Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7"

Transkript

1 Quadratische Reste Michael Partheil 19. Mai 008 Inhaltsverzeichnis 1 Hintergrund Quadratische Reste 4 3 Gauß sche Summen 7 4 Quadratisches Rezirozitätsgesetz 10 5 Literaturverzeichnis 1 1

2 1 Hintergrund Lemma 1.1 Beweis 0 mod i i Es gilt: Sei eine Primzahl und i Z mit 1 i 1. Dann gilt:! i! ( i! ( 1 (... ( i + 1 i! Da und i! teilerfremd sind (beachte: i 1, aber ( i eine ganze Zahl ist, folgt, dass auch ( 1 (... ( i + 1 i! eine ganze Zahl ist und somit i Lemma 1. Sei eine Primzahl und x 1,..., x n Z. Dann gilt: (x x n x x n mod Beweis Der Beweis ist er Induktion über n. Die Behautung stimmt offensichtlich für n 1. Induktionsschluss von n nach n + 1: Für ein n N gelte bereits: (x x n x x n mod (IV. Dann gilt: (x x n IV (x x n i x i n+1 mod i i0 (x x n 0 x n+1 + (x x n x 0 n+1 mod 0 x n+1 + (x x n mod x x n + x n+1 mod

3 Lemma 1.3 Sei F Z[X] ein rimitives Polynom. Ist F irreduzibel in Z[X], dann ist F auch in Q[X] irreduzibel. Beweis Angenommen, F wäre reduzibel in Q[X]. Dann gilt F g 1 g mit g 1, g Polynome aus Q[X], die beide nicht konstant sind. Diese Polynome lassen sich darstellen als g i a i G i mit a i Q und G i rimitiven Polynomen aus Z[X]. Damit: F a 1 a G 1 G Da das Produkt zweier rimitiver Polynome ebenfalls wieder rimitiv ist, ist auch G 1 G rimitiv. Die Darstellung eines Polynoms aus Q[X] als rimitives Polynom aus Z[X] ist bis auf das Vorzeichen eindeutig, woraus a 1 a ±1 folgt. Damit wäre F aber auch in Z[X] reduzibel, ein Widersruch zur Voraussetzung. Satz 1.4 (Irreduzibilitätskriterium von Eisenstein Sei F X n + a n 1 X n a 1 X + a 0 Z[X] und eine Primzahl mit a i für i 0,..., n 1 und a 0. Dann ist F irreduzibel in Z[X] (und nach Lemma 1.3 auch in Q[X]. Beweis Angenommen, F wäre reduzibel. Dann gibt es Polynome G r i0 b ix i, H s i0 c ix i Z[X] die nicht konstant sind mit F G H. Es folgt, dass a n b r c s und damit b r, c s. Außerdem gilt a 0 b 0 c 0. Da a 0 aber a 0 teilt entweder b 0 oder c 0. Wir nehmen o.b.d.a. b 0 und c 0 an. Sei nun t maximal mit b i für i 0,..., t. Somit ist 0 t r 1 und t+1 a t+1 b i c t+1 i b t+1 c 0 + }{{} i0 / ( t b i c t+1 i i0 } {{ } ( Somit: a t+1, also t + 1 n. Damit gilt aber r n (wegen 0 t r 1 und s 0 (da n r + s, ein Widersruch zu H nicht konstant. Also ist F irreduzibel in Z[X]. Korollar 1.5 Sei eine Primzahl und φ (X : X 1 + X X + 1 ein Polynom. Dann ist φ (X irreduzibel in Q[X]. 3

4 Beweis Es gilt φ (X X 1 X 1 Das Polynom G(X : φ (X + 1 ist irreduzibel genau dann wenn φ (X irreduzibel ist (denn φ (X reduzibel φ (X f(xg(x φ (X + 1 f(x + 1g(X + 1 φ (X + 1 reduzibel. Analog folgt aus φ (X + 1 reduzibel, dass φ (X reduzibel ist. Ferner: G(X j:i 1 (X X ( i1 i X i X i1 1 X j j + 1 j0 i0 ( i ( i X i 1 X X i 1 Da ( 1, ( 1 und nach Lemma 1.1 ( i für i 1,..., 1 ist G(X irreduzibel nach dem Eisenstein schen Irreduzibilitätskriterium. Also ist auch φ (X irreduzibel in Q[X]. Quadratische Reste Definition.1 (Potenzreste :- Seien N, m natürliche Zahlen. Eine zu m teilerfremde Zahl a Z heißt N-ter Potenzrest Modulo m, wenn ein x Z existiert mit x N a mod m. Ist insbesondere N, so heißt a quadratischer Rest mod m, andernfalls nennt man a einen quadratischen Nichtrest. Beisiel. In Z 3 ist 1 quadratischer Rest, da 1 1 mod 3 und ist quadratischer Nichtrest, da 1 mod 3. Lemma.3 Sei eine ungerade Primzahl. In Z gibt es genau 1 quadratische Reste und 1 quadratische Nichtreste. Beweis Sei r : 1. Die Elemente 1,..., r sind offensichtlich quadratische Reste in Z und aarweise inkongruent mod, denn aus 1 i < j r und i j mod folgt j i (j i(j + i 0 mod, also (j i(j + i und da rim ist somit entweder j i oder j + i, was nicht möglich ist da j i und j + i echt kleiner als sind. 4

5 Also gibt es mindestens 1 quadratische Reste in Z. Die restlichen Elemente (r + 1,..., (r + r sind nochmals die selben Reste r,..., 1 denn ( i i + i i mod, für i 1,..., r Somit gibt es genau 1 quadratische Reste und damit auch 1 quadratische Nichtreste in Z. Anderer Beweis Die Abbildung φ : Z Z, x x ist ein Gruenhomomorhismus, da φ(xy (xy x y φ(xφ(y mod. Nun ist die Anzahl der Quadrate in Z gleich der Ordnung des Bildes von φ. Da gilt Ord(Z Ord(Bild(φ Ord(Kern(φ und Kern(φ {±1} (beachte: folgt Ord(Bild(φ Ord(Z Ord(Kern(φ 1 Definition.4 (Legendre-Symbol Sei eine ungerade Primzahl und a Z. Dann definiert man das Legendre-Symbol durch a : a +1 wenn a quadratischer Rest mod 1 wenn a quadratischer Nichtrest mod 0 wenn a Satz.5 (Satz von Euler a a 1 mod Sei eine ungerade Primzahl und a Z. Dann gilt: Beweis Für a stimmt die Behautung offensichtlich. Wir können also a und damit a, teilerfremd (beachte: ist rim! voraussetzen. Ist a ein quadratischer Rest, so gibt es ein zu teilerfremdes b Z mit a b mod. Damit: a 1 1 F ermat b 1 mod 5

6 Sei nun a quadratischer Nichtrest und g eine Primitivwurzel von Z. Damit gilt a g k+1 mod für ein geeignetes k N (der Exonent von g muss ungerade sein, da a sonst ein quadratischer Rest wäre. Es ergibt sich: a 1 1 (k+1 g g k( 1 g 1 g 1 mod Da g die Ordnung 1 hat, ist g 1 1 mod, aber (g 1 g 1 1 mod. Die Gleichung x 1 hat in Z nur die Lösungen x ±1, es folgt g 1 1 mod, also a 1 1 mod Korollar.6 Sei eine ungerade Primzahl und a, b Z. a b ab 1.. a b. Aus a b mod folgt wenn a. a Beweis Die Behautungen folgen direkt aus dem Satz von Euler sowie der Definition des Legendre-Symbols. Satz.7 Sei eine ungerade Primzahl. Dann gilt: { 1 +1 wenn 1 mod 4 1. ( 1 ( 1/ 1 wenn 3 mod 4 { +1 wenn ±1 mod 8. ( 1 ( 1/8 1 wenn ±3 mod 8 Beweis Der erste Teil des Satzes folgt aus Satz.5 und 3. Zu. Im Ring der ganzen Gauß schen Zahlen Z[i] gilt also (1 + i i i(1 + i Aus dem Satz von Euler folgt 1 ( i 1 (1 + i 1 + i 1. ( i i 1 + i mod 6

7 Da gilt i i 1 i (i ( 1/ i ( 1 ( 1/ i ist also ( i ( 1 ( 1/ i 1 + i mod Fall 1: 1 mod 4 ( i 1 (( i 1 4 ( (( ( mod Fall : 3 mod 4 ( i 1 ( i 1 + i 1 ( i (1 i 1 i ( i +1 mod 1 (( ( mod Da als ungerade vorausgesetzt wurde, haben wir alle möglichen Fälle behandelt und es folgt Behautung. Beisiel da 13 5 mod 8. Ist die Gleichung x 8 mod 13 lösbar? ( 1 4 ( Also ist die Gleichung nicht lösbar. 1 ( Gauß sche Summen Definition 3.1 Sei eine ungerade Primzahl und ζ : e πi/ C ζ ist eine -te Einheitswurzel, es gilt ζ 1 und jede andere Lösung der Gleichung x 1 ist eine Potenz von ζ. Lemma 3. Seien und ζ wie in Definition 3.1. Es gilt 1 ζ k 0 k0 7

8 Beweis Durch Multilikation der Behautung mit ζ 1 erhält man 1 ζ k 0 k0 1 ζ k ζ k 0 ζ k1 k0 Lemma 3.3 Jedes Polynom f des Ringes Z[ζ ] lässt sich durch f a i ζ i i0 mit a i Z darstellen und die Darstellung ist eindeutig. Beweis Da ζ eine -te Einheitswurzel ist, gilt für k N 0 ζ +k ζ ζ k ζ k Durch wiederholte Anwendung lassen sich so alle Potenzen ζ m kleiner gleich 1 reduzieren. Ferner gilt nach Lemma 3. für m auf Potenzen 1 ζ k 0 ζ 1 k0 k0 Damit wäre der erste Teil der Behautung bewiesen. ζ k Eindeutigkeit der Darstellung: Die Zahlen 1, ζ, ζ,..., ζ sind in Q linear unabhängig. Andernfalls gäbe es ein Polynom F Q[X], Grad(F, F 0 mit F (ζ 0. Das Polynom φ : X 1 + X X + 1 ist nach Korollar 1.5 irreduzibel in Q[X] und da Q[X] Hautidealring ist auch ein Primelement. Ferner gilt φ (ζ 0 nach Lemma 3.. Da φ rim ist, sind F und φ teilerfremd (beachte: Da Grad(F < Grad(φ ist F auch kein Vielfaches von φ und es gibt somit Polynome A, B Q[X] mit A(XF (X+B(Xφ (X 1. Setzt man darin X ζ folgt der Widersruch 0 1. Sei nun f a ζ + a 3ζ a 1ζ + a 0 mit a i Z eine andere Darstellung von f. Aus der linearen Unabhängigkeit von 1, ζ, ζ,..., ζ erhält man f f 0 (a i a i ζ i 0 a i a i 0, für alle i 0,..., i0 8

9 Also ist a i a i für alle i 0,...,, die Darstellung von f also eindeutig. Definition 3.4 (Gauß sche Summe 1 k S( : ζ k Z[ζ ] k1 heißt Gauß sche Summe. Satz 3.5 Seien, q ungerade Primzahlen, q und S( die Gauß sche Summe. Dann gilt: 1. S( 1. S( q S( mod q Beweis q Im Folgenden wird statt ζ einfach nur ζ verwendet. Bemerkung: Ist k 0 mod und durchläuft m die Zahlen 1,..., 1, so tut dies auch km mod, nur evtl. in anderer Reihenfolge. S( 1 1 k ζ k l1 ( kkl k1 1 1 k1 l l ζ l 1 ζ k+kl k1 l1 1 1 ( kl ( l ζ k+l ζ k(1+l k1 l1 ( l l 1 ( 1 ζ k(1+l ζ k(1+l + l1 k1 l1 k1 1 l 1 1 ζ k(1+l 1 + (ζ k }{{} l1 3. l l1 k0 + ( 1 ( 1 k1 ( 1 l1 ( l 1 1 ζ k k1 1 + Nach Lemma.3 gibt es gleich viele quadratische Reste wie Nichtreste, also gilt 1 l1 Damit folgt schließlich 1 S( + 1 ( ( 1 1 ( l 0. 9

10 Zu. S( q Bem. ( 1 k1 1 ( kqq k1 q 1 q 1 k ζ k 1. k1 ζ kq ( k ( kq k1 1 ( q k ζ k Def. k1 ( q ζ kq mod q ζ kq mod q S( mod q 4 Quadratisches Rezirozitätsgesetz Das Quadratische Rezirozitätsgesetz gibt (... ein Verfahren an, um (... zu entscheiden, ob eine Zahl ein quadratischer Rest oder ein quadratischer Nichtrest ist. Die Entde- ckung des quadratischen Rezirozitätsgesetzes durch Euler und der Beweis durch Gauß waren die Ausgangsunkte der Entwicklung der modernen Zahlentheorie. Quelle: Wikiedia 1 Satz 4.1 (Quadratisches Rezirozitätsgesetz q. Dann gilt: q q ( 1 1 q 1 Seien, q ungerade Primzahlen, Beweis man S( q+1 Multiliziert man die zweite Behautung von Satz 3.5 mit S( so erhält q S( mod q (S( (q+1/ Ebenfalls nach Satz 3.5 gilt S( 1, also (q+1/ 1 (q+1/ ( q 1 mod q q S( mod q 1 htt://de.wikiedia.org/wiki/quadratisches Rezirozitätsgesetz, Stand:. Aril

11 1 Kürzen von (beachte:, q teilerfremd und liefert (q 1/ 1 (q 1/ q mod q ( Nach dem Satz von Euler gilt (q 1/ q 1 mod q und ( 1 ( 1/, es folgt ( 1 1 q 1 q q mod q Da beide Seiten der Kongruenz ±1 sind und q 3 gilt sogar Gleichheit. Beisiel 4. Ist x 15 mod lösbar? (Beachte: ist eine Primzahl! Nach dem Quadratischen Rezirozitätsgesetz gilt 3 3 ( ( und 5 5 ( Also: 15 ( ( 1 35 ( 1 Euler ( ( 3 5 Also ist die Kongruenz nicht lösbar. 11

12 5 Literaturverzeichnis Eric Bach, Jeffrey Shallit Algorithmic Number Theory Volume 1: efficient algorithms. The MIT Press, 1996 Otto Forster Algorithmische Zahlentheorie. vieweg, 1996 Hendrik Kasten Persönliche Notizen zur Übung zur Algebraische Zahlentheorie Jürgen Sander Skrit zur Vorlesung Zahlentheorie Wintersemester 004/005. htt:// Michiel Smid Primality testing in olynomial time. htt://citeseer.ist.su.edu/smid03rimality.html Wikiedia Verschiedene Artikel. htt://de.wikiedia.org/wiki/hautseite 1

2 Das Quadratische Reziprozitätsgesetz

2 Das Quadratische Reziprozitätsgesetz Das Quadratische Rezirozitätsgesetz Anna Sökeland, Natalie Graßmuck 6.0.007 1 Vorbemerkungen 3 mod 13, d.h. modulo 13 ist 3 ein Quadrat. Definition : Sei eine Primzahl. x F y F mit ist Quadrat modulo,

Mehr

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das

Mehr

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch: 7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge

Mehr

4.2 Das quadratische Reziprozitätsgesetz

4.2 Das quadratische Reziprozitätsgesetz 4. Das quadratische Rezirozitätsgesetz Die Grundlage zur Berechnung des Legendre- (und Jacobi-) -Symbols sind die folgenden beiden Sätze; zunächst aber ein Hilfssatz, mit dem sich zusammengesetzte Moduln

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x

Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07 Aufgabe 1. Es seien R ein kommutativer Ring mit 1 und D R. Wir schreiben { ) x Dy QR, D) = x, y R}. y x Dann ist QR, D) abgeschlossen bezüglich der

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar

Mehr

Charaktere. 1 Die Charaktergruppe

Charaktere. 1 Die Charaktergruppe Vortrag zum Seminar zur Funktionentheorie, 28.01.2008 Elisabeth Peternell Zu den wichtigsten Dirichletschen Reihen gehören die L-Reihen, welche insbesondere gewöhnliche Dirichletsche Reihen darstellen,

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

Algebra. 1 = a u + b,

Algebra. 1 = a u + b, Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 11. November 2008 Algebra 5. Übung mit Lösungshinweisen Aufgabe 23 Es sei R ein euklidischer Integritätsbereich.

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 26 Einheitswurzeln Definition 26.1. Es sei K ein Körper und n N +. Dann heißen die Nullstellen des Polynoms X n 1 in K die n-ten

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Proseminarprogramm Sommersemester 2008

Proseminarprogramm Sommersemester 2008 Proseminarprogramm Sommersemester 2008 Primzahlen Vorträge 1 Der erweiterte euklidische Algorithmus Zunächst wollen wir an den bekannten euklidischen Algorithmus in den ganzen Zahlen Z erinnern. Diesen

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

Prof. Dr. Don Zagier Schätze der Zahlentheorie Ergänzendes Material

Prof. Dr. Don Zagier Schätze der Zahlentheorie Ergänzendes Material Prof. Dr. Don Zagier Schätze der Zahlentheorie Ergänzendes Material Felix Boes & Anna Hermann 11 Setember 2013 In der zweiten Vorlesung des heutigen Tages beschäftigen wir uns mit einem Beweis des Quadratischen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 27 Konstruierbare Einheitswurzeln Definition 27.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 9 Aufgabe 1 (4 Punkte +) Sei

Mehr

3.5 Faktorzerlegung von Polynomen

3.5 Faktorzerlegung von Polynomen Algebra I c Rudolf Scharlau, 2002 2010 154 3.5 Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koeffizienten in Z oder Q,

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

3 Teilbarkeit in Integritätsringen

3 Teilbarkeit in Integritätsringen 3 Teilbarkeit in Integritätsringen 3.1 Division mit Rest in Z Zu a, b Z, b > 0 existieren eindeutig bestimmte Zahlen q, r Z a = qb + r, 0 r < b. 3.2 Satz Sei K ein Körper zu f, g K[T ], g 0 existieren

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i 2 Faktorielle Ringe In Folgenden seien alle Ringe stets Integritätsbereiche. Hier nun einige aus der Algebra 1 bekannte Definitionen und Fakten für einen Integritätsbereich A. x A heißt irreduzibel falls

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 3 Es sei K L eine endliche Körpererweiterung und x L ein Element. Dann sind die Potenzen x i, i N, linear abhängig, und das bedeutet,

Mehr

Ganze algebraische Zahlen

Ganze algebraische Zahlen Seminarvortrag Ganze algebraische Zahlen gehalten von Johannes Hölken an der Universität Duisburg-Essen im Sommersemester 2012 im Rahmen des Seminars über Elementrare Zahlentheorie. Kontakt: johannes.hoelken@stud.uni-due.de

Mehr

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 26 Konstruierbare Einheitswurzeln Definition 26.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Summen aufeinander folgender Quadrate, die ein Quadrat ergeben

Summen aufeinander folgender Quadrate, die ein Quadrat ergeben Elem Math 60 (2005) 66 71 001-6018/05/020066-6 c Swiss Mathematical Society, 2005 Elemente der Mathematik Summen aufeinander folgender Quadrate, die ein Quadrat ergeben Josef Rung und Johann Werner Josef

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z )

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) Aufgabe 57 a) Seien p Primzahl, p 2, k N und [a] p k ( Z/p k Z ). Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) genau zwei oder gar keine Lösung. Beweis: Sei [x] p k ( Z/p k Z ) eine Lösung

Mehr

= 1. Falls ( a n. ) r i. i=1 ( b p i

= 1. Falls ( a n. ) r i. i=1 ( b p i Das Jacobi-Symbol Definition Jacobi-Symbol Sei n N ungerade mit Primfaktorzerlegung n = s definieren das Jacobi-Symbol ( a ( ) ri n) := s a i=1 p i. i=1 pr i i. Wir Anmerkungen: Falls a quadratischer Rest

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

13. Quadratische Reste

13. Quadratische Reste ChrNelius: Zhlentheorie (SS 007) 3 Qudrtische Reste Wir ehndeln jetzt ei den Potenzresten den Sezilfll m und führen die folgende Begriffsildung ein: (3) DEF: Seien n und teilerfremd heißt qudrtischer Rest

Mehr

16. Das Quadratische Reziprozitätsgesetz

16. Das Quadratische Reziprozitätsgesetz O Forster: Einführung in die Zahlentheorie 16 Das Quadratische Rezirozitätsgesetz 161 Das uadratische Rezirozitätsgesetz acht eine Aussage darüber, wie sich die Legendresybole ( und ( zueinander verhalten,

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Klausur zur Algebra (B3)-Lösungen

Klausur zur Algebra (B3)-Lösungen Prof. Dr. Salma Kuhlmann Gabriel Lehéricy 13. März 2017 Simon Müller Wintersemester 2016/2017 Klausurnummer: 1 Klausur zur Algebra (B3)-Lösungen Matrikelnummer: Pseudonym: Aufgabe 1 2 3 4 5 6 7 erreichte

Mehr

5 Harte zahlentheoretische Probleme

5 Harte zahlentheoretische Probleme 5 Harte zahlentheoretische Probleme Die folgende Tabelle gibt einen Überblick über kryptologisch relevante zahlentheoretische Berechnungsprobleme. Effizient bedeutet dabei mit polynomialem Aufwand lösbar.

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Einführung in die algebraische Zahlentheorie

Einführung in die algebraische Zahlentheorie Alexander Schmidt Einführung in die algebraische Zahlentheorie Springer-Lehrbuch Springer Berlin Heidelberg New York ISBN 978-3-540-45973-6 Kapitel 7 Der Große Fermatsche Satz Die folgende Behauptung wurde

Mehr

Ergebnisse über die Teiler der Folgen (a n + 1)

Ergebnisse über die Teiler der Folgen (a n + 1) Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Ergebnisse über die Teiler der Folgen (a n + 1) Bachelorarbeit in Mathematik

Mehr

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Technische Universität Dortmund Sommersemester 2012 Fakultät für Mathematik 23.07.2012 Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

Seminar über Galoistheorie und Anwendungen SEPARABILITÄT

Seminar über Galoistheorie und Anwendungen SEPARABILITÄT Seminar über Galoistheorie und Anwendungen SEPARABILITÄT Christine Anthamatten und Alexandra Valle May 5, 2009 Contents 1 Einfache und mehrfache Nullstellen 2 2 Separabilität 7 3 Der Satz vom primitiven

Mehr

Diskrete Strukturen Vorlesungen 11 und 12

Diskrete Strukturen Vorlesungen 11 und 12 Sebastian Thomas RWTH Aachen, WS 2016/17 24.11.2016 30.11.2016 Diskrete Strukturen Vorlesungen 11 und 12 10 Teilbarkeitslehre Ziel dieses Abschnitts ist es zu sehen, dass es starke formale Ähnlichkeiten

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Protokoll zur Zahlentheorie (gymnasiales Lehramt)

Protokoll zur Zahlentheorie (gymnasiales Lehramt) Protokoll zur Zahlentheorie (gymnasiales Lehramt) W. Bley 2. Februar 2016 1 Ringtheorie 1.1 Ringe und Ringhomomorhismen Definition 1.1.1 Ein Ring ist eine nicht-leere Menge R zusammen mit zwei binären

Mehr

Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Zifferndarstellungen in anderen Basen 1

Mehr

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen.

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen. Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 2. Dezember 2008 Algebra 8. Übung mit Lösungshinweisen Aufgabe 36 (a) Zeige, daß Z[X] kein Hauptidealring

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2015/16) 1. Abgabetermin: Donnerstag, 22. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2015/16) 1. Abgabetermin: Donnerstag, 22. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2015/16) 1 Abgabetermin: Donnerstag, 22. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften

Mehr

Algebra. 10. Übung mit Lösungshinweisen. TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/ Dezember 2008

Algebra. 10. Übung mit Lösungshinweisen. TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/ Dezember 2008 Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 6. Dezember 008 Algebra 0. Übung mit Lösungshinweisen Aufgabe 7 Es sei K ein Körper und f K[X]

Mehr

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe Universität Paderborn SS 2007 Warburger Str. 100 33098 Paderborn Seminar Der Ring O K der ganzen Zahlen über einem Zahlenkörper K Armin Hecht, Sabine Naewe 04.Dezember 2007 Inhaltsverzeichnis 7 Der Ring

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal

Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal Laura Hinsch November 005 Inhaltsverzeichnis 1 Einleitung 1 Algebraische Kurven 1 3 Singularitäten 3 4 Der Satz von Pascal 5 i 1 Einleitung

Mehr

8.2 Ring- und Körperadjunktion

8.2 Ring- und Körperadjunktion 320 8.2 Ring- und Körperadjunktion 8.2.1 Definition (Ringadjunktion, Körperadjunktion) Sei jetzt L : K eine Körpererweiterung. Als Einsetzung von λ L oder auch als Auswertung an der Stelle λ bezeichnen

Mehr

ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA

ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA ZAHLENTHEORIE Skritum zur Vorlesung von Prof. Michael DRMOTA Inhaltsverzeichnis Teilbarkeit in ganzen Zahlen. ggt und kgv............................2 Fundamentalsatz der Zahlentheorie............... 3.3

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 16 Der Chinesische Restsatz für Z Satz 16.1. Sei n eine positive natürliche Zahl mit anonischer Primfatorzerlegung 1 p r 2 2 p r (die

Mehr

c) In wieviele Primfaktoren zerfällt das Ideal (5) darin? Geben Sie die zugehörigen Verzweigungsindizes

c) In wieviele Primfaktoren zerfällt das Ideal (5) darin? Geben Sie die zugehörigen Verzweigungsindizes 1. Aufgabe (6 Punkte): Es sei das Polynom f(x) := X 3 + 2X 2 Q[X] und eine Nullstelle α davon gegeben. a) Zeigen Sie, daÿ f irreduzibel ist und berechnen Sie dessen Diskriminante. b) Folgern Sie, daÿ Z[α]

Mehr

Vorlesungskript. Algebra

Vorlesungskript. Algebra Vorlesungskript Algebra SS 2018 Christian Sevenheck Fakultät für Mathematik TU Chemnitz vorläufige Fassung, 11. April 2018 Fehler und Bemerkungen bitte an : christian.sevenheck@mathematik.tu-chemnitz.de

Mehr

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen)

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen) Zahlentheorie LVA 405.300 C. Fuchs Inhaltsübersicht 26.06.2013 Inhaltsübersicht Die Zahlentheorie gehört zu den Kerngebieten der Mathematik und steht historisch und thematisch in ihrem Zentrum. Es geht

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 9 Graduierte Körpererweiterungen Definition 9.1. Es sei K ein Körper und D eine kommutative Gruppe. 1 Eine K-Algebra A heißt D-graduiert,

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Übungsblatt 5: Primfaktorzerlegung in Polynomringen

Übungsblatt 5: Primfaktorzerlegung in Polynomringen Übungsblatt 5: Primfaktorzerlegung in Polynomringen Wer vieles bringt, wird manchem etwas bringen. Johann Wolfgang von Goethe, Faust I 1. INHALT UND GGT S 1.1. ( Punkte) Man bestimme den Inhalt von P =

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr