungszeit: 120 Minuten Nachname: Vorname: Matrikelnr: Es dürfen alle Vorlesungsunterlagen inklusive Übungsaufgaben und Lösungen verwendet werden.

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

3.7 Quadratische Zahlringe

3.7 Quadratische Zahlringe Algebra I c Rudolf Scharlau, 00 010 181 3.7 Quadratische Zahlringe Wir haben in diesem Kapitel eine Fülle von Begriffen zur Ringtheorie eingeführt: Einheit, Primelement, irreduzibles Element, Ideal, Primideal,

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Algebra und Zahlentheorie WS 13/14

Algebra und Zahlentheorie WS 13/14 Algebra und Zahlentheorie WS 13/14 FU Berlin David Müßig http://page.mi.fu-berlin.de/def/auz14/ muessig@mi.fu-berlin.de 21.01.2014 1 Hintergrund: Basen & Vektorräume 1.1 Grundlegende Begriffe Da einige

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016 Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016

Mehr

Übungen p-adische Zahlen

Übungen p-adische Zahlen Blatt 1 Aufgabe 1. Berechnen Sie die ersten fünf Ziffern a 0,..., a 4 der ganzen p- adischen Zahl 1 + p + p 2 = a i p i Z p, p 1 i 0 für die Primzahlen p = 2, 3, 5. Aufgabe 2. Sei a = i 0 a ip i Z p eine

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89

2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89 2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89 Beweis. 1.) ϕ : Z K : 1 1 definiert einen Homomorphismus. Da Bild ϕ endlich ist, ist Z/ Kern ϕ endlich und man sieht leicht Kern ϕ = pz für eine Primzahl

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 26 Konstruierbare Einheitswurzeln Definition 26.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7 Quadratische Reste Michael Partheil 19. Mai 008 Inhaltsverzeichnis 1 Hintergrund Quadratische Reste 4 3 Gauß sche Summen 7 4 Quadratisches Rezirozitätsgesetz 10 5 Literaturverzeichnis 1 1 1 Hintergrund

Mehr

3. Quadratische Zahlkörper

3. Quadratische Zahlkörper Ein quadratischer Zahlkörer K ist ein algebraischer Zahlkörer vom Grad. Ein solcher Körer lässt sich stets schreiben als K = Q( d, wobei d Z {0, 1} eine quadratfreie ganze Zahl ist. Der Zahlkörer Q( d

Mehr

Zahlentheorie. Vorlesung 2. Ideale

Zahlentheorie. Vorlesung 2. Ideale Prof. Dr. H. Brenner Osnabrück WS 016/017 Zahlentheorie Vorlesung Ideale Alle Vielfachen der 5, also Z5, bilden ein Ideal im Sinne der folgenden Definition. Definition.1. Eine nichtleere Teilmenge a eines

Mehr

Ganze algebraische Zahlen

Ganze algebraische Zahlen Seminarvortrag Ganze algebraische Zahlen gehalten von Johannes Hölken an der Universität Duisburg-Essen im Sommersemester 2012 im Rahmen des Seminars über Elementrare Zahlentheorie. Kontakt: johannes.hoelken@stud.uni-due.de

Mehr

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen

Mehr

Übungsblatt 10 zur Algebra I

Übungsblatt 10 zur Algebra I Universität Augsburg Sommersemester 2013 Lehrstuhl für Algebra und Zahlentheorie Ingo Blechschmidt Prof. Marc Nieper-Wißkirchen Robert Gelb Übungsblatt 10 zur Algebra I Abgabe bis 24. Juni 2013, 17:00

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 27 Konstruierbare Einheitswurzeln Definition 27.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar

Mehr

Was bisher geschah...

Was bisher geschah... Polynomcodes, Fortsetzung p. 1 Was bisher geschah... Zyklische Codes versteht man beser als Polynomcodes Polynomcodes erhält man als Hauptideale im Ring GF(q)[X]/X n 1. Solche Hauptideale bestehen aus

Mehr

Algebra. 0 = (f g)(x) = f(x) g(x).

Algebra. 0 = (f g)(x) = f(x) g(x). Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 25. November 2008 Algebra 7. Übung mit Lösungshinweisen Aufgabe 31 Sei R ein Integritätsbereich,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x

Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07 Aufgabe 1. Es seien R ein kommutativer Ring mit 1 und D R. Wir schreiben { ) x Dy QR, D) = x, y R}. y x Dann ist QR, D) abgeschlossen bezüglich der

Mehr

Probeklausur - eine Lösung

Probeklausur - eine Lösung Probeklausur - eine Lösung Aufgabe 1 Sei p eine Primzahl, n N, q = p n und F q der Körper mit q Elementen. Sei G = GL 2 (F q ). a) Bestimmen Sie #G. 1 x b) Zeigen Sie, dass P = { : x F 1 q } eine p-sylowgruppe

Mehr

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe Universität Paderborn SS 2007 Warburger Str. 100 33098 Paderborn Seminar Der Ring O K der ganzen Zahlen über einem Zahlenkörper K Armin Hecht, Sabine Naewe 04.Dezember 2007 Inhaltsverzeichnis 7 Der Ring

Mehr

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen.

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen. Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 2. Dezember 2008 Algebra 8. Übung mit Lösungshinweisen Aufgabe 36 (a) Zeige, daß Z[X] kein Hauptidealring

Mehr

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994). Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

#1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100)

#1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100) #1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100) Name, Vorname: Matrikelnr.: Übungsgruppe: Hinweis: Es ist Ihnen erlaubt, Ergebnisse aus vorherigen Aufgaben dieser Klausur in den nachfolgenden Aufgaben

Mehr

Übung ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt. Gehen Sie dabei wie folgt vor: i) p x

Übung ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt. Gehen Sie dabei wie folgt vor: i) p x Übung 0 Übung 0 Zeigen Sie, dass der Primzahlsatz π(x) x/ ln(x) aus p x ln(p) x folgt Übung 02 Zeigen Sie, dass p x ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt Gehen Sie dabei wie folgt vor: i) p

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Armin Leutbecher. Zahlentheorie. Eine Einführung in die Algebra. Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel. SJ Springer

Armin Leutbecher. Zahlentheorie. Eine Einführung in die Algebra. Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel. SJ Springer Armin Leutbecher Zahlentheorie Eine Einführung in die Algebra Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel SJ Springer Inhaltsverzeichnis Einleitung 1 Häufig verwendete Abkürzungen 9 1 Der Fundamentalsatz

Mehr

4. Norm-euklidische quadratische Zahlkörper

4. Norm-euklidische quadratische Zahlkörper O. Forster: Algebraische Zahlentheorie 4. Norm-euklidische quadratische Zahlkörper 4.1. Ein euklidischer Ring ist bekanntlich ein Integritätsbereich R zusammen mit einer Funktion φ : R {0} N, so dass folgendes

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231 Euklidische Division 1. Euklidische Division: Landau Notation: f(n) = O(g(n)). Definitionen: Gruppe, Ring, Ideal Teilbarkeit und Teilbarkeit mit Rest (euklidisch) Beispiel für euklidische Ringe Z euklidisch

Mehr

Algebra I. keine Abgabe

Algebra I. keine Abgabe WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 13. Übungsblatt keine Abgabe Aufgabe 1: Sei G eine endliche abelsche Gruppe der Ordnung n. (a) Zeigen Sie: für jeden Teiler d von n existiert

Mehr

Fibonacci-Zahlen und goldener Schnitt

Fibonacci-Zahlen und goldener Schnitt Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2

Mehr

Übungsblatt 7. Hausübungen

Übungsblatt 7. Hausübungen Übungsblatt 7 Hausübungen Die Hausübungen müssen bis Mittwoch, den 06.1.17, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

Darstellungstheorie endlicher Gruppen

Darstellungstheorie endlicher Gruppen Darstellungstheorie endlicher Gruppen Universität Regensburg Sommersemester 2014 Daniel Heiß: 8: Ganze algebraische Zahlen 02.06.2014 Notation. R bezeichne stets einen kommutativen unitären Ring. Die Operation

Mehr

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Technische Universität Dortmund Sommersemester 2012 Fakultät für Mathematik 23.07.2012 Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

Algebra (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart

Algebra (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart Auf den nächsten Seiten finden Sie die Übungsblätter zur Vorlesung. Dozent: Prof. Dr. Jörg Brüdern Übungen: Dipl. Math. Rainer Dietmann und Dipl.

Mehr

2.8 Endliche Varietäten

2.8 Endliche Varietäten Universität Konstanz Algorithmische Algebraische Geometrie Fachbereich Mathematik und Statistik Wintersemester 2015/2016 Markus Schweighofer 2.8 Endliche Varietäten In diesem Abschnitt sei stets C K eine

Mehr

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ 1 2 3 4 5 Σ Aufgabe 1 (i) X Menge, Äquivalenzrelation auf X, x, y X x y [x] = [y] [x] [y], X ist disjunkte Vereinigung aller Äquivalenzklassen (Letzte Aussage) Paarweise verschiedene Äquivalenzklassen

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Klausur zur Einführung in die Algebra, Lösungsvorschlag

Klausur zur Einführung in die Algebra, Lösungsvorschlag Universität Konstanz Christoph Hanselka Fachbereich Mathematik und Statistik Markus Schweighofer 16. März 2015 Wintersemester 2014/2015 Klausur zur Einführung in die Algebra, Lösungsvorschlag Aufgabe 1

Mehr